Contents

10 Optimum Linear Systems 248
10.1 Systems maximizing SNR: Matched filter 248
10.1.1 Matched filter for colored noise 250
10.1.2 Matched filter for white noise 254
10.2 Systems minimizing MSE: Wiener filter 256

Chapter 10

Optimum Linear Systems

Design of an optimum system: Necessary informations on hand:
(1) Input specification:
random, deterministic, correlation function etc.
(2) System constraints:
linear, non-linear, time invariant etc.
(3) Criterion of optimality: meaningful measure of goodness (e.g.)
(i) Minimization of error(MSE): \longrightarrow Wiener filter
(ii) Maximization of SNR: $\quad \longrightarrow$ Matched filter

10.1 Systems maximizing SNR: Matched filter

Objective:

Designing an LTI system (or filter) that maximizes the output signal to noise ration (SNR) at $t=t_{0}$.

Figure 10.1: Input and output signals in digital communication system.

Goal:

At the receiver, we want to design an optimum system in order to determine whether the signal sent was " 1 " or " 0 ":

Figure 10.2: Concept of an optimum receiver.
where $x(t)$ ia a (sum of) deterministic signal.

Informations on hand:

(1) $x(t)$ is a deterministic signal, and the noise $n(t)$ is a stationary random signal with its PSD of $S_{N N}(\omega)$.
(2) The receiver is an LTI system.
(3) Criterion of optimality: maximize the output SNR at $t=t_{0}$

$$
\begin{equation*}
\underset{h(t), H(\omega)}{\operatorname{argmax}}\left(\frac{\hat{S}_{o}}{N_{o}}\right) \triangleq \underset{h(t), H(\omega)}{\operatorname{argmax}} \frac{\left|x_{o}\left(t_{0}\right)\right|^{2}}{E\left[N_{o}^{2}(t)\right]} \tag{10.1}
\end{equation*}
$$

where ${ }^{1}$

$$
\begin{gathered}
\hat{S}_{o} \triangleq\left|x_{o}\left(t_{0}\right)\right|^{2} \quad: \quad \text { output signal power at } t=t_{0} \\
N_{o} \triangleq E\left[N_{o}^{2}(t)\right]: \text { output average noise power }
\end{gathered}
$$

[^0]
10.1.1 Matched filter for colored noise

Figure 10.3: An LTI optimum receiver.
(i) The signal power of the output at $t=t_{0}$:

$$
\begin{aligned}
x_{o}(t) & =h(t) * x(t) \quad \text { (by linearity of system) } \\
& \stackrel{\text { or }}{=} \mathcal{F}^{-1}\{H(\omega) X(\omega)\} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t} d \omega
\end{aligned}
$$

Therefore, we have the output at $t=t_{0}$ as:

$$
\begin{equation*}
x_{o}\left(t_{0}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t_{0}} d \omega \tag{10.2}
\end{equation*}
$$

(ii) The average noise power of the output:

$$
\begin{equation*}
N_{o} \triangleq E\left[N_{o}^{2}(t)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{N N}(\omega)|H(\omega)|^{2} d \omega \tag{10.3}
\end{equation*}
$$

where $|H(\omega)|^{2}$ is the power transfer function of the system, and $S_{N N}(\omega)|H(\omega)|^{2}$ corresponds to the PSD $S_{N_{o} N_{o}}(\omega)$ of the output noise.

Applying (10.2) and (10.3) to (10.1), the optimal system which maximizes the output SNR is the $H(\omega)$ satisfying the following:

$$
\begin{equation*}
\underset{H(\omega)}{\operatorname{argmax}} \frac{\left|\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t_{0}} d \omega\right|^{2}}{\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{N N}(\omega)|H(\omega)|^{2} d \omega} \triangleq \underset{H(\omega)}{\operatorname{argmax}} F \tag{10.4}
\end{equation*}
$$

\Longrightarrow To find $H_{\text {opt }}(\omega)$ satisfying (10.4), we apply the Schwarz inequality.

Inner product between two signals:

Definition 10.1 The inner (or scalar) product $\langle x(t), y(t)\rangle \mathrm{b} / \mathrm{w}$ two signals ${ }^{2} x(t)$ and $y(t)$ can be any functions of $x(t) \& y(t)$ providing a scalar(complex) satisfying the following three requirements:
(i) Linearity: $<\alpha x(t)+\beta y(t), z(t)>=\alpha<x(t), z(t)>+\beta<x(t), z(t)>$
(ii) Symmetry: $\left\langle x(t), y(t)>=<y(t), x(t)>^{*}\right.$
(iii) Non degeneracy: $\langle x(t), x(t)\rangle \triangleq\|x(t)\|^{2} \geq 0 \quad \& \quad\|x(t)\|^{2}=0$ iff $x(t)=0$
(cf) We call $\|x(t)\|$, the norm of $x(t)$.

Schwarz inequality:

Theorem 10.1 The inner product of two signals and their norms should satisfy the following inequality:

$$
\begin{equation*}
|<x(t), y(t)>| \leq\|x(t)\| \cdot\|y(t)\| \tag{10.5}
\end{equation*}
$$

with equality if (i) either $x(t)$ or $y(t)$ is zero, or (ii) $x(t)=\alpha y(t)$ where α is a (complex) scalar.

proof:

Let $x(t)=x$ and $y(t)=y$ for notational convenience, and consider a non-negative quantity $\|x+\alpha y\|^{2}:{ }^{3}$

$$
\begin{align*}
\|x+\alpha y\|^{2} & \triangleq<x+\alpha y, x+\alpha y> \\
& =<x, x>+<x, \alpha y>+<\alpha y, x>+<\alpha y, \alpha y> \\
& =<x, x>+\alpha^{*}<x, y>+\alpha<y, x>+|\alpha|^{2}<y, y>\quad \text { (linearity) } \\
& =\|x\|^{2}+\alpha^{*}<x, y>+\alpha<x, y>^{*}+|\alpha|^{2}\|y\|^{2} \quad \text { (symmetry } \tag{symmetry}
\end{align*}
$$

Since α can be arbitrary, we choose:

$$
\alpha=-\frac{\langle x, y\rangle}{\|y\|^{2}}
$$

[^1]Then,

$$
\begin{aligned}
\|x+\alpha y\|^{2} & =\|x\|^{2}-\frac{\left\langle x, y>^{*}\right.}{\|y\|^{2}}<x, y>-\frac{\langle x, y>}{\|y\|^{2}}<x, y>^{*}+\frac{|<x, y>|^{2}}{\|y\|^{4}}\|y\|^{2} \\
& =\|x\|^{2}-\frac{|<x, y>|^{2}}{\|y\|^{2}} \\
& >0 \text { (should be) }
\end{aligned}
$$

From which we get:

$$
|<x, y>|^{2} \leq\|x\|^{2} \cdot\|y\|^{2}
$$

And therefore:

$$
|<x, y>| \leq\|x\| \cdot\|y\|
$$

Also, since $\|x+\alpha y\|^{2}=0$ if and only if $x+\alpha y=0$ from the non-degeneray property of the inner product, the equality holds iff $x=-\alpha y$.
q.e.d.

Example 10.1

Define an inner product $\mathrm{b} / \mathrm{w} x(t)$ and $y(t)$ as follows:

$$
\begin{equation*}
<x(t), y(t)>\triangleq \int_{-\infty}^{\infty} x(t) y^{*}(t) d t \tag{10.6}
\end{equation*}
$$

Then, prove that (10.6) satisfies all of the three requirement for an inner product, and thus (10.6) could be a valid inner product.

Solution: : assignment

Using the definition of the inner product as in (10.6) and applying the Schwarz inequality ${ }^{4}$ of (10.5) by substituting:

$$
\left\{\begin{array}{l}
\left(\text { i } x \longrightarrow \sqrt{S_{N N}(\omega)} H(\omega)\right. \\
\left(\text { ii } y \longrightarrow \frac{X^{*}(\omega) e^{-j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}}\right.
\end{array}\right.
$$

we have:

$$
\begin{aligned}
& \left|\int_{-\infty}^{\infty} \sqrt{S_{N N}(\omega)} H(\omega) \cdot \frac{X(\omega) e^{j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}} d \omega\right|^{2} \\
\leq & \int_{-\infty}^{\infty} \sqrt{S_{N N}(\omega)} H(\omega) \sqrt{S_{N N}(\omega)} H^{*}(\omega) d \omega \cdot \int_{-\infty}^{\infty} \frac{X^{*}(\omega) e^{-j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}} \cdot \frac{X(\omega) e^{j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}} d \omega
\end{aligned}
$$

which reduces to:

$$
\left|\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t_{0}} d \omega\right|^{2} \leq\left(\frac{1}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} S_{N N}(\omega)|H(\omega)|^{2} d \omega \cdot \int_{-\infty}^{\infty} \frac{|X(\omega)|^{2}}{S_{N N}(\omega)} d \omega
$$

Therefore, (10.4) becomes:

$$
F \triangleq \frac{\left|\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) X(\omega) e^{j \omega t_{0}} d \omega\right|^{2}}{\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{N N}(\omega)|H(\omega)|^{2} d \omega} \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|X(\omega)|^{2}}{S_{N N}(\omega)} d \omega
$$

Notice that the maximum SNR occurs as follows:

$$
\max F=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{|X(\omega)|^{2}}{S_{N N}(\omega)} d \omega
$$

when

$$
\sqrt{S_{N N}(\omega)} H(\omega)=\alpha \frac{X^{*}(\omega) e^{-j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}}
$$

${ }^{4}$ Schwarz inequality: $\left|\int_{-\infty}^{\infty} x y^{*} d \omega\right|^{2} \leq \int_{-\infty}^{\infty} x x^{*} d \omega \int_{-\infty}^{\infty} y y^{*} d \omega$.

Therefore, the transfer function of the optimal system which maximizes the output SNR at $t=t_{0}$ is as follows:

$$
H_{o p t}(\omega)=\alpha \cdot \frac{X^{*}(\omega) e^{-j \omega t_{0}}}{2 \pi \sqrt{S_{N N}(\omega)}}
$$

Note:

(i) $H_{\text {opt }}(\omega)$ is proportional to $X^{*}(\omega)$, in other words matched to unput (i.e. depends on the input $x(t)$), and this is why it is called a matched filter.
(ii) $H_{\text {opt }}(\omega)$ could have arbitrary gain via α, but α affects both the signals and the noise, thus has no effect on the SNR.
(iii) The choice of t_{0} only affects the delay of the output signal, and we must choose appropriate t_{0} in order to make the system causal ${ }^{5}$.

10.1.2 Matched filter for white noise

Suppose $S_{N N}(\omega)=\frac{N_{0}}{2}$, i.e. the noise is white, then the optimal filter becomes:

$$
H_{\text {opt }}(\omega)=\alpha \cdot \frac{X^{*}(\omega) e^{-j \omega t_{0}}}{2 \pi\left(0.5 N_{0}\right)} \text { let } \beta X^{*}(\omega) e^{-j \omega t_{0}} \quad \text { where } \beta=\frac{\alpha}{\pi N_{0}}
$$

The impulse response $h_{\text {opt }}(t)$ then becomes;

$$
\begin{aligned}
h_{\text {opt }}(t)=\mathcal{F}^{-1}\left\{H_{\text {opt }}(\omega)\right\} & =\beta \cdot \mathcal{F}^{-1}\left\{X^{*}(\omega) e^{-j \omega t_{0}}\right\} \\
& =\beta \frac{1}{2 \pi} \int_{-\infty}^{\infty} X^{*}(\omega) e^{-j \omega t_{0}} e^{j \omega t} d \omega \\
& =\beta\left[\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega\left(t_{0}-t\right)} d \omega\right]^{*} \\
& =\beta x^{*}\left(t_{0}-t\right) \\
& =\beta x\left(t_{0}-t\right): \text { if } x(t) \text { is real }
\end{aligned}
$$

: matched filter (expressed in terms of $x(t)$)

$$
{ }^{5} h_{\text {opt }}(t)=\mathcal{F}^{-1}\left\{H_{\text {opt }}(\omega)\right\}
$$

Figure 10.4: The impulse response of a matched filter under white noise.

10.2 Systems minimizing MSE: Wiener filter

Objective:

Designing a system which provides a good estimate of the future, present, and the past value of the input signal.

Wiener filter:
(i) prediction : future
(ii) filtering : present
(iii) smoothing : past

Figure 10.5: Concept of a Wiener filter.

Informations on hand (assumptions) ${ }^{6}$:
(1) $X(t)$ and $N(t)$ are JWSS, and $E[N(t)]=0$.
(2) The system is LTI, and $h(t)$ is real.
(3) Criterion of optimality: minimize the $M S E$

$$
\begin{equation*}
\underset{H(\omega)}{\operatorname{argmin}} E\left[\left\{X\left(t+t_{0}\right)-Y(t)\right\}^{2}\right] \tag{10.7}
\end{equation*}
$$

where $\epsilon^{2}(t) \triangleq\left\{X\left(t+t_{0}\right)-Y(t)\right\}^{2}$ corrsponds to the squared error.

[^2]Now ${ }^{7}$,

$$
\begin{align*}
E\left[\epsilon^{2}(t)\right] & =E\left[\left\{X\left(t+t_{0}\right)-Y(t)\right\}^{2}\right] \\
& =E\left[X^{2}\left(t+t_{0}\right)\right]-2 E\left[X\left(t+t_{0}\right) Y(t)\right]+E\left[Y^{2}(t)\right] \\
& =R_{X X}(0)-2 R_{X Y}\left(-t_{0}\right)+R_{Y Y}(0) \\
& =R_{X X}(0)-2 R_{Y X}\left(t_{0}\right)+R_{Y Y}(0) \tag{10.8}
\end{align*}
$$

Here, each term in (10.8) is as follows:
(i) Input power:

$$
\begin{aligned}
R_{X X}(0) & =\mathcal{F}^{-1}\left\{S_{X X}(\omega)\right\}_{\tau=0} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{X X}(\omega) d \omega
\end{aligned}
$$

(ii) Output power:

$$
\begin{aligned}
R_{Y Y}(0) & =\mathcal{F}^{-1}\left\{S_{Y Y}(\omega)\right\}_{\tau=0} \\
& =\mathcal{F}^{-1}\left\{|H(\omega)|^{2} S_{W W}(\omega)\right\}_{\tau=0} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty}|H(\omega)|^{2} S_{W W}(\omega) d \omega
\end{aligned}
$$

[^3](iii) Cross correlation at $t=t_{0}{ }^{8}$:
\[

$$
\begin{aligned}
R_{Y X}\left(t_{0}\right) & =E\left[Y(t) X\left(t+t_{0}\right)\right] \\
& =E\left[X\left(t+t_{0}\right) \int_{-\infty}^{\infty} h(\tau) W(t-\tau) d \tau\right] \\
& \left.=\int_{-\infty}^{\infty} h(\tau) R_{X W}\left(-\tau-t_{0}\right)\right) d \tau \\
& \left.=\int_{-\infty}^{\infty} h(\tau) R_{W X}\left(\tau+t_{0}\right)\right) d \tau \\
& =\int_{-\infty}^{\infty} h(\tau) \frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{W X}(\omega) e^{j \omega\left(\tau+t_{0}\right)} d \omega d \tau \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{W X}(\omega)\left\{\int_{-\infty}^{\infty} h(\tau) e^{j \omega \tau} d \tau\right\} e^{j \omega t_{0}} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{W X}(\omega) H^{*}(\omega) e^{j \omega t_{0}} d \omega \quad(\text { since } h(t) \text { is real })
\end{aligned}
$$
\]

Applying (i), (ii), and (iii) to (10.8), we get:

$$
\begin{equation*}
E\left[\epsilon^{2}(t)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{S_{X X}(\omega)-2 S_{W X}(\omega) H^{*}(\omega) e^{j \omega t_{0}}+|H(\omega)|^{2} S_{W W}(\omega)\right\} d \omega \tag{10.9}
\end{equation*}
$$

Note: The integrand in (10.9):
The first and the third terms (i.e. $S_{X X}(\omega)$ and $\left.|H(\omega)|^{2} S_{W W}(\omega)\right)$ are real and thus have maginitude only, while the second term $S_{W X}(\omega) H^{*}(\omega) e^{j \omega t_{0}}$ is complex and has both the magnitude and phase.

Express:

$$
\left\{\begin{array}{l}
\text { (i) } H(\omega)=|H(\omega)| e^{j \Phi_{H}(\omega)} \tag{10.10}\\
\text { (ii) } S_{W X}(\omega)=M(\omega) e^{j \Theta(\omega)}
\end{array}\right.
$$

then, (10.9) becomes:

$$
\begin{align*}
E\left[\epsilon^{2}(t)\right]= & \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{S_{X X}(\omega)+|H(\omega)|^{2} S_{W W}(\omega)\right\} d \omega \\
& -\frac{1}{2 \pi} \int_{-\infty}^{\infty} 2 M(\omega) \cdot|H(\omega)| e^{j\left(\omega t_{0}-\Phi_{H}(\omega)+\Theta(\omega)\right)} d \omega \tag{10.11}
\end{align*}
$$

[^4]To find $H(\omega) \ni: \operatorname{argmin}_{H(\omega)} E\left[\epsilon^{2}(t)\right]$, we follow the steps below:
(1) Find $\Phi_{H}(\omega)$ maximizing the second ontegral in (10.11).
(2) Find $|H(\omega)|$ minimizing (10.11) with the optimum $\Phi_{H}(\omega)$
(1) Optimum phase $\Phi_{H}(\omega)$:

To maximize the second integral in (10.11), we choose:

$$
\omega t_{0}-\Phi_{H}(\omega)+\Theta(\omega)=0
$$

which gives us:

$$
\begin{equation*}
\Phi_{H}(\omega)=\omega t_{0}+\Theta(\omega) \tag{10.12}
\end{equation*}
$$

(2) Optimum magnitude $|H(\omega)|$:

Substituting (10.12) into (10.11), we get:

$$
E\left[\epsilon^{2}(t)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{S_{X X}(\omega)-2 M(\omega) \cdot|H(\omega)|+|H(\omega)|^{2} S_{W W}(\omega)\right\} d \omega
$$

Completing the square of the integrand in $|H(\omega)|$, we have:

$$
\begin{align*}
& E\left[\epsilon^{2}(t)\right] \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty} {\left[S_{W W}(\omega)\left\{|H(\omega)|^{2}-2 \frac{M(\omega)}{S_{W W}(\omega)}|H(\omega)|+\frac{M^{2}(\omega)}{S_{W W}^{2}(\omega)}-\frac{M^{2}(\omega)}{S_{W W}^{2}(\omega)}\right\}\right.} \\
&\left.+S_{X X}(\omega)\right] d \omega \\
&=\frac{1}{2 \pi} \int_{-\infty}^{\infty}[{\left[S_{W W}(\omega)\left(|H(\omega)|-\frac{M(\omega)}{S_{W W}(\omega)}\right)^{2}-\frac{M^{2}(\omega)}{S_{W W}^{2}(\omega)}+S_{X X}(\omega)\right] d \omega } \tag{10.13}
\end{align*}
$$

The $|H(\omega)|$ which minimizes (10.13) is obviously ${ }^{9}$,

$$
\begin{align*}
\left|H_{o p t}(\omega)\right| & =\frac{M(\omega)}{S_{W W}(\omega)} \\
& =\frac{S_{W X}(\omega) e^{-j \Theta(\omega)}}{S_{W W}(\omega)} \tag{10.14}
\end{align*}
$$

Combining (10.12) and (10.14), we get:

$$
\begin{aligned}
H_{\text {opt }}(\omega) & =\left|H_{\text {opt }}(\omega)\right| \cdot e^{j \Phi_{H}(\omega)} \\
& =\frac{S_{W X}(\omega)}{S_{W W}(\omega)} e^{-j \Phi_{H}(\omega)} \cdot e^{j \omega t_{0}+j \Theta(\omega)} \\
& =\frac{S_{W X}(\omega)}{S_{W W}(\omega)} e^{j \omega t_{0}}
\end{aligned}
$$

: trasfer function of the Wiener filter

Special case: $W(t)=X(t)+N(t)$
If $X(T)$ and $N(t)$ are uncorrelated in addition to JWSS, then ${ }^{10} 11$
(i) The PSD of $W(t)$:

$$
\begin{aligned}
S_{W W}(\omega) & =S_{X X}(\omega)+S_{X N}(\omega)+S_{N X}(\omega)+S_{N N}(\omega) \\
& =S_{X X}(\omega)+S_{N N}(\omega)
\end{aligned}
$$

(ii) Cross PSD of $W(t) \& X(t)$:

$$
S_{W X}(\omega)=S_{X X}(\omega)+S_{N X}(\omega)=S_{X X}(\omega)
$$

Therefore, the Wiener filter becomes:

$$
H_{o p t}(\omega)=\frac{S_{X X}(\omega)}{S_{X X}(\omega)+S_{N N}(\omega)} e^{j \omega t_{0}}
$$

[^5]
The minimum MSE:

From (10.11), the resulting minimum MSE is:

$$
E\left[\epsilon^{2}(t)\right]_{\min }=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\{S_{X X}(\omega)-\frac{M^{2}(\omega)}{S_{W W}(\omega)}\right\} d \omega
$$

where $M(\omega)=\left|S_{W X}(\omega)\right|$.

(cf)

If $X(T)$ and $N(t)$ are uncorrelated, $S_{W X}(\omega)=S_{X X}(\omega)$ and thus the corresponding minimum MSE becomes as follows:

$$
\begin{aligned}
E\left[\epsilon^{2}(t)\right]_{\min } & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{S_{X X}^{2}(\omega)+S_{X X}(\omega) S_{N N}(\omega)-S_{X X}^{2}(\omega)}{S_{X X}(\omega)+S_{N N}(\omega)} d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{S_{X X}(\omega) S_{N N}(\omega)}{S_{X X}(\omega)+S_{N N}(\omega)} d \omega
\end{aligned}
$$

[^0]: ${ }^{1}$ Since the noise is random, we must rely on the statistical (or average) power of the noise rather than the noise power at $t=t_{0}$.

[^1]: ${ }^{2}$ Complex signals in general.
 ${ }^{3}$ Note that $\left.\langle x, \alpha y>=<\alpha y, x\rangle^{*}=(\alpha<y, x\rangle\right)^{*}=\alpha^{*}\langle y, x\rangle^{*}=\alpha^{*}\langle x, y\rangle$.

[^2]: ${ }^{6}$ These are the (1) input signal spec. (2) system spec. and (3) criterion of optimality respectively.

[^3]: ${ }^{7}$ Be reminded that $X(t)$ and $Y(t)$ are JWSS.

[^4]: ${ }^{8}$ Also be reminded that $X(t)$ and $N(t)$ are JWSS.

[^5]: ${ }^{9}$ Recall from (10.10) that $S_{W X}(\omega)=M(\omega) e^{j \Theta(\omega)}$, and thus $M(\omega)=S_{W X}(\omega) e^{-j \Theta(\omega)}$.
 ${ }^{10}$ If $X(t)$ and $N(t)$ are uncorrelated, then $S_{X N}(\omega)=S_{N X}(\omega)=2 \pi \overline{X N} \delta(\omega)$, where in this case $\bar{X}=\bar{Y}=0$, and thus $S_{X N}(\omega)=S_{N X}(\omega)=0$.
 ${ }^{11}$ Also, notice that since $X(t)$ and $N(t)$ are uncorrelated, $R_{X N}(\tau)=E[X(t)] E[N(t)]=0$ since $E[N(t)]=0$.

