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Chapter 10

Optimum Linear Systems

Design of an optimum system: Necessary informations on hand:

(1) Input specification:

random, deterministic, correlation function etc.

(2) System constraints:

linear, non-linear, time invariant etc.

(3) Criterion of optimality: meaningful measure of goodness

(e.g.)

(i) Minimization of error(MSE): −→ Wiener filter

(ii) Maximization of SNR: −→ Matched filter

...

10.1 Systems maximizing SNR: Matched filter

Objective:

Designing an LTI system (or filter) that maximizes the output signal to noise ration
(SNR) at t = t0.
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Problem statement: digital communication (example)

Figure 10.1: Input and output signals in digital communication system.

Goal:
At the receiver, we want to design an optimum system in order to determine whether
the signal sent was “1” or “0”:

Figure 10.2: Concept of an optimum receiver.

where x(t) ia a (sum of) deterministic signal.

Informations on hand:

(1) x(t) is a deterministic signal, and the noise n(t) is a stationary random signal
with its PSD of SNN(ω).

(2) The receiver is an LTI system.

(3) Criterion of optimality: maximize the output SNR at t = t0

argmax
h(t),H(ω)

(
Ŝo

No

)
∆
= argmax

h(t),H(ω)

|xo(t0)|2
E [N2

o (t)]
(10.1)

where 1

Ŝo
∆
= |xo(t0)|2 : output signal power at t = t0

No
∆
= E

[
N2

o (t)
]

: output average noise power

1Since the noise is random, we must rely on the statistical (or average) power of the noise rather
than the noise power at t = t0.
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10.1.1 Matched filter for colored noise

Figure 10.3: An LTI optimum receiver.

(i) The signal power of the output at t = t0:

xo(t) = h(t) ∗ x(t) (by linearity of system)

or
= F−1 {H(ω)X(ω)}

=
1

2π

∫ ∞

−∞
H(ω)X(ω)ejωtdω

Therefore, we have the output at t = t0 as:

xo(t0) =
1

2π

∫ ∞

−∞
H(ω)X(ω)ejωt0dω (10.2)

(ii) The average noise power of the output:

No
∆
= E

[
N2

o (t)
]

=
1

2π

∫ ∞

−∞
SNN(ω) |H(ω)|2 dω (10.3)

where |H(ω)|2 is the power transfer function of the system, and SNN(ω) |H(ω)|2
corresponds to the PSD SNoNo(ω) of the output noise.

Applying (10.2) and (10.3) to (10.1), the optimal system which maximizes the output
SNR is the H(ω) satisfying the following:

argmax
H(ω)

∣∣∣ 1
2π

∫∞
−∞ H(ω)X(ω)ejωt0dω

∣∣∣
2

1
2π

∫∞
−∞ SNN(ω) |H(ω)|2 dω

∆
= argmax

H(ω)
F (10.4)

=⇒ To find Hopt(ω) satisfying (10.4), we apply the Schwarz inequality.

250



Inner product between two signals:

Definition 10.1 The inner (or scalar) product < x(t), y(t) > b/w two signals2 x(t)
and y(t) can be any functions of x(t) & y(t) providing a scalar(complex) satisfying
the following three requirements:

(i) Linearity: < αx(t) + βy(t), z(t) >= α < x(t), z(t) > +β < x(t), z(t) >

(ii) Symmetry: < x(t), y(t) >=< y(t), x(t) >∗

(iii) Non degeneracy: < x(t), x(t) >
∆
= ||x(t)||2 ≥ 0 & ||x(t)||2 = 0 iff x(t) = 0

(cf) We call ||x(t)||, the norm of x(t).

Schwarz inequality:

Theorem 10.1 The inner product of two signals and their norms should satisfy the
following inequality:

|< x(t), y(t) >| ≤ ||x(t)|| · ||y(t)|| (10.5)

with equality if (i) either x(t) or y(t) is zero, or (ii) x(t) = αy(t) where α is a (complex)
scalar.

proof:

Let x(t) = x and y(t) = y for notational convenience, and consider a non-negative
quantity ||x + αy||2 : 3

||x + αy||2 ∆
= < x + αy, x + αy >

= < x, x > + < x, αy > + < αy, x > + < αy, αy >

= < x, x > +α∗ < x, y > +α < y, x > +|α|2 < y, y > (linearity)

= ||x||2 + α∗ < x, y > +α < x, y >∗ +|α|2||y||2 (symmetry)

Since α can be arbitrary, we choose:

α = −< x, y >

||y||2

2Complex signals in general.
3Note that < x, αy >=< αy, x >∗= (α < y, x >)∗ = α∗ < y, x >∗= α∗ < x, y >.
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Then,

||x + αy||2 = ||x||2 − < x, y >∗

||y||2 < x, y > −< x, y >

||y||2 < x, y >∗ +
| < x, y > |2

||y||4 ||y||2

= ||x||2 − | < x, y > |2
||y||2

> 0 (should be)

From which we get:

| < x, y > |2 ≤ ||x||2 · ||y||2

And therefore:

| < x, y > | ≤ ||x|| · ||y||

Also, since ||x + αy||2 = 0 if and only if x + αy = 0 from the non-degeneray property
of the inner product, the equality holds iff x = −αy.

q.e.d.

Example 10.1

Define an inner product b/w x(t) and y(t) as follows:

< x(t), y(t) >
∆
=

∫ ∞

−∞
x(t)y∗(t)dt (10.6)

Then, prove that (10.6) satisfies all of the three requirement for an inner prod-
uct, and thus (10.6) could be a valid inner product.

Solution: : assignment
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Using the definition of the inner product as in (10.6) and applying the Schwarz in-
equality 4 of (10.5) by substituting:





(i) x −→
√

SNN(ω)H(ω)

(ii) y −→ X∗(ω)e−jωt0

2π
√

SNN(ω)

we have:

∣∣∣∣∣∣

∫ ∞

−∞

√
SNN(ω)H(ω) · X(ω)ejωt0

2π
√

SNN(ω)
dω

∣∣∣∣∣∣

2

≤
∫ ∞

−∞

√
SNN(ω)H(ω)

√
SNN(ω)H∗(ω)dω ·

∫ ∞

−∞
X∗(ω)e−jωt0

2π
√

SNN(ω)
· X(ω)ejωt0

2π
√

SNN(ω)
dω

which reduces to:

∣∣∣∣
1

2π

∫ ∞

−∞
H(ω)X(ω)ejωt0dω

∣∣∣∣
2

≤
(

1

2π

)2 ∫ ∞

−∞
SNN(ω) |H(ω)|2 dω ·

∫ ∞

−∞
|X(ω)|2
SNN(ω)

dω

Therefore, (10.4) becomes:

F
∆
=

∣∣∣∣
1

2π

∫ ∞

−∞
H(ω)X(ω)ejωt0dω

∣∣∣∣
2

1

2π

∫ ∞

−∞
SNN(ω) |H(ω)|2 dω

≤ 1

2π

∫ ∞

−∞
|X(ω)|2
SNN(ω)

dω

Notice that the maximum SNR occurs as follows:

max F =
1

2π

∫ ∞

−∞
|X(ω)|2
SNN(ω)

dω

when

√
SNN(ω)H(ω) = α

X∗(ω)e−jωt0

2π
√

SNN(ω)

4Schwarz inequality:
∣∣∣
∫∞
−∞ xy∗dω

∣∣∣
2

≤ ∫∞
−∞ xx∗dω

∫∞
−∞ yy∗dω.
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Therefore, the transfer function of the optimal system which maximizes the output
SNR at t = t0 is as follows:

Hopt(ω) = α · X∗(ω)e−jωt0

2π
√

SNN(ω)

Note:

(i) Hopt(ω) is proportional to X∗(ω), in other words matched to unput (i.e. depends
on the input x(t)), and this is why it is called a matched filter.

(ii) Hopt(ω) could have arbitrary gain via α, but α affects both the signals and the
noise, thus has no effect on the SNR.

(iii) The choice of t0 only affects the delay of the output signal, and we must choose
appropriate t0 in order to make the system causal 5.

10.1.2 Matched filter for white noise

Suppose SNN(ω) = N0

2
, i.e. the noise is white, then the optimal filter becomes:

Hopt(ω) = α · X∗(ω)e−jωt0

2π (0.5N0)
let
= βX∗(ω)e−jωt0 where β = α

πN0

The impulse response hopt(t) then becomes;

hopt(t) = F−1 {Hopt(ω)} = β · F−1
{
X∗(ω)e−jωt0

}

= β
1

2π

∫ ∞

−∞
X∗(ω)e−jωt0ejωtdω

= β
[

1

2π

∫ ∞

−∞
X(ω)ejω(t0−t)dω

]∗

= βx∗(t0 − t)

= βx(t0 − t) : if x(t) is real

: matched filter (expressed in terms of x(t))

5hopt(t) = F−1 {Hopt(ω)}
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Figure 10.4: The impulse response of a matched filter under white noise.
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10.2 Systems minimizing MSE: Wiener filter

Objective:

Designing a system which provides a good estimate of the future, present, and the
past value of the input signal.

Wiener filter:

(i) prediction : future

(ii) filtering : present

(iii) smoothing : past

Figure 10.5: Concept of a Wiener filter.

Informations on hand (assumptions) 6:

(1) X(t) and N(t) are JWSS, and E [N(t)] = 0.

(2) The system is LTI, and h(t) is real.

(3) Criterion of optimality: minimize the MSE

argmin
H(ω)

E
[
{X(t + t0)− Y (t)}2

]
(10.7)

where ε2(t)
∆
= {X(t + t0)− Y (t)}2 corrsponds to the squared error.

6These are the (1) input signal spec. (2) system spec. and (3) criterion of optimality respectively.

256



Now7,

E
[
ε2(t)

]
= E

[
{X(t + t0)− Y (t)}2

]

= E
[
X2(t + t0)

]
− 2E [X(t + t0)Y (t)] + E

[
Y 2(t)

]

= RXX(0)− 2RXY (−t0) + RY Y (0)

= RXX(0)− 2RY X(t0) + RY Y (0) (10.8)

Here, each term in (10.8) is as follows:

(i) Input power:

RXX(0) = F−1 {SXX(ω)}τ=0

=
1

2π

∫ ∞

−∞
SXX(ω)dω

(ii) Output power:

RY Y (0) = F−1 {SY Y (ω)}τ=0

= F−1
{
|H(ω)|2 SWW (ω)

}
τ=0

=
1

2π

∫ ∞

−∞
|H(ω)|2 SWW (ω)dω

7Be reminded that X(t) and Y (t) are JWSS.
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(iii) Cross correlation at t = t0
8:

RY X(t0) = E [Y (t)X(t + t0)]

= E
[
X(t + t0)

∫ ∞

−∞
h(τ)W (t− τ)dτ

]

=
∫ ∞

−∞
h(τ)RXW (−τ − t0))dτ

=
∫ ∞

−∞
h(τ)RWX(τ + t0))dτ

=
∫ ∞

−∞
h(τ)

1

2π

∫ ∞

−∞
SWX(ω)ejω(τ+t0)dωdτ

=
1

2π

∫ ∞

−∞
SWX(ω)

{∫ ∞

−∞
h(τ)ejωτdτ

}
ejωt0dω

=
1

2π

∫ ∞

−∞
SWX(ω)H∗(ω)ejωt0dω (since h(t) is real)

Applying (i), (ii), and (iii) to (10.8), we get:

E
[
ε2(t)

]
=

1

2π

∫ ∞

−∞

{
SXX(ω)− 2SWX(ω)H∗(ω)ejωt0 + |H(ω)|2 SWW (ω)

}
dω (10.9)

Note: The integrand in (10.9):

The first and the third terms (i.e. SXX(ω) and |H(ω)|2 SWW (ω)) are real and thus
have maginitude only, while the second term SWX(ω)H∗(ω)ejωt0 is complex and has
both the magnitude and phase.

Express:





(i) H(ω) = |H(ω)| ejΦH(ω)

(ii) SWX(ω) = M(ω)ejΘ(ω)

(10.10)

then, (10.9) becomes:

E
[
ε2(t)

]
=

1

2π

∫ ∞

−∞

{
SXX(ω) + |H(ω)|2 SWW (ω)

}
dω

− 1

2π

∫ ∞

−∞
2M(ω) · |H(ω)| ej(ωt0−ΦH(ω)+Θ(ω))dω (10.11)

8Also be reminded that X(t) and N(t) are JWSS.

258



To find H(ω) 3: argminH(ω) E [ε2(t)], we follow the steps below:

(1) Find ΦH(ω) maximizing the second ontegral in (10.11).

(2) Find |H(ω)| minimizing (10.11) with the optimum ΦH(ω)

(1) Optimum phase ΦH(ω):

To maximize the second integral in (10.11), we choose:

ωt0 − ΦH(ω) + Θ(ω) = 0

which gives us:

ΦH(ω) = ωt0 + Θ(ω) (10.12)

(2) Optimum magnitude |H(ω)|:

Substituting (10.12) into (10.11), we get:

E
[
ε2(t)

]
=

1

2π

∫ ∞

−∞

{
SXX(ω)− 2M(ω) · |H(ω)|+ |H(ω)|2 SWW (ω)

}
dω

Completing the square of the integrand in |H(ω)|, we have:

E
[
ε2(t)

]

=
1

2π

∫ ∞

−∞

[
SWW (ω)

{
|H(ω)|2 − 2

M(ω)

SWW (ω)
|H(ω)|+ M2(ω)

S2
WW (ω)

− M2(ω)

S2
WW (ω)

}

+ SXX(ω)
]
dω

=
1

2π

∫ ∞

−∞


SWW (ω)

(
|H(ω)| − M(ω)

SWW (ω)

)2

− M2(ω)

S2
WW (ω)

+ SXX(ω)


 dω

(10.13)
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The |H(ω)| which minimizes (10.13) is obviously 9,

|Hopt(ω)| =
M(ω)

SWW (ω)

=
SWX(ω)e−jΘ(ω)

SWW (ω)
(10.14)

Combining (10.12) and (10.14), we get:

Hopt(ω) = |Hopt(ω)| · ejΦH(ω)

=
SWX(ω)

SWW (ω)
e−jΦH(ω) · ejωt0+jΘ(ω)

=
SWX(ω)

SWW (ω)
ejωt0

: trasfer function of the Wiener filter

Special case: W (t) = X(t) + N(t)

If X(T ) and N(t) are uncorrelated in addition to JWSS, then 10 11

(i) The PSD of W (t):

SWW (ω) = SXX(ω) + SXN(ω) + SNX(ω) + SNN(ω)

= SXX(ω) + SNN(ω)

(ii) Cross PSD of W (t) & X(t):

SWX(ω) = SXX(ω) + SNX(ω) = SXX(ω)

Therefore, the Wiener filter becomes:

Hopt(ω) =
SXX(ω)

SXX(ω) + SNN(ω)
ejωt0

9Recall from (10.10) that SWX(ω) = M(ω)ejΘ(ω), and thus M(ω) = SWX(ω)e−jΘ(ω).
10If X(t) and N(t) are uncorrelated, then SXN (ω) = SNX(ω) = 2πXNδ(ω), where in this case

X = Y = 0, and thus SXN (ω) = SNX(ω) = 0.
11Also, notice that since X(t) and N(t) are uncorrelated, RXN (τ) = E[X(t)]E[N(t)] = 0 since

E[N(t)] = 0.
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The minimum MSE:

From (10.11), the resulting minimum MSE is:

E
[
ε2(t)

]
min

=
1

2π

∫ ∞

−∞

{
SXX(ω)− M2(ω)

SWW (ω)

}
dω

where M(ω) = |SWX(ω)|.

(cf)
If X(T ) and N(t) are uncorrelated, SWX(ω) = SXX(ω) and thus the corresponding
minimum MSE becomes as follows:

E
[
ε2(t)

]
min

=
1

2π

∫ ∞

−∞
S2

XX(ω) + SXX(ω)SNN(ω)− S2
XX(ω)

SXX(ω) + SNN(ω)
dω

=
1

2π

∫ ∞

−∞
SXX(ω)SNN(ω)

SXX(ω) + SNN(ω)
dω
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