Contents

3	The	e Random Variables	46
	3.1	Introduction: Function	4
	3.2	Random variables	48
	3.3	Probability distribution function	5
	3.4	Classification of random variables	6
	3.5	Probability density function	6
		3.5.1 Discrete random variables	6
		3.5.2 Continuous random variables	7
		3.5.3 Mixed random variables	7
	3.6	Conditional distribution & density functions	78
		3.6.1 Conditional distribution function	7
		3.6.2 Conditional density function	8

Chapter 3

The Random Variables

3.1 Introduction: Function

Function:

Definition 3.1 Let D and R be any two sets. Then, a *relation* f from D to R is called a *function* if:

$$\forall x \in D, \exists a \text{ unique } y \ni: f(x) = y$$

Fact:

A function has a domain(D) and a range(R).

Figure 3.1: The domain and range of a function $f(\cdot)$.

 $\Rightarrow \forall x \in D$, f maps it into a point in R

Note:	
(i) f IS a function:	
	Figure 2.2: A function
	Figure 3.2: A function.
(::) f :- NOT - f	·
(ii) f is NOT a functi	ion:
Figure	3.3: A relation which cannot be a function.

(cf.) In the case of (ii), f violates the uniqueness condition!

3.2 Random variables

Definition 3.2 General definition:

A random variable is a function which maps a point in the sample space (S) into a real number.

(e.g.)

Figure 3.4: A random variable as a function mapping S into R^1 -line: general.

Why random variable?

If we could use the well known, and well experienced general algebra (or mathematics) using *numbers* in order to calculate the probabilities, (rather than dealing them in the probability space (S, \mathcal{F}, P)), it would give us much more easy and systematic way of dealing them: this is the necessaity of the concept of random variables.

So we can regard the random variable as a transformation or function which maps the outcomes or events into a real number or an interval in \mathbb{R}^1 -line.

Definition 3.3 Rigorous definition:

A function $f(\omega)$ defined over the sample space S into the R^1 -line is a random variable if:

$$\forall I \subset R^1$$
-line, $f^{-1}(I) \in \mathcal{F}$

(e.g.)

Figure 3.5: A random variable as a function mapping S into \mathbb{R}^1 -line: rigorous.

Note:

- (i) I represents an interval in \mathbb{R}^1 -line.
- (ii) $f^{-1}(I) = \{\omega | f(\omega) \in I \subset \mathbb{R}^1\}$: inverse image.

Remark:

Notice that: to be able to compute various probabilities on random variable, definition 3.3 is more adequate and rigorous definition!!!

FACT:

It can be shown (by using the Measure Theory) that the followinh statements are true:

- 1. If $f(\omega)$ is a r.v.(random variable), so is $|f(\omega)|$.
- 2. If $f(\omega)$ and $g(\omega)$ are r.v.'s, so are $f(\omega) + g(\omega)$, and $f(\omega) g(\omega)$.
- 3. If $f(\omega)$ and $g(\omega)$ are r.v.'s, and F(u,v) is a continuous function of u and v, then $F(f(\omega), g(\omega))$ is also a r.v..
- 4. If $f(\omega)$ is a r.v., so are:
 - (i) $f^+(\omega) \stackrel{\Delta}{=} \max(f(\omega), 0)$
 - (ii) $f^-(\omega) \stackrel{\Delta}{=} \min(f(\omega), 0)$

proof: In a more advanced course...

Example 3.1

Consider the chance experiment of tossing a fair coin, where the probability space (S, \mathcal{F}, P) is composed by:

- (i) $S = \{H, T\}$
- (ii) $\mathcal{F} = \{\phi, S, \{H\}, \{T\}\}$
- (iii) $P(\lbrace H \rbrace) = (\lbrace T \rbrace) = \frac{1}{2}$: fair coin

Figure 3.6: A r.v. $X(\omega)$ defined on coin tossing experiment.

Let's define a r.v. $X(\omega)$ such that:

$$\begin{cases} X(T) = 10 \\ X(T) = -10 \end{cases}$$

Here, consider $X^1(I)$ where the interval $I \subset R^1$ -line:

(i)
$$I = (-\infty, -2]$$
 : $X^{-1}(I) = \{\omega \mid X(\omega) \le -2\} = \{T\}$
 $\therefore P\{\omega \mid X(\omega) \le -2\} \stackrel{\Delta}{=} P(X \le -2) = P(\{T\}) = \frac{1}{2}$

(ii)
$$I = (-\infty, -15]$$
 : $X^{-1}(I) = \{\omega \mid X(\omega) \le -15\} = \phi$
 $\therefore P\{\omega \mid X(\omega) \le -15\} \stackrel{\triangle}{=} P(X \le -15) = P(\phi) = 0$

(iii)
$$I = (-\infty, 15]$$
 : $X^{-1}(I) = \{\omega \mid X(\omega) \le 15\} = S$
 : $P\{\omega \mid X(\omega) \le 15\} \stackrel{\triangle}{=} P(X \le 15) = P(S) = 1$

(iv)
$$I = (0, 20]$$
 : $X^{-1}(I) = \{\omega \mid 0 < X(\omega) \le 20\} = \{H\}$
 $\therefore P\{\omega \mid 0 < X(\omega) \le 20\} \stackrel{\triangle}{=} P(0 < X \le 20) = P(\{H\}) = \frac{1}{2}$

Figure 3.7: Inverse images of $X(\omega)$ for various intervals I.

NOTE:

- (1) A r.v. $X(\cdot)$ is a point function whereas $P(\cdot)$ is a set function.
- (2) $X^{-1}(I) \in \mathcal{F}$ for any interval $I \subset \mathbb{R}^1$, by the definition of r.v.

3.3 Probability distribution function

The definition of the probability distribution function(PDF), or the cumulative distribution function(cdf) of a r.v. $X(\omega)$, where $\omega \in S$ is as follows:

Definition 3.4 The (probability) distribution function $F_X(x)$ of a r.v. $X(\omega)$ is defined as:

$$F_X(x) \stackrel{\Delta}{=} P\{w \mid X(\omega) \le x\}$$

Note:

- (i) The event $\{X(\omega) \leq x\}$ is a subset of S such that $\{X(\omega) \leq x\} \in \mathcal{F}$ by the definition of the r.v..
- (ii) x is a variable representing a real value in R^1 -line.
- (iii) Notice that the distribution function is defined in terms of **probability**.

Example 3.2

Consider the chance experiment of tossing a fair coin, where:

- (i) $S = \{H, T\}$
- (ii) $\mathcal{F} = \{\phi, S, \{H\}, \{T\}\}$
- (iii) P(H) = P(T) = 0.5: fair coin
- (iv) A random variable $X(\omega)$ is defined as in the previous example \ni :

$$\begin{cases} X(H) = 10 \\ X(T) = -10 \end{cases}$$

Then, determine the distribution function of the r.v. $X(\omega)$.

Solution:

By the definition of the distribution function,

$$F_X(x) = P\{w \mid X(\omega) \le x\}$$

Figure 3.8: A r.v. $X(\omega)$ mapping from S to R^1 -line.

(1) $x = -\infty$:

$$F_X(-\infty) = P\left\{w \mid X(\omega) \le -\infty\right\} = P(\phi) = 0$$

:

(2) x = -10:

$$F_X(-10) = P\{w \mid X(\omega) \le -10\} = P(T) = \frac{1}{2}$$

:

(3) x = 10:

$$F_X(10) = P\{w \mid X(\omega) \le 10\} = P(S) = 1$$

:

(4) $x = \infty$:

$$F_X(\infty) = P\{w \mid X(\omega) \le \infty\} = P(S) = 1$$

Figure 3.9: The cdf $F_X(x)$ of $X(\omega)$.

(cf.) Note that $F_X(x)$ is right-hand continuous. What if the distribution function was defined as:

$$F_X(x) = P\{w \mid X(\omega) < x\} ?$$

Properties of the distribution function:

: Every dist'n function must satisfy the following properties!

Let $F(x) \stackrel{\Delta}{=} F_X(x)$ for notational convenience, then:

- 1. $F(-\infty) = 0$ and $F(\infty) = 1$.
- 2. $F(x_2) \ge F(x_1)$ if $x_2 \ge x_1$: monotone non-decreasing
- 3. $P(x_1 < X(\omega) \le x_2)^1 = F(x_2) F(x_1)$.
- 4. $\lim_{\epsilon \to 0, \epsilon > 0} F(x + \epsilon) = F(x)$: right-hand continuous

Proof:

1. Since $F(x) = P\{w \mid X(\omega) \le x\}$, it is clear that:

$$\left\{ \begin{array}{l} F(\infty) = P\left\{ w \mid X(\omega) \leq \infty \right\} = P(S) = 1 \\ \\ F(-\infty) = P\left\{ w \mid X(\omega) \leq -\infty \right\} = P(\phi) = 0 \end{array} \right.$$

2. We have:

$$F(x_2) = P\{w \mid X(\omega) \le x_2\}$$

 $F(x_1) = P\{w \mid X(\omega) \le x_1\}$

and we can decompose the event $\{w \mid X(\omega) \leq x_2\}$ into a union of two **disjoint** events \ni :

$$\{w \mid X(\omega) \le x_2\} = \{w \mid X(\omega) \le x_1\} \cup \{w \mid x_1 < X(\omega) \le x_2\}$$

Therefore, from the axiom #3 of probability, we have:

$$P\{w \mid X(\omega) \le x_2\} = P\{w \mid X(\omega) \le x_1\} + P\{w \mid x_1 < X(\omega) \le x_2\}$$
 (3.1)

Since $P\{w \mid x_1 < X(\omega) \le x_2\} \ge 0$ from the axiom #1 of probability:

$$P\{w \mid X(\omega) < x_2\} > P\{w \mid X(\omega) < x_1\}$$

$$\Rightarrow F(x_2) > F(x_1)$$

Rigorously speaking, it should be expressed as $P(\{\omega \mid x_1 < X(\omega) \le x_2\})$.

Note:

The inverse images of two disjoint intervals in R^1 -line are **mutually exclusive** due to the fact that random variables are FUNCTIONS!!!

$$A \stackrel{\Delta}{=} \{ w \mid X(\omega) \le x_1 \}$$
$$B \stackrel{\Delta}{=} \{ w \mid x_1 < X(\omega) \le x_2 \}$$

Figure 3.10: The inverse images of two disjoint intervals in R^1 -line.

3. From (3.1), we have:

$$P\{w \mid x_1 < X(\omega) \le x_2\} = P\{w \mid X(\omega) \le x_2\} - P\{w \mid X(\omega) \le x_1\}$$

 $\triangleq F(x_2) - F(x_1)$

4. To prove this property, we have to use the following axiom on probability known as **Continuity axiom**:

Continuity Axiom:

If $A_1, A_2, \ldots, A_n, \ldots$ are monotone increasing (i.e. $A_i \subset A_j \ \forall \ i < j$), or monotone decreasing (i.e. $A_i \supset A_j \ \forall \ i < j$) sequence of subsets $\in \mathcal{F}$, then the probability function $P(\cdot)$ must satisfy the following:

$$\lim_{n \to \infty} P(A_n) = P\left(\lim_{n \to \infty} A_n\right)$$

proof: To be covered later...

Now, consider the following sequence of subsets A_n of S:

$$A_n = \{ \omega \mid x < X(\omega) \le x + \epsilon_n \}$$

where $\epsilon_n > 0$ and $\epsilon_n \to 0$ as $n \to \infty$.

Figure 3.11: Monotone decreasing sequence of subset A_n .

Then, since $A_i \supset A_j \ \forall \ i < j, \ \{A_n\}$ is monotone decreasing sequence of subsets. \cdots Continuity axiom applies!!!

i.e.
$$P\left(\lim_{n\to\infty}A_n\right)=\lim_{n\to\infty}P\left(A_n\right)$$

Note:

Notice that as $n \to \infty$, $A_n \to \phi$.

This is because as $\epsilon \to 0$, A_n approaches to x, but x does not belong to A_n . (see above figure.)

Consider now the subset $\{\omega \mid X(\omega) \leq x + \epsilon_n\}$, which can be expressed as a union of two **disjoint** subsets, i.e.

$$\{\omega \mid X(\omega) \le x + \epsilon_n\} = \{\omega \mid X(\omega) \le x\} \cup \underbrace{\{\omega \mid x < X(\omega) \le x + \epsilon_n\}}_{A_n}$$

Figure 3.12: Union of two disjoint subsets.

Therefore,

$$\lim_{\epsilon_n \to 0} P\left\{\omega \mid X(\omega) \le x + \epsilon_n\right\} = \lim_{\epsilon_n \to 0} \underbrace{P\left\{\omega \mid X(\omega) \le x\right\}}_{\text{independent of } \epsilon_n} + \lim_{\epsilon_n \to 0} P\left\{\omega \mid x < X(\omega) \le x + \epsilon_n\right\}$$

$$\Rightarrow \lim_{\epsilon_n \to 0} F(x + \epsilon_n) = F(x) + \lim_{\epsilon_n \to 0} P(A_n)$$

$$= F(x) + P\left(\lim_{\epsilon_n \to 0} A_n\right) \text{ by Continuity axiom}$$

$$= F(x) + P(\phi)$$

$$= F(x)$$

 \Rightarrow F(x) is right-hand continuous!!!

Note: If we define the distribution function as:

$$F_X(x) \stackrel{\Delta}{=} P\left(\{w \mid X(\omega) \le x\}\right)$$

then, $F_X(x)$ would be left-hand continuous!

$$B_n \stackrel{\Delta}{=} \{\omega | x - \epsilon_n \le X(\omega) < x\}$$
: monotone decreasing

Figure 3.13: Union of two disjoint subsets.

proof: assignment

CONTINUITY AXIOM:

1. If $\{A_n\}_{n=1}^{\infty}$ is a monotone increasing sequence of subsets(or events) (i.e. $A_i \subset A_j \ \forall \ i < j$), with $A_n \in \mathcal{F} \ \forall \ n$, then

$$P\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}P\left(A_n\right)$$

2. If $\{B_n\}_{n=1}^{\infty}$ is a monotone decreasing sequence of subsets(or events) (i.e. $B_i \supset B_j \ \forall \ i < j$), with $B_n \in \mathcal{F} \ \forall \ n$, then

$$P\left(\lim_{n\to\infty}B_n\right) = \lim_{n\to\infty}P\left(B_n\right)$$

Proof:

1. Suppose $A_1 \subset A_2 \subset A_3 \ldots$ (monotone increasing), and there \exists a limit $A_n \nearrow A$ where $A = \lim_{n \to \infty} A_n$.

Figure 3.14: Monotone increasing subsets $\{A_n\}_{n=1}^{\infty}$.

Now, let

$$E_k \stackrel{\Delta}{=} A_k - A_{k-1}$$
 $k = 1, 2, 3, \dots$ (: donut or ring shape)

where $A_0 = \phi$ and $\{E_k\}_{k=1}^{\infty}$ are disjoint to each other.

Then,

$$A_n = \bigcup_{k=1}^n E_k$$
 : disjoint unions

and

$$A = \lim_{n \to \infty} A_n = \bigcup_{k=1}^{\infty} E_k$$

Notice that any union $\cup A_k$ can be replaced by disjoint unions $\cup E_k$. Therefore, we have:

$$E \stackrel{\Delta}{=} \bigcup_{k=1}^{\infty} E_k \equiv A = \lim_{n \to \infty} A_n$$

$$\Rightarrow P(A) = P(E) = P\left(\bigcup_{k=1}^{\infty} E_k\right)$$

$$= \sum_{k=1}^{\infty} P(E_k)$$

$$= \sum_{k=1}^{\infty} P(A_k - A_{k-1})$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} P(A_k - A_{k-1})$$

$$= \lim_{n \to \infty} \sum_{k=1}^{n} \{P(A_k) - P(A_{k-1})\}$$

$$= \lim_{n \to \infty} \{P(A_n) - P(A_0)\}$$

$$= \lim_{n \to \infty} \{P(A_n) - P(\phi)\}$$

$$= \lim_{n \to \infty} P(A_n)$$

Therefore,

$$P(A) = P\left(\lim_{n \to \infty} A_n\right) = \lim_{n \to \infty} P(A_n)$$
(3.2)
q.e.d.

Fact:

$$P(A_k - A_{k-1}) = P(A_k) - P(A_{k-1})$$

pf:

$$A_k = A_{k-1} \cup \overbrace{(A_k - A_{k-1})}^{E_k} : \text{disjoint union}$$

$$\rightarrow P(A_k) = P(A_{k-1}) + P(A_k - A_{k-1})$$

$$\rightarrow P(A_k - A_{k-1}) = P(A_k) - P(A_{k-1})$$

2. Suppose $B_1 \supset B_2 \supset B_3 \ldots$ (monotone decreasing), and there \exists a limit $B_n \setminus B$ where $B = \lim_{n \to \infty} B_n = \bigcap_{n=1}^{\infty} B_n$.

Let

$$C_n \stackrel{\Delta}{=} B_n^c \quad \forall \ n = 1, 2, 3, \dots$$

then $\{C_n\}_{n=1}^{\infty}$ is monotone increasing sequence with $B_n^c = C_n \in \mathcal{F}$, and

$$\lim_{n \to \infty} C_n \stackrel{\Delta}{=} C = \bigcup_{n=1}^{\infty} C_n$$

By (3.2), we have:

$$\lim_{n \to \infty} P(C_n) = P\left(\lim_{n \to \infty} C_n\right)$$

$$\Rightarrow \lim_{n \to \infty} P(B_n^c) = P\left(\lim_{n \to \infty} B_n^c\right) = P\left(\left\{\lim_{n \to \infty} B_n\right\}^c\right) = P(B^c) = 1 - P(B)$$

$$\Rightarrow \lim_{n \to \infty} \left\{1 - P(B_n)\right\} = 1 - P(B)$$

$$\Rightarrow 1 - \lim_{n \to \infty} P(B_n) = 1 - P(B)$$

Therefore,

$$P(B) = P\left(\lim_{n\to\infty} B_n\right) = \lim_{n\to\infty} P\left(B_n\right)$$

q.e.d.

3.4 Classification of random variables

:In terms of the distribution function

1. Continuous random variables:

If F(x) of a r.v. $X(\omega)$ is continuous on x and differentiable w.r.t. x everywhere except at a countable number of points, then $X(\omega)$ is called a *continuous* random variable.

(e.g.)

Figure 3.15: An example of F(x) for a continuous random variable.

2. Discrete random variables:

If F(x) of a r.v. $X(\omega)$ is a staircase type, then $X(\omega)$ is called a *continuous* random variable. (e.g.)

Figure 3.16: An example of F(x) for a discrete random variable.

3. Mixed random variables:

If F(x) of a r.v. $X(\omega)$ is a combination of above two types, then $X(\omega)$ is called a *mixed* random variable. (e.g.)

Figure 3.17: An example of F(x) for a mixed random variable.

3.5 Probability density function

The definition of the probability density function(pdf) of a r.v. $X(\omega)$, where $\omega \in S$ is as follows:

Definition 3.5 The probability density function (pdf) of a random variable $X(\omega)$ is defined as:

$$f_X(x) \stackrel{\Delta}{=} \frac{dF_X(x)}{dx}$$

Note:

- (i) For notational convenience, we sometimes denote $f_X(x)$ as f(x) as long as it does not cause any confusion.
- (ii) From the above definition of p.d.f., notice that p.d.f. and PDF of a r.v. $X(\omega)$ are related by defferentiation/integration, i.e. the PDF $F_X(x)$ in terms of $f_X(x)$ is expressed as:

$$F_X(x) = \int_{-\infty}^x f_X(\alpha) d\alpha$$

Properties of f(x):

(1) The p.d.f. is non-negative:

$$f(x) \ge 0$$

(2) The integration of p.d.f. over entire \mathbb{R}^1 -line is unity:

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

(3) The probability of an event $\{\omega \mid x_1 < X(\omega) \le x_2\}$ can be evaluated using p.d.f. of $X(\omega)$ as:

$$P\{\omega \mid x_1 < X(\omega) \le x_2\} = \int_{x_1}^{x_2} f(x) dx$$

Proof:

(1) Since F(x) is non-decreasing function of x, the slope $\left(=\frac{dF}{dx}\right)$ at every point of x must be non-negative, i.e.

$$\frac{dF_X(x)}{dx} \stackrel{\triangle}{=} f_X(x) \ge 0$$

(2) From the relation of the p.d.f. and the PDF, it is clear that:

$$\int_{-\infty}^{\infty} f_X(x) dx \stackrel{\Delta}{=} F_X(\infty) = 1$$

(3) From the probability of the given event in terms of the PDF, we have:

$$P\{\omega \mid x_{1} < X(\omega) \leq x_{2}\} = F_{X}(x_{2}) - F_{X}(x_{1})$$

$$= \int_{-\infty}^{x_{2}} f_{X}(x) dx - \int_{-\infty}^{x_{1}} f_{X}(x) dx$$

$$= \int_{x_{1}}^{x_{2}} f_{X}(x) dx$$

q.e.d.

3.5.1 Discrete random variables

The pdf and the PDF as well for a discrete random variables can be represented in a fixed formula.

Let's first take a look at a specific example, and extend the concept into a general form:

Example 3.3

Consider the following discrete r.v. $X(\omega)$:

$$X(\omega_1) = x_1 = -1, \quad X(\omega_2) = x_2 = 2, \quad X(\omega_3) = x_3 = 3$$

 $X(\omega_4) = x_4 = 4, \quad X(\omega_5) = x_5 = 6,$

where

$$S = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \}$$

$$P(\{\omega_i\}) = p_i \ i = 1, 2, 3, 4, 5$$
 and $\sum_{i=1}^{5} p_i = 1$

Figure 3.18: The sample space S and r.v. $X(\omega)$.

Then the distribution function F(x) can be shown in the following form:

Figure 3.19: The PDF
$$F(x)$$
.

(cf.) An example of calculating the probability of an event described in $X(\omega)$:

$$P\{\omega \mid -3 < X(\omega) \le 6\} = F_X(5) - F_X(-3) = p_1 + p_2 + p_3 + p_4$$

Notice that the above F(x) can be expressed in a fixed mathematical form as:

$$F(x) = \sum_{i=1}^{5} p_i u(x - x_i)$$

where $x_1 = -1, x_2 = 2, x_3 = 3, x_4 = 4, x_5 = 6.$

Here, $u(x - x_i)$ is a shifted unit step function defined as:

$$u(x - x_i) \stackrel{\Delta}{=} \left\{ \begin{array}{l} 1, & x \ge x_i \\ 0, & x < x_i \end{array} \right.$$

Figure 3.20: The shifted unit step function $u(x - x_i)$.

Then, the derivative of the shifted unit step function $u(x - x_1)$ is zero everywhere except at $x = x_i$ at which it has a value of infinity (i.e. ∞ -slope).

We call this type of function a *Dirac delta* function, and denote it as:

$$\delta(x - x_i) \stackrel{\Delta}{=} \frac{d}{dx} \left\{ u(x - x_i) \right\}$$

Therefore, the pdf f(x) of $X(\omega)$ in the above example can be expressed in a fixed mathematical form given below:

$$f(x) = \frac{d}{dx}F(x) = \sum_{i=1}^{5} p_i \frac{d}{dx} \{u(x - x_i)\}$$
$$= \sum_{i=1}^{5} p_i \delta(x - x_i)$$

(cf.) Dirac delta function (Unit step function)

Definition 3.6 The Dirac delta function is usually defined by the following two conditions:

$$\delta(x) \stackrel{\triangle}{=} \frac{d}{dx} \{u(x)\} = \begin{cases} \infty, & x = 0 \\ 0, & x \neq 0 \end{cases}$$

and
$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

Graphical interpretation:

Define a unit ² pulse $u_{\epsilon}(x)$ as follows:

$$u_{\epsilon}(x) = \begin{cases} \frac{1}{\epsilon}, & 0 \le x \le \epsilon \\ 0, & \text{elsewhere} \end{cases}$$

Figure 3.21:
$$u_{\epsilon}(x) \rightarrow \delta(x)$$
.

Then, we can see that:

$$\delta(x) = \lim_{\epsilon \to 0} u_{\epsilon}(x)$$

Note:

Notice that the area of $\delta(x)$ is maintained to be unity (i.e. 1):

$$\int_{-\infty}^{\infty} \delta(x) dx = 1$$

or

$$\int_{-\infty}^{\alpha} \delta(x) dx = \begin{cases} 1, & \alpha \ge 0 \\ 0, & \alpha < 0 \end{cases}$$

 $^{^{2}}$ This mean that the area is 1.

Special property of $\delta(x)$:

A special and useful property of the Dirac delta function is as follows, which is called the "sifting property" of $\delta(x)$.

$$\int_{-\infty}^{\alpha} g(x)\delta(x-a)dx = \int_{-\infty}^{\alpha} g(a)\delta(x-a)dx = \begin{cases} g(a), & \alpha \ge a \\ 0, & \alpha < a \end{cases}$$

Figure 3.22: Sifting property of $\delta(x)$.

Now we go back to the discussion of the pdf of a discrete r.v.'s. The pdf f(x) of the example 3.3 can then be graphically represented as follows;

Figure 3.23: The pdf
$$f(x)$$
 of $X(\omega)$.

Note:

(1) As an example of calculating the probability of an event described in $X(\omega)$:

$$P\{\omega \mid -3 < X(\omega) \le 6\} = \int_{-3}^{5} f_X(x) dx = p_1 + p_2 + p_3 + p_4$$

(2) Notice that the area under f(x) is unity, which should always be true:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \sum_{i=1}^{5} p_i \delta(x - x_i)_d x$$
$$= \sum_{i=1}^{5} p_i \int_{-\infty}^{\infty} \delta(x - x_i)_d x$$
$$= \sum_{i=1}^{5} p_i$$
$$= 1$$

If the sample space S has N elements (or outcomes), we can generalize the above discussion into the following forms of PDF and pdf:

$$F(x) = \sum_{i=1}^{N} p_i u(x - x_i)$$
: weighted & delayed sum of $u(x)$

$$f(x) = \sum_{i=1}^{N} p_i \delta(x - x_i)$$
: weighted & delayed sum of $\delta(x)$

EXAMPLES of discrete random variables:

- (1) Binomial random variable
- (2) Poisson random variable

:

: Self-study (READ)

3.5.2 Continuous random variables

In the case of continuous random variables, there \exists numerous different cases, and the PDF's and pdf's cannot be generalized in a fixed mathematical forms as in the discrete random variables.

So, we consider some typical cases which are frequently encountered...

(1) Uniform random variable:

Definition 3.7 A random variable $X(\omega)$ is called a *uniform* random variable if it has the following form of p.d.f.:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elsewhere} \end{cases}$$

Figure 3.24: A typical pdf f(x) of a uniform r.v. $X(\omega)$.

Then, the distribution function $F_X(x)$ is:

$$F_X(x) = \int_{-\infty}^x f_X(\alpha) d\alpha$$

$$= \begin{cases} 0, & x < a \\ \int_a^x f_X(\alpha) d\alpha = \frac{x-a}{b-a}, & a \le x < b \\ \int_a^b f_X(\alpha) d\alpha = \frac{b-a}{b-a} = 1, & x \ge b \end{cases}$$

Figure 3.25: A typical PDF F(x) of a uniform r.v. $X(\omega)$.

Note:

We use a r.v. of uniform distribution with a = -1, and b = 1 in many computer simulations, and they usually are provided as subroutines or internal functions of common computer languages such as MATLAB, Fortran, C etc..

: Random number generator

Figure 3.26: A pdf f(x) of uniform random number generator.

(2) Gaussian random variable:

Definition 3.8 A random variable $X(\omega)$ is called a *Gaussian* random variable if it has the following form of p.d.f.:

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{(x-m)^2}{2\sigma^2}\right\}$$

where m and σ^2 are called the mean and variance of $X(\omega)$ respectively. σ is known as the standard deviation.

Figure 3.27: A typical pdf f(x) of a Gaussian r.v. $X(\omega)$.

(cf.) Many of statistical data are known to have Gaussian distribution, e.g. graded points of certain examination, amplitude of certain noises etc...

Before we discuss the PDF of a Gaussian randoma variable, we briefly pause to mention the so called "error function".

Definition 3.9 The error function in an integral form is defined as follows:

$$\operatorname{erf}(x) \stackrel{\Delta}{=} \int_0^x \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha^2}{2}} d\alpha$$

Figure 3.28: The error function $\operatorname{erf}(x)$.

Note:

(i) Notice that the error function is an odd (or anti-symmetric) function of x, i.e.:

$$\operatorname{erf}(-x) = -\operatorname{erf}(x)$$

(ii) In place of the error function, we sometimes use the "Q-function" defined in a similar fashion as:

$$Q(x) \stackrel{\Delta}{=} \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha^{2}}{2}} d\alpha$$
$$= \frac{1}{2} - \operatorname{erf}(x)$$

Now, the probability distribution function (PDF) F(x) of a gaussian r.v. is:

(i) Suppose $x \ge m$:

$$F(x) = \int_{-\infty}^{x} f(\alpha) d\alpha = \int_{-\infty}^{m} f(\alpha) d\alpha + \int_{m}^{x} f(\alpha) d\alpha$$

$$= \frac{1}{2} + \int_{m}^{x} \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{-\frac{(\alpha - m)^{2}}{2\sigma^{2}}\right\} d\alpha$$

$$\left(\operatorname{let} \frac{\alpha - m}{\sigma} = \beta, \text{ then } \frac{1}{\sigma} d\alpha = d\beta\right)$$

$$= \frac{1}{2} + \int_{0}^{\frac{x - m}{\sigma}} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\beta^{2}}{2}\right\} d\beta$$

$$= \frac{1}{2} + \operatorname{erf}\left(\frac{x - m}{\sigma}\right)$$

: scaled and shifted error function with bias

(ii) Suppose x < m:

Figure 3.29: The pdf of Gaussian r.v. when x < m.

$$F(x) = 1 - F(2m - x)$$

$$= 1 - \left\{ \frac{1}{2} + \operatorname{erf}\left(\frac{2m - x - m}{\sigma}\right) \right\}$$

$$= \frac{1}{2} - \operatorname{erf}\left(\frac{m - x}{\sigma}\right)$$

$$= \frac{1}{2} + \operatorname{erf}\left(\frac{x - m}{\sigma}\right)$$

Therefore, regardless of the magnitude of x (i.e. for all $-\infty < x < \infty$, the PDF of a Gaussian r.v. is in the following form:

$$\frac{1}{2} + \operatorname{erf}\left(\frac{x-m}{\sigma}\right)$$

Figure 3.30: The PDF of Gaussian r.v. $X(\omega)$.

(cf.) Note that $P(x_1 < X \le x_2) = F(x_2) - F(x_1)$.

Remark:

Appendix B of the textbook has the table of F(x) values for the case of m = 0 and $\sigma = 1$, i.e.:

$$F_0(x) = \frac{1}{2} + \operatorname{erf}(x), \quad \text{for } x \ge 0$$

Figure 3.31: The pdf $f_0(x)$ for the case of m=0 and $\sigma=1$.

Question: How do we use the table if:

- (i) x < 0
- (ii) $m \neq 0$ and/or $\sigma \neq 1$.

Answer:

(i) Let x > 0, then:

$$F_0(-x) = \int_{-\infty}^{-x} f_0(\alpha) d\alpha = \int_{-\infty}^{-x} \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha^2}{2}} d\alpha$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha^2}{2}} d\alpha - \int_{-x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\alpha^2}{2}} d\alpha$$

$$(\text{let } \beta = -\alpha)$$

$$= 1 - \int_{x}^{-\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{\beta^2}{2}} (-d\beta)$$

$$= 1 - \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{\beta^2}{2}} d\beta$$

$$= 1 - F_0(x)$$

Figure 3.32: $F_0(-\alpha)$ where $\alpha > 0$ in terms of the pdf $f_0(x)$.

(ii) For the case when $m \neq 0$, $\sigma \neq 1$:

$$F(x) = \int_{-\infty}^{x} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(\alpha-m)^2}{2\sigma^2}} d\alpha$$

$$(\text{let } \frac{\alpha-m}{\sigma} = \beta, \text{ then } \frac{1}{\sigma} d\alpha = d\beta)$$

$$= \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{\beta^2}{2}} d\beta$$

$$\stackrel{\triangle}{=} F_0\left(\frac{x-m}{\sigma}\right)$$

: scaled and shifted version of $F_0(x)$

Interpretation of σ :

Figure 3.33: The Gaussian pdf f(x).

Note that:

$$F_X(m-\sigma) = F_0(-1) = 1 - F_0(1)$$

= 1 - 0.8413
 ≈ 0.1587

Therefore,

$$P(m - \sigma \le X \le m + \sigma) = 1 - 2P(X \le m - \sigma)$$

= $1 - 2F_X(m - \sigma)$
= $1 - 2 \times 0.1587$
= 0.6826
= 70%

OR

$$P(m - \sigma \le X \le m + \sigma) = P(X \le m + \sigma) - P(X \le m - \sigma)$$

$$= F_X(m + \sigma) - F_X(m - \sigma)$$

$$= F_0(1) - F_0(-1)$$

$$= 2F_0(1) - 1$$

$$= 2 \times 0.8413 - 1$$

$$= 0.6826$$

The above result indicates that the probability of a Gaussian r.v. $X(\omega)$ to have its value within the interval $[m - \sigma, \leq m + \sigma]$ (i.e deviating in amount of the standard deviation σ from its mean m) is about 70%.

(3) Exponential random variable:

: Self study

(4) Rayleigh random variable:

: Self study

3.5.3 Mixed random variables

The distribution function F(x) of a mixed r.v. will be in the following form:

Figure 3.34: The PDF F(x) of a mixed random variable.

Then, the probability density function f(x) must be expressed as follows:

$$f(x) = \underbrace{\frac{dF(x)}{dx}}_{\text{continuous}} + \underbrace{\sum_{i=1}^{N} \Delta f(x_i)}_{\text{discrete}}$$

where

$$\Delta f(x_i) = \left\{ F(x_i) - F(x_i^-) \right\} \delta(x - x_i)$$

3.6 Conditional distribution & density functions

3.6.1 Conditional distribution function

Recall that given a probability space (S, \mathcal{F}, P) , the conditional probability of an event A given event B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
, where $P(B) > 0$

Let $A = \{\omega \mid X(\omega) \leq x\}$, then we have the following defintion of the conditional distribution function:

Definition 3.10 The conditional distribution function of a r.v. $X(\omega)$ based on a event B is defined and denoted as follows:

$$F_X(x|B) \triangleq P\left[\underbrace{\{\omega \mid X(\omega) \le x\}}^{A} \mid B\right]$$
$$= \frac{P\left[\{\omega \mid X(\omega) \le x\} \cap B\right]}{P(B)}$$

Then, we could verify the following properties:

- 1. $F_X(-\infty|B) = 0$ and $F_X(\infty|B) = 1$.
- 2. $F_X(x_2|B) \ge F_X(x_1|N)$ if $x_2 \ge x_1$: monotone non-decreasing
- 3. $\lim_{\epsilon \to 0, \epsilon > 0} F_X(x + \epsilon | B) = F_X(x | B)$: right-hand continuous

Proof: Assignment

Example 3.4

Suppose we know the distribution function $F_X(x)$ of a r.v. $X(\omega)$, and let an event B be:

$$B = \{ \omega \mid b < X(\omega) \le a \}$$

$$B = X^{-1} \left(I_{ba} \right)$$

Figure 3.35: Corresponding interval I_{ba} for the event B.

Determine the conditional distribution $F_X(x|B)$ in terms of $F_X(x)$.

Solution:

Let the events A as before. i.e.

$$A = \{ \omega \mid X(\omega) \le x \}$$

Then, we have:

(1) P(B):

$$P(B) = F_X(a) - F_X(b)$$

(2) $P(A \cap B)$:

$$A \cap B = \left\{ \begin{array}{l} \phi, \quad x \leq b \\ \\ \{\omega \mid b < X(\omega) \leq x\}, \quad b < x < a \\ \\ \{\omega \mid b < X(\omega) \leq a\}, \quad x \geq a \end{array} \right.$$

Therefore, we get:

$$P(A \cap B) = \begin{cases} 0, & x \le b \\ F_X(x) - F_X(b), & b < x < a \\ F_X(a) - F_X(b), & x \ge a \end{cases}$$

From (1) and (2), we get the conditional distribution function as:

$$F_X(x|B) = \frac{P(A \cap B)}{P(B)}$$

$$= \begin{cases} 0, & x \le b \\ \frac{F_X(x) - F_X(b)}{F_X(a) - F_X(b)}, & b < x < a \\ 1, & x \ge a \end{cases}$$

(cf.) Notice that $F_X(x|B)$ is a scaled and biased version of $F_X(x)!!!$

Figure 3.36: Comparison b/w $F_X(x)$ and $F_X(x|B)$.

3.6.2 Conditional density function

Definition 3.11 The conditional probability density function of a r.v. $X(\omega)$ given an event B is defined and denoted as follows:

$$f_X(x|B) \stackrel{\Delta}{=} \frac{d}{dx} \{F_X(x|B)\}$$

(ci.)

Note that the conditional pdf and PDF's are related as differentiation/integration to each other, i.e.:

$$\int_{-\infty}^{x} f_X(\alpha|B) d\alpha = F_X(x|B)$$

Properties of $f_X(x|B)$:

(1) The p.d.f. is non-negative:

$$f_X(x|B) \ge 0$$

(2) The integration of p.d.f. over entire R^1 -line is unity:

$$\int_{-\infty}^{\infty} f_X(x|B)dx = 1$$

(3) The probability of an event $\{\omega \mid a < X(\omega) \le b\}$ given that an event B has occurred, can be evaluated using conditional p.d.f. of $X(\omega)$ as:

$$P\left[\left\{\omega \mid a < X(\omega) \le b\right\} \mid B\right] = \int_a^b f_X(x \mid B) dx$$

Proof: Assignment (easy from the properties of $F_X(x|B)$.)