Chapter 1

INTRODUCTION

1.1 Introduction

What is probability? ¹

CHANCE: general term of probability 2

The probability problem often arises from a chance experiment:

An experiment(trial 3) \longrightarrow outcome

Example 1.1

Flipping coins and casting dice:

Figure 1.1: The game of dice casting.

¹We start this course with probabilty, and the conceptw will evolve to random variables, and finally to the random processes near the end of the semester.

 $^{^2}$ In our daily life, we rather use the term "chance", while the term "probability" is often being used for academic purposes.

³A single performane of cahnce experiment is called "trial".

Question:

What is the chance of getting 2 or 3 showing up when you cast a die?

Solution: The answer is $\frac{1}{6} + \frac{1}{6} = \frac{1}{3}!!!$ (but, how come and why???)

You get the answer very easily without a serious thought process like you memorize the multiplication table. In a simple problem of probability, such as this example, the way of getting the probability of an experiment is easy, but as the problem becomes more and more complex, we need a well structured way of solving the problem.

CONSTRUCTION OF A MATHEMATICAL MODEL:

(for an experiment): ⁴

General problem \implies Math. structure

Three basic components:

1. Sample sapce(S):

Set of all possible outcomes in any given experiment.

(e.g.) In a game of casting a die, the sample sapce S consists of 6 outcomes as;

$$S = \{a_1, a_2, a_3, a_4, a_5, a_6\}$$

where a_i represents a single outcome.

2. **Event**(*A*):

A specific (combination of) outcome(s) that we want to compute its probability.

(e.g.) In a game of casting a die, as a specific event that might occur during the game, we can consider the following case;

$$A = \{a_2, a_4, a_6\} = \{\text{even numbers showing up}\}$$

⁴This is done by way of using the **set theory**.

 $^{^5}$ This corresponds to the subset of S in set theory.

3. Probability(P):

A function of events assigning a non-negative number to each event.

(e.g.) In a game of casting a die, we usually assign the probability as follows, if the die can be regarded as "fair";

$$P(a_i) = \frac{1}{6} \quad \forall i = 1, 2, \dots, 6.$$