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Chapter 3

The Random Variables

3.1 Introduction: Function

Function:

Definition 3.1 Let D and R be any two sets. Then, a relation f from D to R is
called a function if:

∀x ∈ D, ∃a unique y 3: f(x) = y

Fact:

A function has a domain(D) and a range(R).

Figure 3.1: The domain and range of a funcrion f(·).

⇒ ∀x ∈ D, f maps it into a point in R
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Note:

(i) f IS a function:

Figure 3.2: A function.

(ii) f is NOT a function:

Figure 3.3: A relation which cannot be a function.

(cf.) In the case of (ii), f violates the uniqueness condition!

47



3.2 Random variables

Definition 3.2 General definition:

A random variable is a function which maps a point in the sample space (S) into a
real number.

(e.g.)

Figure 3.4: A random variable as a function mapping S into R1-line: general.

Why random variable?

If we could use the well known, and well experienced general algebra(or mathematics)
using numbers in order to calculate the probabilities, (rather than dealing them in
the probability space (S,F , P )), it would give us much more easy and systematic way
of dealing them: this is the necessaity of the concept of random variables.

So we can regard the random variable as a transformation or function which maps
the outcomes or events into a real number or an interval in R1-line.
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Definition 3.3 Rigorous definition:

A function f(ω) defined over the sample space S into the R1-line is a random variable
if:

∀I ⊂ R1-line, f−1(I) ∈ F

(e.g.)

Figure 3.5: A random variable as a function mapping S into R1-line: rigorous.

Note:

(i) I represents an interval in R1-line.

(ii) f−1(I) = {ω|f(ω) ∈ I ⊂ R1}: inverse image.

Remark:
Notice that: to be able to compute various probabilities on random variable, definition
3.3 is more adequate and rigorous definition!!!
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FACT:
It can be shown (by using the Measure Theory) that the followinh statements are
true:

1. If f(ω) is a r.v.(random variable), so is |f(ω)|.
2. If f(ω) and g(ω) are r.v.’s, so are f(ω) + g(ω), and f(ω)− g(ω).

3. If f(ω) and g(ω) are r.v.’s, and F (u, v) is a continuous function of u and v, then
F (f(ω), g(ω)) is also a r.v..

4. If f(ω) is a r.v., so are:

(i) f+(ω)
∆
= max (f(ω), 0)

(ii) f−(ω)
∆
= min (f(ω), 0)

proof: In a more advanced course...

Example 3.1

Consider the chance experiment of tossing a fair coin, where the probability
space (S,F , P ) is composed by:

(i) S = {H, T}
(ii) F = {φ, S, {H}, {T}}
(iii) P ({H}) = ({T}) = 1

2
: fair coin

Figure 3.6: A r.v. X(ω) defined on coin tossing experiment.

Let’s define a r.v. X(ω) such that:





X(T ) = 10

X(T ) = −10
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Here, consider X1(I) where the interval I ⊂ R1-line:

(i) I = (−∞,−2] : X−1(I) = {ω |X(ω) ≤ −2} = {T}

·. . P {ω | X(ω) ≤ −2} ∆
= P (X ≤ −2) = P ({T}) =

1

2

(ii) I = (−∞,−15] : X−1(I) = {ω |X(ω) ≤ −15} = φ

·. . P {ω | X(ω) ≤ −15} ∆
= P (X ≤ −15) = P (φ) = 0

(iii) I = (−∞, 15] : X−1(I) = {ω |X(ω) ≤ 15} = S

·. . P {ω | X(ω) ≤ 15} ∆
= P (X ≤ 15) = P (S) = 1

(iv) I = (0, 20] : X−1(I) = {ω | 0 < X(ω) ≤ 20} = {H}

·. . P {ω | 0 < X(ω) ≤ 20} ∆
= P (0 < X ≤ 20) = P ({H}) =

1

2

Figure 3.7: Inverse images of X(ω) for various intervals I.

NOTE:

(1) A r.v. X(·) is a point function whereas P (·) is a set function.

(2) X−1(I) ∈ F for any interval I ⊂ R1, by the definition of r.v.
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3.3 Probability distribution function

The definition of the probability distribution function(PDF), or the cumulative dis-
tribution function(cdf) of a r.v. X(ω), where ω ∈ S is as follows:

Definition 3.4 The (probability) distribution function FX(x) of a r.v. X(ω) is de-
fined as:

FX(x)
∆
= P {w | X(ω) ≤ x}

Note:

(i) The event {X(ω) ≤ x} is a subset of S such that {X(ω) ≤ x} ∈ F by the
definition of the r.v..

(ii) x is a variable representing a real value in R1-line.

(iii) Notice that the distribution function is defined in terms of probability.

Example 3.2

Consider the chance experiment of tossing a fair coin, where:

(i) S = {H, T}
(ii) F = {φ, S, {H}, {T}}
(iii) P (H) = P (T ) = 0.5: fair coin

(iv) A random variable X(ω) is defined as in the previous example 3 :





X(H) = 10

X(T ) = −10

Then, determine the distribution function of the r.v. X(ω).

52



Solution:

By the definition of the distribution function,

FX(x) = P {w | X(ω) ≤ x}

Figure 3.8: A r.v. X(ω) mapping from S to R1-line.

(1) x = −∞:

FX(−∞) = P {w | X(ω) ≤ −∞} = P (φ) = 0

...

(2) x = −10:

FX(−10) = P {w | X(ω) ≤ −10} = P (T ) =
1

2

...

(3) x = 10:

FX(10) = P {w | X(ω) ≤ 10} = P (S) = 1

...

(4) x = ∞:

FX(∞) = P {w | X(ω) ≤ ∞} = P (S) = 1

Figure 3.9: The cdf FX(x) of X(ω).

(cf.) Note that FX(x) is right-hand continuous. What if the distribution func-
tion was defined as:

FX(x) = P {w | X(ω)<x} ?
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Properties of the distribution function:

: Every dist’n function must satisfy the following properties!

Let F (x)
∆
= FX(x) for notational convenience, then:

1. F (−∞) = 0 and F (∞) = 1.

2. F (x2) ≥ F (x1) if x2 ≥ x1 : monotone non-decreasing

3. P (x1 < X(ω) ≤ x2)
1 = F (x2)− F (x1).

4. limε→0,ε>0 F (x + ε) = F (x): right-hand continuous

Proof:

1. Since F (x) = P {w | X(ω) ≤ x}, it is clear that:





F (∞) = P {w | X(ω) ≤ ∞} = P (S) = 1

F (−∞) = P {w | X(ω) ≤ −∞} = P (φ) = 0

2. We have:
F (x2) = P {w | X(ω) ≤ x2}
F (x1) = P {w | X(ω) ≤ x1}

and we can decompose the event {w | X(ω) ≤ x2} into a union of two disjoint
events 3 :

{w | X(ω) ≤ x2} = {w | X(ω) ≤ x1} ∪ {w | x1 < X(ω) ≤ x2}

Therefore, from the axiom #3 of probability, we have:

P {w | X(ω) ≤ x2} = P {w | X(ω) ≤ x1}+ P {w | x1 < X(ω) ≤ x2} (3.1)

Since P {w | x1 < X(ω) ≤ x2} ≥ 0 from the axiom #1 of probability:

P {w | X(ω) ≤ x2} ≥ P {w | X(ω) ≤ x1}

⇒ F (x2) ≥ F (x1)

1Rigorously speaking, it should be expressed as P ({ω | x1 < X(ω) ≤ x2}).
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Note:

The inverse images of two disjoint intervals in R1-line are mutually exclusive
due to the fact that random variables are FUNCTIONS!!!

A
∆
= {w | X(ω) ≤ x1}

B
∆
= {w | x1 < X(ω) ≤ x2}

Figure 3.10: The inverse images of two disjoint intervals in R1-line.

3. From (3.1), we have:

P {w | x1 < X(ω) ≤ x2} = P {w | X(ω) ≤ x2} − P {w | X(ω) ≤ x1}

∆
= F (x2)− F (x1)

4. To prove this property, we have to use the following axiom on probability known
as Continuity axiom:

Continuity Axiom:

If A1, A2, . . . , An, . . . are monotone increasing (i.e. Ai ⊂ Aj ∀ i < j), or mono-
tone decreasing (i.e. Ai ⊃ Aj ∀ i < j) sequence of subsets ∈ F , then the
probability function P (·) must satisfy the following:

lim
n→∞P (An) = P

(
lim

n→∞An

)

proof: To be covered later...
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Now, consider the following sequence of subsets An of S:

An = {ω | x < X(ω) ≤ x + εn}

where εn > 0 and εn → 0 as n →∞.

Figure 3.11: Monotone decreasing sequence of subset An.

Then, since Ai ⊃ Aj ∀ i < j, {An} is monotone decreasing sequence of subsets.

.. . −→ Continuity axiom applies!!!

i.e. P
(

lim
n→∞An

)
= lim

n→∞P (An)

Note:

Notice that as n →∞, An → φ.

This is because as ε → 0, An approaches to x, but x does not belong to An.
(see above figure.)

Consider now the subset {ω | X(ω) ≤ x + εn}, which can be expressed as a
union of two disjoint subsets, i.e.

{ω | X(ω) ≤ x + εn} = {ω | X(ω) ≤ x} ∪ {ω | x < X(ω) ≤ x + εn}︸ ︷︷ ︸
An

Figure 3.12: Union of two disjoint subsets.
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Therefore,

lim
εn→0

P {ω | X(ω) ≤ x + εn} = lim
εn→0

P {ω | X(ω) ≤ x}︸ ︷︷ ︸
independent of εn

+ lim
εn→0

P {ω | x < X(ω) ≤ x + εn}

⇒ lim
εn→0

F (x + εn) = F (x) + lim
εn→0

P (An)

= F (x) + P
(

lim
εn→0

An

)
by Continuity axiom

= F (x) + P (φ)

= F (x)

⇒ F (x) is right-hand continuous!!!

Note: If we define the distribution function as:

FX(x)
∆
= P ({w | X(ω) ≤ x})

then, FX(x) would be left-hand continuous!

Bn
∆
= {ω|x− εn ≤ X(ω) < x} : monotone decreasing

Figure 3.13: Union of two disjoint subsets.

proof: assignment
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CONTINUITY AXIOM:

1. If {An}∞n=1 is a monotone increasing sequence of subsets(or events) (i.e. Ai ⊂
Aj ∀ i < j), with An ∈ F ∀ n, then

P
(

lim
n→∞An

)
= lim

n→∞P (An)

2. If {Bn}∞n=1 is a monotone decreasing sequence of subsets(or events) (i.e. Bi ⊃
Bj ∀ i < j), with Bn ∈ F ∀ n, then

P
(

lim
n→∞Bn

)
= lim

n→∞P (Bn)

Proof:

1. Suppose A1 ⊂ A2 ⊂ A3 . . . . . . . . . (monotone increasing), and there ∃ a limit
An ↗ A where A = limn→∞ An.

Figure 3.14: Monotone increasing subsets {An}∞n=1.

Now, let

Ek
∆
= Ak − Ak−1 k = 1, 2, 3, . . . (: donut or ring shape)

where A0 = φ and {Ek}∞k=1 are disjoint to each other.

Then,

An =
n⋃

k=1

Ek : disjoint unions

and

A = lim
n→∞An =

∞⋃

k=1

Ek
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Notice that any union ∪Ak can be replaced by disjoint unions ∪Ek.

Therefore, we have:

E
∆
=

∞⋃

k=1

Ek ≡ A = lim
n→∞An

⇒ P (A) = P (E) = P

( ∞⋃

k=1

Ek

)

=
∞∑

k=1

P (Ek)

=
∞∑

k=1

P (Ak − Ak−1)

= lim
n→∞

n∑

k=1

P (Ak − Ak−1)

= lim
n→∞

n∑

k=1

{P (Ak)− P (Ak−1)}

= lim
n→∞ {P (An)− P (A0)}

= lim
n→∞ {P (An)− P (φ)}

= lim
n→∞P (An)

Therefore,

P (A) = P
(

lim
n→∞An

)
= lim

n→∞P (An) (3.2)

q.e.d.

Fact:

P (Ak − Ak−1) = P (Ak)− P (Ak−1)

pf:

Ak = Ak−1 ∪
Ek︷ ︸︸ ︷

(Ak − Ak−1) :disjoint union

→ P (Ak) = P (Ak−1) + P (Ak − Ak−1)

→ P (Ak − Ak−1) = P (Ak)− P (Ak−1)
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2. Suppose B1 ⊃ B2 ⊃ B3 . . . . . . . . . (monotone decreasing), and there ∃ a limit
Bn ↘ B where B = limn→∞ Bn =

⋂∞
n=1 Bn.

Let

Cn
∆
= Bc

n ∀ n = 1, 2, 3, . . .

then {Cn}∞n=1 is monotone increasing sequence with Bc
n = Cn ∈ F , and

lim
n→∞Cn

∆
= C =

∞⋃

n=1

Cn

By (3.2), we have:

lim
n→∞P (Cn) = P

(
lim

n→∞Cn

)

⇒ lim
n→∞P (Bc

n) = P
(

lim
n→∞Bc

n

)
= P

({
lim

n→∞Bn

}c)
= P (Bc) = 1− P (B)

⇒ lim
n→∞ {1− P (Bn)} = 1− P (B)

⇒ 1− lim
n→∞P (Bn) = 1− P (B)

Therefore,

P (B) = P
(

lim
n→∞Bn

)
= lim

n→∞P (Bn)

q.e.d.
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3.4 Classification of random variables

:In terms of the distribution function

1. Continuous random variables:

If F (x) of a r.v. X(ω) is continuous on x and differentiable w.r.t. x everywhere
except at a countable number of points, then X(ω) is called a continuous random
variable.

(e.g.)

Figure 3.15: An example of F (x) for a continuous random variable.

2. Discrete random variables:

If F (x) of a r.v. X(ω) is a staircase type, then X(ω) is called a continuous
random variable.

(e.g.)

Figure 3.16: An example of F (x) for a discrete random variable.
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3. Mixed random variables:

If F (x) of a r.v. X(ω) is a combination of above two types, then X(ω) is called
a mixed random variable.

(e.g.)

Figure 3.17: An example of F (x) for a mixed random variable.
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3.5 Probability density function

The definition of the probability density function(pdf) of a r.v. X(ω), where ω ∈ S
is as follows:

Definition 3.5 The probability density function (pdf) of a random variable X(ω) is
defined as:

fX(x)
∆
=

dFX(x)

dx

Note:

(i) For notational convenience, we sometimes denote fX(x) as f(x) as long as it
does not cause any confusion.

(ii) From the above definition of p.d.f., notice that p.d.f. and PDF of a r.v. X(ω)
are related by defferentiation/integration, i.e. the PDF FX(x) in terms of fX(x)
is expressed as:

FX(x) =
∫ x

−∞
fX(α)dα

Properties of f(x):

(1) The p.d.f. is non-negative:

f(x) ≥ 0

(2) The integration of p.d.f. over entire R1-line is unity:

∫ ∞

−∞
f(x)dx = 1

(3) The probablity of an event {ω | x1 < X(ω) ≤ x2} can be evaluated using p.d.f.
of X(ω) as:

P {ω | x1 < X(ω) ≤ x2} =
∫ x2

x1

f(x)dx
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Proof:

(1) Since F (x) is non-decreasing function of x, the slope
(
= dF

dx

)
at every point of

x must be non-negative, i.e.

dFX(x)

dx
∆
= fX(x) ≥ 0

(2) From the relation of the p.d.f. and the PDF, it is clear that:

∫ ∞

−∞
fX(x)dx

∆
= FX(∞) = 1

(3) From the probability of the given event in terms of the PDF, we have:

P {ω | x1 < X(ω) ≤ x2} = FX(x2)− FX(x1)

=
∫ x2

−∞
fX(x)dx−

∫ x1

−∞
fX(x)dx

=
∫ x2

x1

fX(x)dx

q.e.d.

3.5.1 Discrete random variables

The pdf and the PDF as well for a discrete random variables can be represented in a
fixed formula.
Let’s first take a look at a specific example, and extend the concept into a general
form:
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Example 3.3

Consider the following discrete r.v. X(ω):

X(ω1) = x1 = −1, X(ω2) = x2 = 2, X(ω3) = x3 = 3

X(ω4) = x4 = 4, X(ω5) = x5 = 6,

where

S = {ω1, ω2, ω3, ω4, ω5, }

P ({ωi}) = pi i = 1, 2, 3, 4, 5 and
5∑

i=1

pi = 1

Figure 3.18: The sample space S and r.v. X(ω).

Then the distribution function F (x) can be shown in the following form:

Figure 3.19: The PDF F (x).

(cf.) An example of calculating the probability of an event described in X(ω):

P {ω | − 3 < X(ω) ≤ 6} = FX(5)− FX(−3) = p1 + p2 + p3 + p4
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Notice that the above F (x) can be expressed in a fixed mathematical form as:

F (x) =
5∑

i=1

piu(x− xi)

where x1 = −1, x2 = 2, x3 = 3, x4 = 4, x5 = 6.

Here, u(x− xi) is a shifted unit step function defined as:

u(x− xi)
∆
=

{
1, x ≥ xi

0, x < xi

Figure 3.20: The shifted unit step function u(x− xi).

Then, the derivative of the shifted unit step function u(x − x1) is zero everywhere
except at x = xi at which it has a value of infinity (i.e. ∞-slope).

We call this type of function a Dirac delta function, and denote it as:

δ(x− xi)
∆
=

d

dx
{u(x− xi)}

Therefore, the pdf f(x) of X(ω) in the above example can be expressed in a fixed
mathematical form given below:

f(x) =
d

dx
F (x) =

5∑

i=1

pi
d

dx
{u(x− xi)}

=
5∑

i=1

piδ(x− xi)
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(cf.) Dirac delta function (Unit step function)

Definition 3.6 The Dirac delta function is usually defined by the following two
conditions:

δ(x)
∆
=

d

dx
{u(x)} =

{
∞, x = 0
0, x 6= 0

and
∫ ∞

−∞
δ(x)dx = 1

Graphical interpretation:

Define a unit 2 pulse uε(x) as follows:

uε(x) =

{
1
ε
, 0 ≤ x ≤ ε

0, elsewhere

Figure 3.21: uε(x) → δ(x).

Then, we can see that:

δ(x) = lim
ε→0

uε(x)

Note:
Notice that the area of δ(x) is maintained to be unity (i.e. 1):

∫ ∞

−∞
δ(x)dx = 1

or
∫ α

−∞
δ(x)dx =

{
1, α ≥ 0
0, α < 0

2This mean that the area is 1.
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Special property of δ(x):

A special and useful property of the Dirac delta function is as follows, which is called
the “sifting property” of δ(x).

∫ α

−∞
g(x)δ(x− a)dx =

∫ α

−∞
g(a)δ(x− a)dx =





g(a), α ≥ a

0, α < a

Figure 3.22: Sifting property of δ(x).

Now we go back to the discussion of the pdf of a discrete r.v.’s.
The pdf f(x) of the example 3.3 can then be graphically represented as follows;

Figure 3.23: The pdf f(x) of X(ω).
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Note:

(1) As an example of calculating the probability of an event described in X(ω):

P {ω | − 3 < X(ω) ≤ 6} =
∫ 5

−3
fX(x)dx = p1 + p2 + p3 + p4

(2) Notice that the area under f(x) is unity, which should always be true:

∫ ∞

−∞
f(x)dx =

∫ ∞

−∞

5∑

i=1

piδ(x− xi)dx

=
5∑

i=1

pi

∫ ∞

−∞
δ(x− xi)dx

=
5∑

i=1

pi

= 1

If the sample space S has N elements (or outcomes), we can generalize the above
discussion into the followng forms of PDF and pdf:

F (x) =
N∑

i=1

piu(x− xi) : weighted & delayed sum of u(x)

f(x) =
N∑

i=1

piδ(x− xi) : weighted & delayed sum of δ(x)

EXAMPLES of discrete random variables:

(1) Binomial random variable

(2) Poisson random variable

...

: Self-study (READ)
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3.5.2 Continuous random variables

In the case of continuous random variables, there ∃ numerous different cases, and
the PDF’s and pdf’s cannot be generalized in a fixed mathematical forms as in the
discrete random variables.

So, we consider some typical cases which are frequently encountered...

(1) Uniform random variable:

Definition 3.7 A random variable X(ω) is called a uniform random variable if it
has the following form of p.d.f.:

fX(x) =





1
b−a

, a ≤ x ≤ b

0, elsewhere

Figure 3.24: A typical pdf f(x) of a uniform r.v. X(ω).

Then, the distribution function FX(x) is:

FX(x) =
∫ x

−∞
fX(α)dα

=





0, x < a

∫ x
a fX(α)dα = x−a

b−a
, a ≤ x < b

∫ b
a fX(α)dα = b−a

b−a
= 1, x ≥ b
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Figure 3.25: A typical PDF F (x) of a uniform r.v. X(ω).

Note:
We use a r.v. of uniform distribution with a = −1, and b = 1 in many computer
simulations, and they usually are provided as subroutines or internal functions of
common computer languages such as MATLAB, Fortran, C etc..

: Random number generator

Figure 3.26: A pdf f(x) of uniform random number generator.

(2) Gaussian random variable:

Definition 3.8 A random variable X(ω) is called a Gaussian random variable if it
has the following form of p.d.f.:

fX(x) =
1

σ
√

2π
exp

{
−(x−m)2

2σ2

}

where m and σ2 are called the mean and variance of X(ω) respectively. σ is known
as the standard deviation.
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Figure 3.27: A typical pdf f(x) of a Gaussian r.v. X(ω).

(cf.) Many of statistical data are known to have Gaussian distribution, e.g. graded
points of certain examination, amplitude of certain noises etc...

Before we discuss the PDF of a Gaussian randoma variable, we briefly pause to
mention the so called “error function”.

Definition 3.9 The error function in an integral form is defined as follows:

erf(x)
∆
=

∫ x

0

1√
2π

e−
α2

2 dα

Figure 3.28: The error function erf(x).

Note:

(i) Notice that the error function is an odd (or anti-symmetric) function of x, i.e.:

erf(−x) = −erf(x)

(ii) In place of the error function, we sometimes use the “Q-function” defined in a
similar fashion as:

Q(x)
∆
=

∫ ∞

x

1√
2π

e−
α2

2 dα

=
1

2
− erf(x)
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Now, the probability distribution function(PDF) F (x) of a gaussian r.v. is:

(i) Suppose x ≥ m:

F (x) =
∫ x

−∞
f(α)dα =

∫ m

−∞
f(α)dα +

∫ x

m
f(α)dα

=
1

2
+

∫ x

m

1

σ
√

2π
exp

{
−(α−m)2

2σ2

}
dα

(
let α−m

σ
= β, then 1

σ
dα = dβ

)

=
1

2
+

∫ x−m
σ

0

1√
2π

exp

{
−β2

2

}
dβ

=
1

2
+ erf

(
x−m

σ

)

: scaled and shifted error function with bias

(ii) Suppose x < m:

Figure 3.29: The pdf of Gaussian r.v. when x < m.

F (x) = 1− F (2m− x)

= 1−
{

1

2
+ erf

(
2m− x−m

σ

)}

=
1

2
− erf

(
m− x

σ

)

=
1

2
+ erf

(
x−m

σ

)

Therefore, regardless of the magnitude of x (i.e. for all −∞ < x < ∞, the PDF
of a Gaussian r.v. is in the following form:

1

2
+ erf

(
x−m

σ

)
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Figure 3.30: The PDF of Gaussian r.v. X(ω).

(cf.) Note that P (x1 < X ≤ x2) = F (x2)− F (x1).

Remark:
Appendix B of the textbook has the table of F (x) values for the case of m = 0 and
σ = 1, i.e.:

F0(x) =
1

2
+ erf(x), for x ≥ 0

Figure 3.31: The pdf f0(x) for the case of m = 0 and σ = 1.

Question: How do we use the table if:

(i) x < 0

(ii) m 6= 0 and/or σ 6= 1.
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Answer:

(i) Let x > 0, then:

F0(−x) =
∫ −x

−∞
f0(α)dα =

∫ −x

−∞
1√
2π

e−
α2

2 dα

=
∫ ∞

−∞
1√
2π

e−
α2

2 dα−
∫ ∞

−x

1√
2π

e−
α2

2 dα

(let β = −α)

= 1−
∫ −∞

x

1√
2π

e−
β2

2 (−dβ)

= 1−
∫ x

−∞
1√
2π

e−
β2

2 dβ

= 1− F0(x)

Figure 3.32: F0(−α) where α > 0 in terms of the pdf f0(x).

(ii) For the case when m 6= 0, σ 6= 1:

F (x) =
∫ x

−∞
1

σ
√

2π
e−

(α−m)2

2σ2 dα

(let α−m
σ

= β, then 1
σ
dα = dβ )

=
∫ x−m

σ

−∞
1√
2π

e−
β2

2 dβ

∆
= F0

(
x−m

σ

)

: scaled and shifted version of F0(x)
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Interpretation of σ:

Figure 3.33: The Gaussian pdf f(x).

Note that:

FX(m− σ) = F0(−1) = 1− F0(1)

= 1− 0.8413

≈ 0.1587

Therefore,

P (m− σ ≤ X ≤ m + σ) = 1− 2P (X ≤ m− σ)

= 1− 2FX(m− σ)

= 1− 2× 0.1587

= 0.6826

= 70%

OR

P (m− σ ≤ X ≤ m + σ) = P (X ≤ m + σ)− P (X ≤ m− σ)

= FX(m + σ)− FX(m− σ)

= F0(1)− F0(−1)

= 2F0(1)− 1

= 2× 0.8413− 1

= 0.6826

The above result indicates that the probability of a Gaussian r.v. X(ω) to have its
value within the interval [m − σ,≤ m + σ] (i.e deviating in amount of the standard
deviation σ from its mean m) is about 70%.
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(3) Exponential random variable:

: Self study

(4) Rayleigh random variable:

: Self study

3.5.3 Mixed random variables

The distribution function F (x) of a mixed r.v. will be in the following form:

Figure 3.34: The PDF F (x) of a mixed random variable.

Then, the probability density function f(x) must be expressed as follows:

f(x) =
dF (x)

dx︸ ︷︷ ︸
continuous

+
N∑

i=1

∆f(xi)

︸ ︷︷ ︸
discrete

where

∆f(xi) =
{
F (xi)− F (x−i )

}
δ(x− xi)

77



3.6 Conditional distribution & density functions

3.6.1 Conditional distribution function

Recall that given a probability space (S,F , P ), the conditional probability of an event
A given event B is:

P (A|B) =
P (A ∩B)

P (B)
, where P (B) > 0

Let A = {ω |X(ω) ≤ x}, then we have the following defintion of the conditional
distribution function:

Definition 3.10 The conditional distribution function of a r.v. X(ω) based on a
event B is defined and denoted as follows:

FX(x|B)
∆
= P




A︷ ︸︸ ︷
{ω |X(ω) ≤ x} | B




=
P [{ω |X(ω) ≤ x} ∩B]

P (B)

Then, we could verify the following properties:

1. FX(−∞|B) = 0 and FX(∞|B) = 1.

2. FX(x2|B) ≥ FX(x1|N) if x2 ≥ x1 : monotone non-decreasing

3. limε→0,ε>0 FX(x + ε|B) = FX(x|B): right-hand continuous

Proof: Assignment
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Example 3.4

Suppose we know the distribution function FX(x) of a r.v. X(ω), and let an
event B be:

B = {ω | b < X(ω) ≤ a}

B = X−1 (Iba)

Figure 3.35: Corresponding interval Iba for the event B.

Determine the conditional distribution FX(x|B) in terms of FX(x).

Solution:

Let the events A as before. i.e.

A = {ω | X(ω) ≤ x}

Then, we have :

(1) P (B):

P (B) = FX(a)− FX(b)

(2) P (A ∩B):

A ∩B =





φ, x ≤ b

{ω | b < X(ω) ≤ x}, b < x < a

{ω | b < X(ω) ≤ a}, x ≥ a

Therefore, we get:

P (A ∩B) =





0, x ≤ b

FX(x)− FX(b), b < x < a

FX(a)− FX(b), x ≥ a
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From (1) and (2), we get the conditional distribution function as:

FX(x|B) =
P (A ∩B)

P (B)

=





0, x ≤ b

FX(x)−FX(b)
FX(a)−FX(b)

, b < x < a

1, x ≥ a

(cf.) Notice that FX(x|B) is a scaled and biased version of FX(x)!!!

Figure 3.36: Comparison b/w FX(x) and FX(x|B) .

3.6.2 Conditional density function

Definition 3.11 The conditional probability density function of a r.v. X(ω) given
an event B is defined and denoted as follows:

fX(x|B)
∆
=

d

dx
{FX(x|B)}

(cf.)
Note that the conditional pdf and PDF’s are related as differentiation/integration to
each other, i.e.:

∫ x

−∞
fX(α|B)dα = FX(x|B)
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Properties of fX(x|B):

(1) The p.d.f. is non-negative:

fX(x|B) ≥ 0

(2) The integration of p.d.f. over entire R1-line is unity:

∫ ∞

−∞
fX(x|B)dx = 1

(3) The probablity of an event {ω | a < X(ω) ≤ b} given that an event B has oc-
curred, can be evaluated using conditional p.d.f. of X(ω) as:

P [{ω | a < X(ω) ≤ b} |B] =
∫ b

a
fX(x|B)dx

Proof: Assignment (easy from the properties of FX(x|B).)
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