Contents

11]	ractical Application : RADAR 24	62
]	$1.1 \text{ Detection } \dots $	63
]	$1.2 Estimation \dots \dots$	66

Chapter 11 Practical Application : RADAR

Radar Detection using a single observation (active radar):

Figure 11.1: Active radar system environment.

(1) **Detection**¹ existence of s(t) in r(t)

 $\begin{cases} H_0 : r(t) = n(t) \\ H_1 : r(t) = \alpha s(t) + n(t) \end{cases}$

(2) **Estimation:** measuring LDistance² from the radar to the target : \hat{L}

Typical s(t): train of pulses ³

Figure 11.2: Active radar system environment.

¹This type of problem is called the "hypothesis testing":

²Or, we could estimate the round-trip propagation delay of s(t): \widehat{D} , and then the estimate of the distance is $\widehat{L} = \frac{\widehat{D}}{2} \cdot C$ where C is the signal velocity.

 $^{{}^{3}}T_{p}$ is called the PRI(pulse repetition interval), and $f_{p} \stackrel{\Delta}{=} \frac{1}{T_{p}}$ is called the PRF(pulse repetition frequency).

11.1 Detection

Figure 11.3: The block diagram of detection in RADAR.

Two types of error:

(a) **False alarm:** decide H_1 when no target is present

$$P(\text{false alarm}) \stackrel{\Delta}{=} P_{fa} = P \{ \text{decide} H_1 \mid H_0 \text{ is true} \}$$
$$= \int_{W_T}^{\infty} f_0(w) dw$$

(b) **Miss:** decide H_0 when the target is present

$$P(\text{miss}) \stackrel{\Delta}{=} P_m = P \{ \text{decide} H_0 \mid H_1 \text{ is true} \}$$
$$= 1 - P(\text{detection})$$
$$= 1 - \int_{W_T}^{\infty} f_1(w) dw$$

where $f_0(\omega)$ and $f_1(\omega)$ are the conditional p.d.f. of W(t) when the target is absent and present respectively, and W_T corresponds to the decision threshold.

Figure 11.4: The conditional p.d.f.'s of W(t) under H_0 and H_1 .

Design parameters: determination⁴ of W_T

We want:

- (1) P_{fa} : as small as possible
- (2) P_m : as small as possible ⁵

CFAR⁶ alogorithm:

- : Given a fixed desired value of P_{fa} , find the threshold W_T
 - (1) P_{fa} :

The p.d.f. of the envelop R of the received signal r(t) when only the noise is present, is known to have the Rician distribution as follows:

$$f_{R_0}(r) = \frac{re^{-r^2/2\sigma^2}}{\sigma^2} \cdot u(r)$$

where σ^2 is the noise power.

Then, the probability of false alarm becomes:

$$P_{fa} = \int_{W_T}^{\infty} f_0(w) dw = \int_{R_T}^{\infty} f_{R_0}(w) dw$$
$$= \int_{R_T}^{\infty} \frac{r e^{-r^2/2\sigma^2}}{\sigma^2} dr$$
$$= e^{-R_T^2/2\sigma^2}$$

where $R_T = g^{-1}(W_T)$, since $W_T = g(R_T)$ and $g(\cdot)$ is monotonic (i.e. \exists one-to-one mapping).

Solving above equation w.r.t. R_T , we get:

$$R_T = \sqrt{2\sigma^2 \ln\left(\frac{1}{P_{fa}}\right)}$$

And the threshold W_T is determined as:

$$W_T = g\left(\sqrt{2\sigma^2 \ln\left(\frac{1}{P_{fa}}\right)}\right)$$

⁴The rest of the system is just a hardware!

⁵This is equivalent to make P_d as large as possible.

⁶CFAR : constant false alarm rate)

(2) P_d : w/ fixed W_T

The p.d.f. of the envelop R of the received signal r(t) when the target and the noise are both present, is known to have the Rician distribution as follows:

$$f_{R_1}(r) = \frac{r}{\sigma^2} I_0\left(\frac{rA_0}{\sigma^2}\right) e^{-(r^2 + A_0^2)/2\sigma^2}$$

where σ^2 and $\frac{A_0^2}{2}$ are the noise and signal powers respectively, and $I_0(\beta)$ is the Bessel function of zero order given as follows:

$$I_0(\beta) = \frac{1}{2\pi} \int_0^{2\pi} e^{\beta \cos(\theta)} d\theta$$

Then, the probability of detection becomes:

$$P_{d} = \int_{W_{T}}^{\infty} f_{1}(w) dw = \int_{R_{T}}^{\infty} f_{R_{1}}(w) dw$$
$$= \int_{\sqrt{2\sigma^{2} \ln(P_{f_{a}}^{-1})}}^{\infty} f_{R_{1}}(w) dw$$
$$= Q\left(\sqrt{\frac{A_{0}^{2}}{\sigma^{2}}}, \sqrt{2\ln(P_{f_{a}}^{-1})}\right)$$

where $Q(\alpha, \beta)$ is the Marcum's Q-function defined as:

$$Q(\alpha,\beta) \triangleq \int_{\alpha}^{\beta} \gamma I_0(\alpha\gamma) e^{-(\gamma^2 + \alpha^2)/2} d\gamma$$

Note: Refer to Fig. 10.7-2 of the textbook

- (i) P_d is a function of SNR = $\frac{A_0^2}{2\sigma^2}$ w/ P_{fa} parameter.
- (ii) The smaller P_{fa} we choose, the smaller P_d becomes, which is the price we have to pay.
- (iii) Smaller P_{fa} with the same P_d provides larger SNR.
- (iv) With small P_{fa} and large P_d , the detection probability can be approximated as:

$$P_d \approx F\left\{\frac{A_0}{\sigma} - \sqrt{2\ln(P_{fa}^{-1})}\right\}$$

where $F(\cdot)$ is the standard Gaussian distribution function.

11.2 Estimation

Figure 11.5: The block diagram of time delay estimation in RADAR.

FACT:
$$x(t+t_1) \odot y(t+t_2) = R_{XY}(\tau + t_2 - t_1)$$

where \odot represents the cross-correlation.

proof:

LHS =
$$\frac{1}{T} \int_T x(t+t_1)y(t+t_2+\tau)dt$$

(let $t+t_1 = t'$)
= $\frac{1}{T} \int_T x(t')y(t'+\tau+t_2-t_1)dt'$
= $R_{XY}(\tau+t_2-t_1)$
= RHS

$$R_{sr}(\tau) = s(t) \odot \alpha s(t-D) = \alpha R_{ss}(\tau-D)$$

Figure 11.6: The signal, auto, and cross-correlation functions.

Note:

(1) By detecting the location of the peak in $R_{sr}(\tau)$ within T_p , we can estimate the time delay \widehat{D} :

$$\widehat{D} = \underset{\tau}{\operatorname{argmax}} R_{sr}(\tau)$$

and corresponding distance b/w the radar site and the target L follows as:

$$\hat{L} = \frac{D}{2} \cdot C$$

(2) To avoid the ambiguity among adjacent pulses, the condition below should be satisfied:

$$D \leq T_p$$

Therefore, for a certain radar system, the maximum detection range L_{max} is determined by:

$$L_{max} = \frac{T_p}{2} \cdot C \propto T_p$$

Remark:

Figure 11.7: Peak detection vs. zero-crossing detection for \widehat{D} .

⁷This provides less ambiguous process of finding D.