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Chapter 2

Fundamental Concepts of
Probability

2.1 Review: Set Theory

Set Definitions:

Definition 2.1 A set is a collection of objects(abstract or concrete), and a set is
denoted by a capital letter.

Definition 2.2 The objects are called the “elements” of a set.

Example 2.1

A game of die casting:

Figure 2.1: The set representation of the game of a die casting game.

(1) S = {a1, a2, a3, a4, a5, a6} :sample space

(2) ai ∈ S : element

(3) A = {x|x = a1 or a2} :event, subset

(4) B = {a3} :event, subset
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Definition 2.3 Finite set: a set is “finite” if it has a finite number of elements.

Definition 2.4 Infinite set: an infinite set is a set which is NOT finite.

1. Countable infinite set: An (infinite) set is said to be countable iff its elements
can be put into one-to-one correspondence with natural numbers n = 1, 2, . . ..

(e.g.) A = {m|m = 1, 3, 5, 7, 9, . . .}, where m = 2n− 1, n = 1, 2, 3, . . ..

2. Uncountable infinite set: An (infinite) set is called uncountable, if it is NOT
countable.

(e.g.) B = {x|0 ≤ x ≤ 1}, where x is real number.

Definition 2.5 Subsets:

Figure 2.2: The subsets.

1. C ⊆ A (improper subset) : if ai ∈ C, then ai ∈ A.

2. B ⊂ A (proper subset) : ∃ at least one ai 3: ai ∈/B and ai ∈ A.

3. C = A (equality) : if and only if (iff) A ⊆ C and A ⊇ C

Definition 2.6 Complement of a set: A or Ac

A = {a|x ∈ S and x ∈/A}

Figure 2.3: The complement of a set A.
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Definition 2.7 Empty set: φ
φ is a set that has no element in it. (called “null set” as well.)

Definition 2.8 Disjoint sets:
Two sets A and B are called disjoint or mutually exclusive iff A and B have no

common elements.

Definition 2.9 Union, Intersection, and Difference:

1. Union: A ∪B = {x|x ∈ A and/or x ∈ B}
2. Intersection: A ∩B = {x|x ∈ A and x ∈ B}
3. Difference: A−B = {x|x ∈ A but x ∈/B}

Venn Diagram: graphical representation of sets

Figure 2.4: A Venn diagram of sets.

4



Algebra of Sets:

1. Idempotent law:

(a) A ∪ A = A

(b) A ∩ A = A

2. Associative law:

(a) (A ∪B) ∪ C = A ∪ (B ∪ C)

(b) (A ∩B) ∩ C = A ∩ (B ∩ C)

3. Commutative law:

(a) A ∪B = B ∪ A

(b) A ∩B = B ∩ A

4. Distributive law:

(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

5. Complement law:

(a) A ∪ A = S

(b) A ∩ A = φ

(c) A = A

(d) S = φ (or φ = S)

6. DeMorgan’s law:

(a) A ∪B = A ∩B

(b) A ∩B = A ∪B
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7. Identity law:

(a) A ∪ φ = A

(b) A ∪ S = S

(c) A ∩ S = A

(d) A ∩ φ = φ

Note: Check the above algebra using Venn diagram.

8. Duality principle:

In a given set relation, if we replace;

∪ −→ ∩

∩ −→ ∪
S −→ φ

φ −→ S

then, the equality still holds for the new set relation!!!

remark: For the above 7 set relations, show the effectiveness of the “duality
principle”.
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Analogy between probability concept and set theory;

Probability concept in chance experiments Set theory

simple outcome element of a set

sample sapce ( a collection of all possible outcomes) whole set = S

(compound) event subset

mutually exclusive events A ∩B = φ

simultaneous occurrence of events A ∩B

at least one event shows up A ∪B

opposite event A

impossible event φ

event A must occur A = S

from the occurrence of event A follows the inevitable event B A ⊂ B

NOTE:

1. Events are subsets of S!!!

2. The “head” and “tail” of a coin are good examples of opposite events.

3. Impossible event and a event with probability 0 are NOT the same in a rigorous
sense!!!

4. In a chance experiment of casting a die, let A = {2 shows up}, and B =
{ even numbers show up}. Then, the occurrence of event A implies the occur-
rence of event B, i.e. A ⊂ B.
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2.2 Probability Axiom and Probability Space

As we mentioned in Chapter 1, there are 3 basic components for the mathematical
structure of probability concept:

1. Sample space S

2. Event A

3. Probability function P (·)

=⇒ In order to apply the probability function P (·) to an event A(which is the variable
of the function P (·)), we therefore need the domain of event(i.e. variable):

Field (F): 1

Assuming S is a finite space, the field F is defined as a collection (set) of subsets
of S satisfying the following conditions:

(1) If A1, A2 ∈ F , then A1 ∪ A2 ∈ F .

(2) If A ∈ F , then A ∈ F .

Remarks:

1. We can regard the “field” as a mathematical concept which is necessary to set
up a function domain for the probability function P (·).

Figure 2.5: The domain and the range of P (·).

2. We cannot use the sample space S itself as a domain of P (·), since P (·) is a
function of events(which are usually the combination of elements in S), NOT a
function of elements.

3. Therefore, the domain of P (·), i.e. F must be closed by basic set operation 3:
union(∪), intersection(∩), and complement(c).

1The field is sometimes called as “Algebra” as well.

8



Question:
The above dfinition of field implies that since A1 ∪A2 and A could be the events that
we want to compute the probability, they must also be within the domain F so that
we can apply the set function P (·).
Then what about another set algebra, i.e. the intersection?

Answer: Above definition of field implicitely contains the following statement as
well:

If A1, A2 ∈ F , then A1 ∩ A2 ∈ F

proof:

If A1, A2 ∈ F , then A1, A2 ∈ F . (from (2))

If A1, A2 ∈ F , then A1 ∪ A2 ∈ F . (from (1))

If A1 ∪ A2 ∈ F , then A1 ∪ A2 = A1 ∩ A2 ∈ F . (from (2)) Q.E.D.

Example 2.2

Given a sample sapce S as: S = {1, 2, 3, 4, 5, 6} , determine whether the follow-
ing class of subsets can be a field.

{φ, S, A1 = {1, 3, 5}, A2 = {2, 4, 6}}

Solution: You can easily check the conditions (1) and (2) of a field are met,
and the answer is YES.

(cf) Other possibilities of field:

(1) {φ, S, {1, 2, 3}, {4, 5, 6}}
(2) {φ, S, {1}, {2, 3, 4, 5, 6}}
(3) {φ, S}

...

...
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Remarks:

1. Notice that he subsets A,B,C in the sample space S are the elements of the
field F . 2

Figure 2.6: Comparison b/w the sample space and the field as sets.

2. If the sample space S has an infinite number of elements, then F is said to be
the σ-field, and the necessary condtions for the sigma-field are:

(1) If Ai ∈ F i = 1, 2, 3, . . ., then
⋃∞

i=1 Ai ∈ F .

(2) If A ∈ F , then A ∈ F .

Set function:

A set function operates on a set and assigns a real number to each set.

Figure 2.7: A set function G(·).

Note: Strictly speaking, a set function should be defined on a field, not the samples
space.

2Recall that the field F is a set of subsets.
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Probability Axiom:

A set function P (·) is called a probability on the subsets of the sample space S iff
P (A) satisfies the following 3 axioms:

1. P (A) ≥ 0, ∀A ∈ F of S

2. P (S) = 1

3. If Ai ∩ Aj = φ, ∀i 6= j (i.e. disjoint), then

P

(⋃

i

Ai

)
=

∑

i

P (Ai)

NOTE: P (A) can be arbitrarily assigned provided that it satisfies the above 3 axioms.

(e.g.) A die need not necessarily be fair!!! For example, we could assign the proba-
bilities as: P (a1) = P (a2) = P (a3) = 1

4
and P (a4) = P (a5) = P (a6) = 1

12
, and still

satisfies all of the probability axioms.

Example 2.3

We repeat the example ??, which is an experiment of rolling a fair die, and
check the validity of the probability axioms.

Solution: The sample space S is as follows:

S = {1, 2, 3, 4, 5, 6}

(a) P ({ai}) = 1
6
≥ 0, ∀ i.

(b) P ({a2} ∪ {a3}) = P ({a2}) + P ({a3}) = 1
3
.

(c) P (S) = P ({a1} ∪ {a2} ∪ · · · ∪ {a6}) =
∑6

i=1 P ({ai}) = 6 · 1
6

= 1.
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Example 2.4

Consider a game of spinning a wheel, where real numbers from 0 to 100 are
marked along the perimeter, so the sample space is: 3

S = {x|0 < x ≤ 100}, real numbers

Figure 2.8: A game of spinning a wheel.

Assuming the wheel is fair, it seems to be reasonable to assign probabilities as
follows:

P (A) =
x2 − x1

100
, where A = {x1 < x ≤ x2}, x2 ≥ x1

Check the vailidity of the above assigned P (·).

Solution:

Axiom 1: P (A) = x2−x1

100
≥ 0 since x2 ≥ x1

Axiom 2: P (S) = 100−0
100

= 1

Axiom 3: Define an event An as: An = {xn−1 < x ≤ xn} where xn = 100
N
· n,

n = 1, 2, 3, . . . , N and x0 = 0, then,

P (An) =
xn − xn−1

100

=
1

100
· (n− n + 1)

100

N

=
1

N

Since {An}N
n=1 are disjoint, we have:

1 = P

(
N⋃

n=1

An

)
=

N∑

n=1

P (An) =
1

N
·N = 1 = P (S)

3This is similar to a very famous TV game show called “wheel of fortune”.
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NOTE:

Let N →∞, then xn − xn−1 → 0 and An → xn( a specific number), and thus:

limN→∞ P (An) = P (xn) = limN→∞ 1
N

= 0

=⇒ Event {x = xn} is an event with probability zero.

=⇒ Impossible event 6= event w/ probability 0

Remarks:

1. Event w/ zero probability is NOT an impossible event, rather it means that the
event may occur once, but never again!!!

2. In a similar way, event {x 6= xn} is an event w/ probability 1, but that does
NOT mean that the event MUST occur(i.e. NOT a whole set).

Example 2.5

Consider a game of casting two dice. In this case, there are 36 possible outcomes,
and if dice are fair wetend to assign probabilities as : 4

P (ai) =
1

36
, ∀ i = 1, 2, 3, . . . , 36

Figure 2.9: Sample space of rolling two dice.

What is the probability of getting sum of 6?

4Strictly speaking the expreesion should be P ({ai}) = 1
36 , since P (·) is a set function. However,

for notational convenience, let us use them interchangeably.
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Solution:

The event that we are trying to compute its probability is as follows:

A = {(i, j)|i + j = 6} = {(1, 5), (5, 1), (2, 4), (4, 2), (3, 3)}

=
⋃

i+j=6, 1≤i,j≤6

(i, j)

: union of disjoint sets

Therefore, applying the probability axiom3, we have:

P (A) =
∑

i+j=6, 1≤i,j≤6

P ((i, j)) =
5

36

Terminology:

1. Sample space S

2. Field F
3. Measurable space (S,F): 5

A sample space S and a field F of subsets of S with property that S is the
union of all members of F

4. Probability space (S,F , P )

NOTE:
The probability space (S,F , P ) is the basic mathematical model for a chance ex-
periment. So, when we say “probability”, there always IS an associated probability
space, and we start from this probability space to calculate the probability of various
complex events.

5Remember that a vector space is defined as a set of vectors, which is closed by (1) vector addition
and (2) scalar product.
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2.3 Joint Probability

Given (S,F , P ), the joint probability P (A∩B) of two events A and B of a probability
space satisfies the following equation:

P (A ∩B) = P (A) + P (B)− P (A ∪B)

Figure 2.10: The Venn diagram for the joint probability P (A ∩B).

Proof: 6

We can check from above diagram that:
{

A ∪B = A ∪ (B − (A ∩B)) : union of disjoint sets
B = (A ∩B) ∪ (B − (A ∩B)) : union of disjoint sets

Therefore, we have, by the axiom #3 of probability, the following probability relations:

P (A ∪B) = P (A) + P (B − (A ∩B)) (2.1)

P (B) = P (A ∩B) + P (B − (A ∩B)) (2.2)

Substracting (2.2) from (2.1), we get

P (A ∪B)− P (B) = P (A)− P (A ∩B)

=⇒ P (A ∩B) = P (A) + P (B)− P (A ∪B)

Q.E.D 7

Note:

1. P (A ∪B) = P (A) + P (B)− P (A ∩B)

2. P (A ∪B) = P (A) + P (B) if and only if (iff) A ∩B = φ

6All we know about probability so far is the 3 axioms on probability, and we must rely only on
these axioms to prove prbability relations!!!

7Q.E.D. is the abbreviation of Quad Erat Demonstrandum in Latin, which means the end of
demonstration.
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Assignment:

Show that
P (A) = 1− P (A)

.

Figure 2.11: The Venn diagram for the complement probability P (A).

proof:

¿From the complement law of set relation, the sample space S can be expressed as
the union of two disjoint sets as:

S = A ∪ A

By the axiom #2 and #3 of probability, we have:

1 = P (S) = P (A) + P (A)

−→ P (A) = 1− P (A)
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2.4 Conditional Probability, Total Probability Law,
and Baye’s Theorem

2.4.1 Conditional Probability

Given (S,F , P ), suppose that P (B) of an event B is non-zero, i.e. P (B) > 0.
Then, we define the conditional probability of an event A given B by the following
expression:

P (B|A)
∆
=

P (A ∩B)

P (B)

Remarks:

1. Note that if P (A) 6= 0 as well, we have:

P (A ∩B) = P (A|B) · P (B) = P (B|A) · P (A)

2. In the case of the conditional probability, we can regard the definition as con-
fining the sample sapce ( or the whole set) S to the event B. In other words,
the ordinary probability of an event A is the conditional probability of event A
given S:

proof:
A = A ∩ S (by identity law)

P (S) = 1 (by axiom #2)

−→ P (A) = P (A ∩ S)

=
P (A ∩ S)

P (S)

= P (A|S)

Question: Is P (A|B) defined above a valid probability? In other words, does P (A|B)
satisfy the three axioms of probability?

Answer: YES.
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check:

1) Since the event A ∩ B which is a subset of S is an element of the field F ,
we can apply the probability function P (·), and by the assumption P (B) 6= 0.
Therefore, we have:

P (A|B) =
P (A ∩B)

P (B)
≥ 0 : by axiom #1

2)

P (S|B) =
P (S ∩B)

P (B)
=

P (B)

P (B)
= 1

3) Let A1 and A2 be two disjoint sets, then 8

P (A1 ∪ A2|B) =
P ((A1 ∪ A2) ∩B)

P (B)

=
P ((A1 ∩B) ∪ (A2) ∩B))

P (B)

=
P (A1 ∩B) + P (A2) ∩B)

P (B)

= P (A1|B) + P (A2|B)

Example 2.6

A box contains 100 resistors, which are composed of 22Ω, 47Ω, and 100Ω with
5% and 10% tolerance as follows:

Ω 5% 10% total
22 10 14 24
47 28 16 44
100 24 8 32

62 38 100

Soppose we draw a 22Ω resistor, then what is the probability that its tolerance
is 10%?

8Note that A1 ∩B and A2 ∩B are also disjoint to each other.
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Solution:

Figure 2.12: The samples space composed of 100 points.

Let’s define the following events:

A = Draw a 22Ω resistor

B = Draw a 10% tolerance resistor

Then, the probability we want to compute is the following conditional proba-
bility:

P (B|A) =
P (A ∩B)

P (A)
=

14

100
/

24

100
=

14

24
≈ 0.58

(cf) Note that:

(1) P (B) = 38
100

, and thus P (B) < P (B|A).

(2) By the condition of event A, the new sample sapce S
′

is now shrinked
and composed of 24 resistors(i.e. 22Ω resistors), rather than total of 100
resistors.

2.4.2 Total probability Law

Suppose we are given N disjoint events {Bn}N
n=1 whose union equals to the sample

space S. Then, the probability of any event A defined on S can be expressed as:

P (A) =
N∑

i=1

P (A|Bi) · P (Bi)

=
N∑

i=1

P (A ∩Bi)

: total probability law
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Proof:

Figure 2.13: The Venn diagram of a sample sapce as a union of N disjoint events.

We have:

S =
N⋃

i=1

Bi

where Bi’s are nutually exclusive events. Therefore, from the identity law of sets,

A = A ∩ S = A ∩
{

N⋃

i=1

Bi

}

=
N⋃

i=1

{A ∩Bi} : distributive law

which is a union of disjoint events as well.

Now, the probability of event A is:

P (A) = P

[
N⋃

i=1

{A ∩Bi}
]

=
N∑

i=1

P (A ∩Bi) :by axiom #3

=
N∑

i=1

P (A|Bi) · P (Bi)

q.e.d.
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2.4.3 Baye’s Theorem

Soppose the probabilities of two events A and B are not zero, i.e. P (A) 6= 0, P (B) 6=
0. Then, following probability relation holds between the two events:

P (A|B) =
P (B|A) · P (A)

P (B)

or, equivalently

P (B|A) =
P (A|B) · P (B)

P (A)

Proof: (easy!)

¿From the definition of the conditional probability and from the fact that P (A) 6= 0
and P (B) 6= 0, we have;

P (A ∩B) = P (A|B)P (B) = P (B|A)P (A)

By equating the last two expressions in above equation, we get

P (A|B) =
P (B|A) · P (A)

P (B)

q.e.d.

Another form of total probability law 9

Figure 2.14: The Venn diagram of a sample sapce as a union of N disjoint
events.(revisited)

Note that:

(a) {Bn}N
n=1 are disjoint, i.e. Bi ∩Bj = φ, ∀ i 6= j.

(b) S =
⋃N

n=1 Bn.

9This comes from combining the Baye’s theorem and the total probability law.
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We know from above that for any Bn ⊂ S, following holds:

P (Bn|A) =
P (A|Bn)P (Bn)

P (A)

By applying the total probability law to the denominator of above equation, we derive:

P (Bn|A) =
P (A|Bn)P (Bn)

∑N
i=1 P (A|Bi)P (Bi)

: total probability law

where P (Bi) is called the “a priori probability”(i.e. before experiment) whereas
P (Bi|A) is called “a posteriori probability”(i.e. after some experiment) of event Bi.

Example 2.7

Radar detection problem:

Figure 2.15: Radar detection environment.

Define the following events which could happen in running a radar system.

R: Radar reports a target

T : Target exists

N : No target exists

Figure 2.16: The sample space of radar detection environment.
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Then, we usually have the following informations on our hand about the radar
system: 10

(i) P (T ) = 0.2: the probability that a target shows up.

(ii) P (N) = 0.8: the probability that no target shows up.

(iii) P (R|T ) = 0.9: detection probability.

(iv) P (R|N) = 0.01: false alarm probability

Question: Suppose the radar reports that an enemy fighter plane is approach-
ing. Then, what are the probabilities that there actually is and is not an enemy
airplane?

Solution:

These probabilities correspond to the a posteriori probabilities, and are as fol-
lows:

P (T |R) =
P (R|T )P (T )

P (R)
=

P (R|T )P (T )

P (R|T )P (T ) + P (R|N)P (N)

=
0.9× 0.2

0.9× 0.2 + 0.01× 0.8

=
0.18

0.188
≈ 0.96

P (N |R) =
P (R|N)P (N)

P (R)
=

P (R|N)P (N)

P (R|T )P (T ) + P (R|N)P (N)

=
0.01× 0.8

0.9× 0.2 + 0.01× 0.8

=
0.008

0.188
≈ 0.04

Note: Comparison between a priori & a posteriori probabilities:

(1) P (T |R) >> P (T )

(2) P (N |R) << P (N)

What do these results mean?

10Among these, P (T ) and P (N) correspond to the a priori probabilities, whereas P (R|T ) and
P (R|N) are the design factors of a radar system representing the performance of a radar.
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Example 2.8

Digital(binary) communication problem:

Figure 2.17: Digital communication environment.

Define the following events which could happen in digital communication sys-
tem.

B0 = {signal 0 is sent}
B1 = {signal 1 is sent}
A0 = {signal 0 is received}
A1 = {signal 1 is received}

Figure 2.18: The sample space of digital communication system.

Assume the following probabilities are known: 11

(i) P (B0) = 0.4, P (A0|B0) = 0.9 P (A1|B0) = 0.1

(ii) P (B1) = 0.6, P (A1|B1) = 0.9 P (A0|B1) = 0.1

Question: Suppose the receiver gets a signal 1. 12 Then, what is the probability
that the transmitter actually sent the signal 1?(i.e. errorless reception.)

11Among these, P (B0) and P (B1) correspond to the a priori probabilities, whereas P (A0|B0),
P (A1|B1) (errorless transmission) and P (A1|B0), P (A0|B1) (transmission error) represent the per-
formance of the transmission line(or channel).

12This is an estimation problem and we will briefly deal with this issue at later part of this class.
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Solution:

These probabilities as well correspond to the a posteriori probabilities, and are
as follows:

P (B1|A1) =
P (B1 ∩ A1)

P (A1)

=
P (A1|B1)P (B1)

P (A1|B1)P (B1) + P (A1|B0)P (B0)

=
0.9× 0.6

0.9× 0.6 + 0.1× 0.4

=
0.54

0.58
≈ 0.93

(cf) What is the probability that the transmitter actually sent a signal 1, if
the receiver gets the signal 0?

P (B1|A0) =
P (A0|B1)P (B1)

P (A1|B1)P (B1) + P (A1|B0)P (B0)
=

0.1× 0.6

0.1× 0.6 + 0.9× 0.4

=
1

7
≈ 0.143

Note: Comparison between a priori & a posteriori probabilities:

(1) P (B1|A1) >> P (B1)

(2) P (B1|A0) << P (B1)

What do these results mean?
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2.5 Independent Events

Given a probability space (S,F , P ), two events A and B such that P (A) 6= 0 and
P (B) 6= 0 are said to be statistically independent if and only if: 13

P (A|B) = P (A)

Fact: Equivalent conditions for P (A|B) = P (A) are:

(i) P (B|A) = P (B)

(ii) P (A ∩B) = P (A) · P (B)

proof: From the given condition of independence;

P (A|B) = P (A)

−→ P (A ∩B)

P (B)
= P (A) =⇒ P (A ∩B) = P (A) · P (B)

−→ P (A ∩B)

P (A)
= P (B) =⇒ P (B|A) = P (B)

(e.g.) Define the following three events:

A = {rainy}
B = {attend the probability & random process class}
C = {bring umbrella to the class}

Then obviously(or hopefully) it must be P (B|A) = P (B) whereas P (C|A) >>
P (C), which means the events A and B are independent while events A and C are
NOT independent(i.e. dependent).

13The a priori probability P (A) is equal to the a posteriori probability P (A|B), which means the
event B has no effect whatsoever on the event A.
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NOTE:
Two events A and B CANNOT be both mutually exclusive and statistically indepen-
dent at the same time.

why?

1. Mutually exclusive:

A ∩B = φ → P (A ∩B) = 0

2. Statistically independent:

P (A ∩B) = P (A)P (B) 6= 0 → A ∩B 6= φ

This is due to the fact that P (A) 6= 0 and P (B) 6= 0, and it means there MUST
∃ intersection for independent events.

In conclusion, events A and B can be independent to each other only under the
assuption that they can occur simultaneously!!!

Three events(A,B,C):

Fact: If events A,B,C are piecewise independent, that does not necessarily mean
that they are independent as a triple, and vice versa, i.e.;

P (A ∩B) = P (A) · P (B)
P (B ∩ C) = P (B) · P (C)
P (A ∩ C) = P (A) · P (C)





(×)⇐⇒ P (A ∩B ∩ C) = P (A) · P (B) · P (C)
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Example 2.9

Suppose we have the four sided dice which is assumed to be fair, i.e.

P ({ωi}) =
1

4
, ∀i = 1, 2, 3, 4

Then, consider the following three events:

A = {ω1, ω2}
B = {ω1, ω3}
C = {ω1, ω4}

Are these 3 events statistically independent to each other?

Figure 2.19: The sample space for the experiment of throwing 4 sided dice.

Solution:

Since each element of the sample space S is mutually exclusive to each other,
we have the following probabilities for the above defines 3 events:

P (A) = P ({ω1}) + P ({ω2}) =
1

4
+

1

4
=

1

2

P (B) = P ({ω1}) + P ({ω3}) =
1

4
+

1

4
=

1

2

P (C) = P ({ω1}) + P ({ω4}) =
1

4
+

1

4
=

1

2
Then,

P (A ∩B) = P ({ω1}) =
1

4
≡ P (A) · P (B) =

1

2
· 1

2
=

1

4

P (B ∩ C) = P ({ω1}) =
1

4
≡ P (B) · P (C) =

1

2
· 1

2
=

1

4

P (A ∩ C) = P ({ω1}) =
1

4
≡ P (A) · P (C) =

1

2
· 1

2
=

1

4
which means that the 3 events are pairwise independent.

However, note that:

P (A ∩B ∩ C) = P ({ω1}) =
1

4
≡/ P (A) · P (B) · P (C) =

1

2
· 1

2
· 1

2
=

1

8

which means that even if they are independent pairwisely, they may NOT be
independent as a triple.
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Example 2.10

Suppose we have the 12 sided dice which is assumed to be fair, i.e.

S = {i | 1 ≤ i ≤ 12 : integer} and

P ({ωi}) =
1

12
, ∀i = 1, 2, 3, . . . , 12

Let three events be defined as follows:

A = {ω1, ω2, ω4, ω12}
B = {ω1, ω2, ω5, ω6, ω7, ω8}
C = {ω1, ω5, ω6, ω7, ω9, ω12}

Are these 3 events statistically independent to each other?

Figure 2.20: The sample space for the experiment of throwing 12 sided dice.

Solution:

Since each element of the sample space S is mutually exclusive to each other,
we have the following probabilities for the above defines 3 events:

P (A) =
1

12
· 4 =

1

3

P (B) =
1

12
· 6 =

1

2

P (C) =
1

12
· 6 =

1

2
Then,

P (A ∩B ∩ C) = P ({ω1}) =
1

12
≡ P (A) · P (B) · P (C) =

1

3
· 1

2
· 1

2
=

1

12

P (A ∩B) = P ({ω1, ω2}) =
2

12
≡ P (A) · P (B) =

1

3
· 1

2
=

1

6

P (A ∩ C) = P ({ω1, ω12}) =
2

12
≡ P (A) · P (C) =

1

3
· 1

2
=

1

6

However, note that:

P (B ∩ C) = P ({ω1, ω5, ω6, ω7}) =
4

12
≡/ P (B) · P (C) =

1

2
· 1

2
=

1

4
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Conclusion:
In the case of 3 events, they are said to be statistically independent iff they are
pairwise independent and independent as a triple as well.

In general, if events A1, A2, . . . , AN are statistically independent, they MUST satisfy
all of the following conditions:

P (Ai ∩ Aj) = P (Ai) · P (Aj) ∀ i 6= j

P (Ai ∩ Aj ∩ Ak) = P (Ai) · P (Aj) · P (Ak) ∀ i 6= j 6= k

...

...

P (A1 ∩ A2 ∩ · · · ∩ AN) = P (A1) · P (A2) · · ·P (AN)

Question: How many conditions are there for N events A1, A2, . . . , AN to be statis-
tically independent?

Answer: The total number M of conditions is as follows:

M =
(

N
2

)
+

(
N
3

)
+ · · ·+

(
N
N

)
=

N∑

k=0

(
N
k

)
−

(
N
0

)
−

(
N
1

)

= 2N − 1−N

(cf) Binomial expansion:

(1 + x)N =
N∑

k=0

(
N
k

)
1k · xN−k

Let x = 1 in the above equation, then we have;

2N =
N∑

k=0

(
N
k

)

e.g.

(i) In the case of two events, N = 2 and M = 1.

(ii) In the case of three events, N = 3 and M = 4.

30



2.6 Theory of Counting(Combinatorial Analysis)

1. Fundamental principle of counting:

If event A can occur in n ways, and event B can occur in m ways, then

1. Event A×B 14 can occur in n ·m ways.

2. If event A and event B are mutually exclusive ot disjoint, then event A or B,
(i.e. A ∩B) can occur only in n + m ways.

2. Permutations:

1. An arrangement of n objects in a given order is called the permutation of n
objects:

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1

2. An arrangement of any r(≤ n) objects out of n objects in a given order is called
the permutation of n objects taken r at a time (or r objects out of n): 15

P n
r =

n!

(n− r)!

3. Combinations:

The number of ways of selecting r objects from a lot of n objects where order does
not count: 16 17

Cn
r = (n

r ) =
n!

r!(n− r)!

14This is an event in the combined experiments, which will be discussed in the next section.
15Note that Pn

r = n(n − 1)(n − 2) · · · (n − r + 1), and thus n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1 =
Pn

r · (n− r)(n− r − 1) · · · 321. Therefore, Pn
r = n!

(n−r)! .
16The number of ways for electing r objects from n objects and arranging them in order is Cn

r ·r! ≡
Pn

r . Therefore, Cn
r = P n

r

r! .
17Since the order does not count, and there are r! different ways of arranging r objects in order,

Cn
r must be Pn

r divided by r!.
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4. Sampling:

Figure 2.21: A box containing n objects.

1. The number of ways N for ampling of n objects taken r at a time (or r objects
out of n) with replacement:

N = n× n× · · · × n︸ ︷︷ ︸
r

= nr

2. The number of ways N
′
for sampling without replacement:

N
′
= n× (n− 1)× · · · · · · × (n− r + 1) = P n

r

Example 2.11

Consider an experiment of throwing a fair coin 3 times, where the sample space
S of each experiment is as follows:

S = {H, T}

Then, we have:

(i) Total number of ways( or events) that can occur = 23 = 8.

(ii) The number of ways (or events) that exactly two heads occur = C3
2 = 3.

18

(iii) Thus, the probability of having exactly two heads = P ( 2 heads) = 3
8
.

18Notice that the order does not count in this case, and thus corresponding 3 events are respectively
{H, H, T}, {T,H, H}, {H, T, H}.
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Example 2.12

Three balls, each of which is colored red, white, and blue, are in a box.

Figure 2.22: A box containing a red, a white, and a blue balls.

S = {R,W,B}

Then, what is the total number of different ways for the following experiments?

(i) Take two balls successively one at a time with replacement: N = 32 = 9.

(ii) Take two ballsin order without replacement: N = P 3
2 = 3!

1!
= 6.

(iii) Take two balls without replacement: N = C3
2 = 3.
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2.7 Product Space (Order Space)

Definition 2.10 The product space S formed by spaces S1 and S2 is defined as a
set of pairs from each space, and denoted by:

S = S1 × S2
∆
= {(x, y) | x ∈ S1 and y ∈ S2}

Example 2.13

xy-plane is the product spcae of x-axis and the y-axis:

Figure 2.23: The xy-plane as a product space.

product space:

(X − space)× (Y − space) = (XY − space) , i.e.;

(x− axis)× (y − axis) = (xy − plane)

Note:
It is often called a “order space” since the order is important 3:

S1 × S − 2 6= S2 × S1
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(e.g.) Let two spaces S1 and S2 as follows

S1 = {Y1 | a ≤ Y1 ≤ b}; set of real numbers [a, b]

S2 = {Y2 | c ≤ Y2 ≤ d}; set of real numbers [c, d]

Figure 2.24: The product spaces S1 × S2 and S2 × S1.

Example 2.14

Consider the twp samples spaces given below:

S1 = sample space #1
∆
= {ω1, ω2, ω3}

S2 = sample space #2
∆
= {y1, y2}

Then the product space formed by S1 and S2 is :

S = S1 × S2 = {(ωi, yj)}i=1,2,3 j=1,2,

= {(ω1, y1), (ω1, y2), (ω2, y1), (ω2, y2), (ω3, y1), (ω3, y2)}
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Application to probability space:

The concept of product space is now being applied to the probability space of
combined experiments, where we do more that one experiments sequentially. As we
mentioned in chapter 1, we need three basic components for this combined experiment
as well in order to form a probability space (S,F , P ), which are described one by one
below:

(1) Sample space (S):

Definition 2.11 Let S1 be the sample space of subexperiment #1, and let S2 be
the sample space of subexperiment #2. Then, the sample space of the combined
experiment S is defined as follows:

S = S1 × S2
∆
= {(ω1, ω2) | ω1 ∈ S1 and ω2 ∈ S2}

Example 2.15

Consider the two sample spaces given below:

S1 = sample space for tossing a coin

S2 = sample space for rolling a die

i.e.

S1 = {H, T}

S2 = {1, 2, 3, 4, 5, 6}

Then, the samples space S of the combined experiment (i.e tosiing a coin, and
THEN rolling a die) is given as follows:

S = S1 × S2 = {(H, 1), (H, 2), . . . , (H, 6), (T, 1), (T, 2), . . . , (T, 6)}
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Product events defined on a product space:

Consider two events A and B each of which is defined on the sample space S1 and S2

respectively as in the figure below:

Figure 2.25: An event defined on the product space.

Then, an event C on S, formed by the event A on S1 and the event B on S2, is
defined as follows:

C = A×B
∆
= {(ω1, ω2) | ω1 ∈ A and ω2 ∈ B}

= (A× S2) ∩ (S1 ×B)

Remark: Notice that:

(i) Event A on S1 ≡ event A× S2 on S.

(ii) Event B on S2 ≡ event S1 ×B on S.

(2) Field (F):

Definition 2.12 The field F of the product space S = S1×S2 is the set (or collection)
of subsets in S such that:

(i) If A×B ∈ F , then A×B ∈ F .

(ii) If A1 ×B1 ∈ F and A2 ×B2 ∈ F , then (A1 ×B1) ∩ (A2 ×B2) ∈ F

and we denote it by:

F = F1 ×F2

where F1 is the field of S1, and F2 is the field of S2 respectively.
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(3) Probability (P ):

Let:

1) A set function P be defined over F , i.e. P (A) where A ∈ F .

2) A set function P1 be defined over F∞, i.e. P (A1) where A1 ∈ F1.

3) A set function P2 be defined over F∈, i.e. P (A2) where A2 ∈ F2.

Then, since we have;

event A defined on S1 ≡ event (A× S2) defined on S

event B defined on S2 ≡ event (S1 ×B) defined on S

event A×B defined on S ≡ event (A× S2) ∩ (S1 ×B) defined on S

we have the following probabilities for the events:

P1(A) = P (A× S2) (2.3)

P2(B) = P (S1 ×B) (2.4)

P (A×B) = P [(A× S2) ∩ (S1 ×B)] (2.5)

NOTE:
For a special case that subexperiment #1 is independent of subexperiment #2, we
can re-write (2.5) using (2.3) and (2.4) as follows:

P (A×B) = P1 (A) · P2 (B)
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Remarks: Importance of the above result is:

In principle, if we want to compute the probabilities for combined experiments, we
first have to form a measureable space (S,F) of that combined experiment, i.e. S1×S2

and F1×calF 2. We then must define a probability function P (·), which can be applied
to that measurable space, and the probablity of a specific event A× B is calculated
via the function P (·).
However.....
if the subexperiments are independent, we do not need to form the probability space
S,F , P ) for the combined experiment. All we have to do is to compute the probability
of the event A on the probability space (S1,F1, P1), i.e. P1(A), and the probability
of the event B on (S2,F2, P2), i.e. P2(B), and multiply them to get P (A × B) =
P1(A)P2(B).

This provides us with much easier way of computing probabilities on a product space!!!

(e.g.)

In a combined experiment of tossing a coin and rolling a die sequentially, where

S1 = {H, T}

S2 = {1, 2, 3, 4, 5, 6}
The probability of getting a “head” and a number “1” can directly be computed as:

P [(H, 1)] = P1(H) · P2(1) =
1

2
· 1

6
=

1

12

This is done without forming the probability space of the combined experiment, and
that is possible since two experiments “tossing coin” and “rolling a die” have nothing
to do with each other, that is they are independent.

Extension:
In general, the product space formed by spaces S1, S2, . . . , SN is denoted and

defined as follows:

S = S! × S2 × · · · × SN

∆
= {(ω1, ω2, . . . , ωN) | ωi ∈ Si i = 1, 2, 3, . . . , N}

where S is the sample space for the combined experiment, and Si’s are the sample
space of the subexperiment #i, i = 1, 2, . . . , N .
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Bernoulli Trials: 19

Problem statement:
For an experiment for which ∃ only two possible outcomes {A, A} on any trial, we
try N successive experiments, and determine the probability of the event 3: outcome
A is observed exactly k times out of N trials.

≡ combination of N identical subexperiments (e.g. coin tossing etc.)

S = S1 × S2 × · · · × SN
∆
= ×N

i=1Si

Derivation:

Suppose events {A and/or A} are statistically independent for every trial, i.e. we
assume independent experiments 20

Let the probability of each outcome is the same for every trial as:

P (A) = p, and P (A) = 1− p

As a specific event of getting the outcome A k times out of N trials, consider the
event:

AA · · ·A︸ ︷︷ ︸
k

AA · · ·A︸ ︷︷ ︸
N−k

The the probability of above specific event is as follows:

P


AA · · ·A︸ ︷︷ ︸

k

AA · · ·A︸ ︷︷ ︸
N−k


 = p · p · · · · p︸ ︷︷ ︸

k

(1− p) · (1− p) · · · (1− p)︸ ︷︷ ︸
N−k

= pk · (1− p)N−k

Since we have CN
k different ways of getting such an event as given above, and since

they are all mutually exclusive, we can add up each probability CN
k times to get:

P (Aoccus exactly k times) = CN
k · pk · (1− p)N−k

19This is a typical example of a product space formed by independent sub-spaces.
20Be careful that this does not mean that A and A are independent, which cannot be true.
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Example 2.16

A manufacturing process produces parts which are 10% defective. 10 of the
parts are selected at random.

Then, assuming that the defectiveness of each part is independent of each other,

(a) What is the probability that there ∃ 2 or less defective parts? (event A)

(b) What is the probability that there ∃ 9 defective parts out of 10? (event
B)

Solution:

Let D denote the being a “defective” part, and G denote the being a “good”
part. Then, we have:

Figure 2.26: The sample space of testing quality of a manufactured item.

P (D) =
1

10
= p

P (G) =
9

10
= 1− p

(a) P (A):

P (A) = P0 + P1 + P2

=
2∑

k=0

C10
k pk(1− p)10−k

= C10
0 0.100.910 + C10

1 0.110.99 + C10
2 0.120.98

= 0.910 + 0.99 +
45

100
· 0.98

≈ 0.93

where Pi denotes the probability that there ∃ exactly i defective parts out
of 10.

(b) P (B):

P (B) = C10
9 0.190.91

= 10× 10−9 × 0.9

= 0.9× 10−9

≈ 0
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