Contents

3 The Random Variables 46
3.1 Introduction: Function 46
3.2 Random variables 48
3.3 Probability distribution function 52
3.4 Classification of random variables 61
3.5 Probability density function 63
3.5.1 Discrete random variables 64
3.5.2 Continuous random variables 70
3.5.3 Mixed random variables 77
3.6 Conditional distribution \& density functions 78
3.6.1 Conditional distribution function 78
3.6.2 Conditional density function 80

Chapter 3

The Random Variables

3.1 Introduction: Function

Function:

Definition 3.1 Let D and R be any two sets. Then, a relation f from D to R is called a function if:

$$
\forall x \in D, \quad \exists \text { a unique } y \ni: \quad f(x)=y
$$

Fact:
A function has a $\operatorname{domain}(D)$ and a range (R).

Figure 3.1: The domain and range of a funcrion $f(\cdot)$.
$\Rightarrow \forall x \in D, f$ maps it into a point in R

Note:

(i) f IS a function:

Figure 3.2: A function.
(ii) f is NOT a function:

Figure 3.3: A relation which cannot be a function.
(cf.) In the case of (ii), f violates the uniqueness condition!

3.2 Random variables

Definition 3.2 General definition:
A random variable is a function which maps a point in the sample space (S) into a real number.
(e.g.)

Figure 3.4: A random variable as a function mapping S into R^{1}-line: general.

Why random variable?

If we could use the well known, and well experienced general algebra(or mathematics) using numbers in order to calculate the probabilities, (rather than dealing them in the probability space (S, \mathcal{F}, P)), it would give us much more easy and systematic way of dealing them: this is the necessaity of the concept of random variables.

So we can regard the random variable as a transformation or function which maps the outcomes or events into a real number or an interval in R^{1}-line.

Definition 3.3 Rigorous definition:
A function $f(\omega)$ defined over the sample space S into the R^{1}-line is a random variable if:

$$
\forall I \subset R^{1} \text {-line }, \quad f^{-1}(I) \in \mathcal{F}
$$

(e.g.)

Figure 3.5: A random variable as a function mapping S into R^{1}-line: rigorous.

Note:

(i) I represents an interval in R^{1}-line.
(ii) $f^{-1}(I)=\left\{\omega \mid f(\omega) \in I \subset R^{1}\right\}$: inverse image.

Remark:

Notice that: to be able to compute various probabilities on random variable, definition 3.3 is more adequate and rigorous definition!!!

FACT:

It can be shown (by using the Measure Theory) that the followinh statements are true:

1. If $f(\omega)$ is a r.v.(random variable), so is $|f(\omega)|$.
2. If $f(\omega)$ and $g(\omega)$ are r.v.'s, so are $f(\omega)+g(\omega)$, and $f(\omega)-g(\omega)$.
3. If $f(\omega)$ and $g(\omega)$ are r.v.'s, and $F(u, v)$ is a continuous function of u and v, then $F(f(\omega), g(\omega))$ is also a r.v..
4. If $f(\omega)$ is a r.v., so are:
(i) $f^{+}(\omega) \triangleq \max (f(\omega), 0)$
(ii) $f^{-}(\omega) \triangleq \min (f(\omega), 0)$
proof: In a more advanced course...

Example 3.1

Consider the chance experiment of tossing a fair coin, where the probability space (S, \mathcal{F}, P) is composed by:
(i) $S=\{H, T\}$
(ii) $\mathcal{F}=\{\phi, S,\{H\},\{T\}\}$
(iii) $P(\{H\})=(\{T\})=\frac{1}{2}$: fair coin

Figure 3.6: A r.v. $X(\omega)$ defined on coin tossing experiment.

Let's define a r.v. $X(\omega)$ such that:

$$
\left\{\begin{array}{l}
X(T)=10 \\
X(T)=-10
\end{array}\right.
$$

Here, consider $X^{1}(I)$ where the interval $I \subset R^{1}$-line:
(i) $I=(-\infty,-2] \quad: \quad X^{-1}(I)=\{\omega \mid X(\omega) \leq-2\}=\{T\}$

$$
\therefore \quad P\{\omega \mid X(\omega) \leq-2\} \stackrel{\Delta}{\triangleq} P(X \leq-2)=P(\{T\})=\frac{1}{2}
$$

(ii) $I=(-\infty,-15] \quad: \quad X^{-1}(I)=\{\omega \mid X(\omega) \leq-15\}=\phi$

$$
\therefore P\{\omega \mid X(\omega) \leq-15\} \triangleq P(X \leq-15)=P(\phi)=0
$$

(iii) $I=(-\infty, 15] \quad: \quad X^{-1}(I)=\{\omega \mid X(\omega) \leq 15\}=S$

$$
\therefore P\{\omega \mid X(\omega) \leq 15\} \triangleq P(X \leq 15)=P(S)=1
$$

(iv) $I=(0,20] \quad: \quad X^{-1}(I)=\{\omega \mid 0<X(\omega) \leq 20\}=\{H\}$

$$
\therefore P\{\omega \mid 0<X(\omega) \leq 20\} \triangleq P(0<X \leq 20)=P(\{H\})=\frac{1}{2}
$$

Figure 3.7: Inverse images of $X(\omega)$ for various intervals I.

NOTE:

(1) A r.v. $X(\cdot)$ is a point function whereas $P(\cdot)$ is a set function.
(2) $X^{-1}(I) \in \mathcal{F}$ for any interval $I \subset R^{1}$, by the definition of r.v.

3.3 Probability distribution function

The definition of the probability distribution function(PDF), or the cumulative distribution function(cdf) of a r.v. $X(\omega)$, where $\omega \in S$ is as follows:

Definition 3.4 The (probability) distribution function $F_{X}(x)$ of a r.v. $X(\omega)$ is defined as:

$$
F_{X}(x) \triangleq P\{w \mid X(\omega) \leq x\}
$$

Note:
(i) The event $\{X(\omega) \leq x\}$ is a subset of S such that $\{X(\omega) \leq x\} \in \mathcal{F}$ by the definition of the r.v..
(ii) x is a variable representing a real value in R^{1}-line.
(iii) Notice that the distribution function is defined in terms of probability.

Example 3.2

Consider the chance experiment of tossing a fair coin, where:
(i) $S=\{H, T\}$
(ii) $\mathcal{F}=\{\phi, S,\{H\},\{T\}\}$
(iii) $P(H)=P(T)=0.5$: fair coin
(iv) A random variable $X(\omega)$ is defined as in the previous example \ni :

$$
\left\{\begin{array}{l}
X(H)=10 \\
X(T)=-10
\end{array}\right.
$$

Then, determine the distribution function of the r.v. $X(\omega)$.

Solution:

By the definition of the distribution function,

$$
F_{X}(x)=P\{w \mid X(\omega) \leq x\}
$$

Figure 3.8: A r.v. $X(\omega)$ mapping from S to R^{1}-line.
(1) $x=-\infty$:

$$
F_{X}(-\infty)=P\{w \mid X(\omega) \leq-\infty\}=P(\phi)=0
$$

(2) $x=-10$:

$$
F_{X}(-10)=P\{w \mid X(\omega) \leq-10\}=P(T)=\frac{1}{2}
$$

(3) $x=10$:

$$
F_{X}(10)=P\{w \mid X(\omega) \leq 10\}=P(S)=1
$$

(4) $x=\infty$:

$$
F_{X}(\infty)=P\{w \mid X(\omega) \leq \infty\}=P(S)=1
$$

Figure 3.9: The cdf $F_{X}(x)$ of $X(\omega)$.
(cf.) Note that $F_{X}(x)$ is right-hand continuous. What if the distribution function was defined as:

$$
F_{X}(x)=P\{w \mid X(\omega)<x\} ?
$$

Properties of the distribution function:

: Every dist'n function must satisfy the following properties!

Let $F(x) \triangleq F_{X}(x)$ for notational convenience, then:

1. $F(-\infty)=0$ and $\quad F(\infty)=1$.
2. $F\left(x_{2}\right) \geq F\left(x_{1}\right)$ if $x_{2} \geq x_{1}$: monotone non-decreasing
3. $P\left(x_{1}<X(\omega) \leq x_{2}\right)^{1}=F\left(x_{2}\right)-F\left(x_{1}\right)$.
4. $\lim _{\epsilon \rightarrow 0, \epsilon>0} F(x+\epsilon)=F(x)$: right-hand continuous

Proof:

1. Since $F(x)=P\{w \mid X(\omega) \leq x\}$, it is clear that:

$$
\left\{\begin{array}{l}
F(\infty)=P\{w \mid X(\omega) \leq \infty\}=P(S)=1 \\
F(-\infty)=P\{w \mid X(\omega) \leq-\infty\}=P(\phi)=0
\end{array}\right.
$$

2. We have:

$$
\begin{aligned}
& F\left(x_{2}\right)=P\left\{w \mid X(\omega) \leq x_{2}\right\} \\
& F\left(x_{1}\right)=P\left\{w \mid X(\omega) \leq x_{1}\right\}
\end{aligned}
$$

and we can decompose the event $\left\{w \mid X(\omega) \leq x_{2}\right\}$ into a union of two disjoint events \ni :

$$
\left\{w \mid X(\omega) \leq x_{2}\right\}=\left\{w \mid X(\omega) \leq x_{1}\right\} \cup\left\{w \mid x_{1}<X(\omega) \leq x_{2}\right\}
$$

Therefore, from the axiom \#3 of probability, we have:

$$
\begin{equation*}
P\left\{w \mid X(\omega) \leq x_{2}\right\}=P\left\{w \mid X(\omega) \leq x_{1}\right\}+P\left\{w \mid x_{1}<X(\omega) \leq x_{2}\right\} \tag{3.1}
\end{equation*}
$$

Since $P\left\{w \mid x_{1}<X(\omega) \leq x_{2}\right\} \geq 0$ from the axiom \#1 of probability:

$$
\begin{gathered}
P\left\{w \mid X(\omega) \leq x_{2}\right\} \geq P\left\{w \mid X(\omega) \leq x_{1}\right\} \\
\Rightarrow \quad F\left(x_{2}\right) \geq F\left(x_{1}\right)
\end{gathered}
$$

[^0]
Note:

The inverse images of two disjoint intervals in R^{1}-line are mutually exclusive due to the fact that random variables are FUNCTIONS!!!

$$
\begin{gathered}
A \triangleq\left\{w \mid X(\omega) \leq x_{1}\right\} \\
B \triangleq\left\{w \mid x_{1}<X(\omega) \leq x_{2}\right\}
\end{gathered}
$$

Figure 3.10: The inverse images of two disjoint intervals in R^{1}-line.
3. From (3.1), we have:

$$
\begin{aligned}
P\left\{w \mid x_{1}<X(\omega) \leq x_{2}\right\} & =P\left\{w \mid X(\omega) \leq x_{2}\right\}-P\left\{w \mid X(\omega) \leq x_{1}\right\} \\
& \triangleq F\left(x_{2}\right)-F\left(x_{1}\right)
\end{aligned}
$$

4. To prove this property, we have to use the following axiom on probability known as Continuity axiom:

Continuity Axiom:

If $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ are monotone increasing (i.e. $A_{i} \subset A_{j} \forall i<j$), or monotone decreasing (i.e. $A_{i} \supset A_{j} \forall i<j$) sequence of subsets $\in \mathcal{F}$, then the probability function $P(\cdot)$ must satisfy the following:

$$
\lim _{n \rightarrow \infty} P\left(A_{n}\right)=P\left(\lim _{n \rightarrow \infty} A_{n}\right)
$$

proof: To be covered later...

Now, consider the following sequence of subsets A_{n} of S :

$$
A_{n}=\left\{\omega \mid x<X(\omega) \leq x+\epsilon_{n}\right\}
$$

where $\epsilon_{n}>0$ and $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Figure 3.11: Monotone decreasing sequence of subset A_{n}.

Then, since $A_{i} \supset A_{j} \forall i<j,\left\{A_{n}\right\}$ is monotone decreasing sequence of subsets. $\therefore \longrightarrow$ Continuity axiom applies!!!

$$
\text { i.e. } P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

Note:

Notice that as $n \rightarrow \infty, A_{n} \rightarrow \phi$.
This is because as $\epsilon \rightarrow 0, A_{n}$ approaches to x, but x does not belong to A_{n}. (see above figure.)

Consider now the subset $\left\{\omega \mid X(\omega) \leq x+\epsilon_{n}\right\}$, which can be expressed as a union of two disjoint subsets, i.e.

$$
\left\{\omega \mid X(\omega) \leq x+\epsilon_{n}\right\}=\{\omega \mid X(\omega) \leq x\} \cup \underbrace{\left\{\omega \mid x<X(\omega) \leq x+\epsilon_{n}\right\}}_{A_{n}}
$$

Figure 3.12: Union of two disjoint subsets.

Therefore,

$$
\begin{aligned}
& \begin{aligned}
\lim _{\epsilon_{n} \rightarrow 0} P\left\{\omega \mid X(\omega) \leq x+\epsilon_{n}\right\}= & \lim _{\epsilon_{n} \rightarrow 0} \underbrace{P\{\omega \mid X(\omega) \leq x\}}_{\text {independent of } \epsilon_{n}} \\
& +\lim _{\epsilon_{n} \rightarrow 0} P\left\{\omega \mid x<X(\omega) \leq x+\epsilon_{n}\right\}
\end{aligned} \\
& \begin{aligned}
\Rightarrow \lim _{\epsilon_{n} \rightarrow 0} F\left(x+\epsilon_{n}\right)= & F(x)+\lim _{\epsilon_{n} \rightarrow 0} P\left(A_{n}\right) \\
= & F(x)+P\left(\lim _{\epsilon_{n} \rightarrow 0} A_{n}\right) \quad \text { by Continuity axiom } \\
= & F(x)+P(\phi) \\
= & F(x)
\end{aligned} \\
& \Rightarrow F(x) \text { is right-hand continuous!!! }
\end{aligned}
$$

Note: If we define the distribution function as:

$$
F_{X}(x) \triangleq P(\{w \mid X(\omega) \leq x\})
$$

then, $F_{X}(x)$ would be left-hand continuous!

$$
B_{n} \triangleq\left\{\omega \mid x-\epsilon_{n} \leq X(\omega)<x\right\}: \text { monotone decreasing }
$$

Figure 3.13: Union of two disjoint subsets.
proof: assignment

CONTINUITY AXIOM:

1. If $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a monotone increasing sequence of subsets(or events) (i.e. $A_{i} \subset$ $A_{j} \forall i<j$), with $A_{n} \in \mathcal{F} \forall n$, then

$$
P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
$$

2. If $\left\{B_{n}\right\}_{n=1}^{\infty}$ is a monotone decreasing sequence of subsets(or events) (i.e. $B_{i} \supset$ $\left.B_{j} \forall i<j\right)$, with $B_{n} \in \mathcal{F} \forall n$, then

$$
P\left(\lim _{n \rightarrow \infty} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

Proof:

1. Suppose $A_{1} \subset A_{2} \subset A_{3} \ldots \ldots \ldots$ (monotone increasing), and there \exists a limit $A_{n} \nearrow A$ where $A=\lim _{n \rightarrow \infty} A_{n}$.

Figure 3.14: Monotone increasing subsets $\left\{A_{n}\right\}_{n=1}^{\infty}$.

Now, let

$$
E_{k} \triangleq A_{k}-A_{k-1} \quad k=1,2,3, \ldots \quad(: \text { donut or ring shape })
$$

where $A_{0}=\phi$ and $\left\{E_{k}\right\}_{k=1}^{\infty}$ are disjoint to each other.

Then,

$$
A_{n}=\bigcup_{k=1}^{n} E_{k} \quad: \text { disjoint unions }
$$

and

$$
A=\lim _{n \rightarrow \infty} A_{n}=\bigcup_{k=1}^{\infty} E_{k}
$$

Notice that any union $\cup A_{k}$ can be replaced by disjoint unions $\cup E_{k}$. Therefore, we have:

$$
\begin{aligned}
& E \triangleq \bigcup_{k=1}^{\infty} E_{k} \equiv A=\lim _{n \rightarrow \infty} A_{n} \\
& \Rightarrow P(A)=P(E)=P\left(\bigcup_{k=1}^{\infty} E_{k}\right) \\
&=\sum_{k=1}^{\infty} P\left(E_{k}\right) \\
&=\sum_{k=1}^{\infty} P\left(A_{k}-A_{k-1}\right) \\
&=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P\left(A_{k}-A_{k-1}\right) \\
&=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left\{P\left(A_{k}\right)-P\left(A_{k-1}\right)\right\} \\
&=\lim _{n \rightarrow \infty}\left\{P\left(A_{n}\right)-P\left(A_{0}\right)\right\} \\
&=\lim _{n \rightarrow \infty}\left\{P\left(A_{n}\right)-P(\phi)\right\} \\
&=\lim _{n \rightarrow \infty} P\left(A_{n}\right)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
P(A)=P\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right) \tag{3.2}
\end{equation*}
$$

q.e.d.

Fact:

$$
P\left(A_{k}-A_{k-1}\right)=P\left(A_{k}\right)-P\left(A_{k-1}\right)
$$

pf:

$$
\begin{aligned}
& A_{k}=A_{k-1} \cup \overbrace{\left(A_{k}-A_{k-1}\right)}^{E_{k}} \quad \text { disjoint union } \\
\rightarrow & P\left(A_{k}\right)=P\left(A_{k-1}\right)+P\left(A_{k}-A_{k-1}\right) \\
\rightarrow & P\left(A_{k}-A_{k-1}\right)=P\left(A_{k}\right)-P\left(A_{k-1}\right)
\end{aligned}
$$

2. Suppose $B_{1} \supset B_{2} \supset B_{3} \ldots \ldots \ldots$ (monotone decreasing), and there \exists a limit $B_{n} \searrow B$ where $B=\lim _{n \rightarrow \infty} B_{n}=\bigcap_{n=1}^{\infty} B_{n}$.

Let

$$
C_{n} \triangleq B_{n}^{c} \quad \forall n=1,2,3, \ldots
$$

then $\left\{C_{n}\right\}_{n=1}^{\infty}$ is monotone increasing sequence with $B_{n}^{c}=C_{n} \in \mathcal{F}$, and

$$
\lim _{n \rightarrow \infty} C_{n} \triangleq C=\bigcup_{n=1}^{\infty} C_{n}
$$

By (3.2), we have:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} P\left(C_{n}\right)=P\left(\lim _{n \rightarrow \infty} C_{n}\right) \\
\Rightarrow & \lim _{n \rightarrow \infty} P\left(B_{n}^{c}\right)=P\left(\lim _{n \rightarrow \infty} B_{n}^{c}\right)=P\left(\left\{\lim _{n \rightarrow \infty} B_{n}\right\}^{c}\right)=P\left(B^{c}\right)=1-P(B) \\
\Rightarrow & \lim _{n \rightarrow \infty}\left\{1-P\left(B_{n}\right)\right\}=1-P(B) \\
\Rightarrow & 1-\lim _{n \rightarrow \infty} P\left(B_{n}\right)=1-P(B)
\end{aligned}
$$

Therefore,

$$
P(B)=P\left(\lim _{n \rightarrow \infty} B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)
$$

q.e.d.

3.4 Classification of random variables

:In terms of the distribution function

1. Continuous random variables:

If $F(x)$ of a r.v. $X(\omega)$ is continuous on x and differentiable w.r.t. x everywhere except at a countable number of points, then $X(\omega)$ is called a continuous random variable.
(e.g.)

Figure 3.15: An example of $F(x)$ for a continuous random variable.

2. Discrete random variables:

If $F(x)$ of a r.v. $X(\omega)$ is a staircase type, then $X(\omega)$ is called a continuous random variable.
(e.g.)

Figure 3.16: An example of $F(x)$ for a discrete random variable.

3. Mixed random variables:

If $F(x)$ of a r.v. $X(\omega)$ is a combination of above two types, then $X(\omega)$ is called a mixed random variable.
(e.g.)

Figure 3.17: An example of $F(x)$ for a mixed random variable.

3.5 Probability density function

The definition of the probability density function(pdf) of a r.v. $X(\omega)$, where $\omega \in S$ is as follows:

Definition 3.5 The probability density function (pdf) of a random variable $X(\omega)$ is defined as:

$$
f_{X}(x) \triangleq \frac{d F_{X}(x)}{d x}
$$

Note:

(i) For notational convenience, we sometimes denote $f_{X}(x)$ as $f(x)$ as long as it does not cause any confusion.
(ii) From the above definition of p.d.f., notice that p.d.f. and PDF of a r.v. $X(\omega)$ are related by defferentiation/integration, i.e. the $\operatorname{PDF} F_{X}(x)$ in terms of $f_{X}(x)$ is expressed as:

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(\alpha) d \alpha
$$

Properties of $f(x)$:
(1) The p.d.f. is non-negative:

$$
f(x) \geq 0
$$

(2) The integration of p.d.f. over entire R^{1}-line is unity:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

(3) The probablity of an event $\left\{\omega \mid x_{1}<X(\omega) \leq x_{2}\right\}$ can be evaluated using p.d.f. of $X(\omega)$ as:

$$
P\left\{\omega \mid x_{1}<X(\omega) \leq x_{2}\right\}=\int_{x_{1}}^{x_{2}} f(x) d x
$$

Proof:

(1) Since $F(x)$ is non-decreasing function of x, the slope $\left(=\frac{d F}{d x}\right)$ at every point of x must be non-negative, i.e.

$$
\frac{d F_{X}(x)}{d x} \triangleq f_{X}(x) \geq 0
$$

(2) From the relation of the p.d.f. and the PDF, it is clear that:

$$
\int_{-\infty}^{\infty} f_{X}(x) d x \triangleq F_{X}(\infty)=1
$$

(3) From the probability of the given event in terms of the PDF, we have:

$$
\begin{aligned}
P\left\{\omega \mid x_{1}<X(\omega) \leq x_{2}\right\} & =F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \\
& =\int_{-\infty}^{x_{2}} f_{X}(x) d x-\int_{-\infty}^{x_{1}} f_{X}(x) d x \\
& =\int_{x_{1}}^{x_{2}} f_{X}(x) d x
\end{aligned}
$$

q.e.d.

3.5.1 Discrete random variables

The pdf and the PDF as well for a discrete random variables can be represented in a fixed formula.
Let's first take a look at a specific example, and extend the concept into a general form:

Example 3.3

Consider the following discrete r.v. $X(\omega)$:

$$
\begin{gathered}
X\left(\omega_{1}\right)=x_{1}=-1, \quad X\left(\omega_{2}\right)=x_{2}=2, \quad X\left(\omega_{3}\right)=x_{3}=3 \\
X\left(\omega_{4}\right)=x_{4}=4, \quad X\left(\omega_{5}\right)=x_{5}=6,
\end{gathered}
$$

where

$$
\begin{gathered}
S=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}, \omega_{5},\right\} \\
P\left(\left\{\omega_{i}\right\}\right)=p_{i} \quad i=1,2,3,4,5 \quad \text { and } \sum_{i=1}^{5} p_{i}=1
\end{gathered}
$$

Figure 3.18: The sample space S and r.v. $X(\omega)$.

Then the distribution function $F(x)$ can be shown in the following form:

Figure 3.19: The PDF $F(x)$.
(cf.) An example of calculating the probability of an event described in $X(\omega)$:

$$
P\{\omega \mid-3<X(\omega) \leq 6\}=F_{X}(5)-F_{X}(-3)=p_{1}+p_{2}+p_{3}+p_{4}
$$

Notice that the above $F(x)$ can be expressed in a fixed mathematical form as:

$$
F(x)=\sum_{i=1}^{5} p_{i} u\left(x-x_{i}\right)
$$

where $x_{1}=-1, x_{2}=2, x_{3}=3, x_{4}=4, x_{5}=6$.

Here, $u\left(x-x_{i}\right)$ is a shifted unit step function defined as:

$$
u\left(x-x_{i}\right) \triangleq \begin{cases}1, & x \geq x_{i} \\ 0, & x<x_{i}\end{cases}
$$

Figure 3.20: The shifted unit step function $u\left(x-x_{i}\right)$.

Then, the derivative of the shifted unit step function $u\left(x-x_{1}\right)$ is zero everywhere except at $x=x_{i}$ at which it has a value of infinity (i.e. ∞-slope).

We call this type of function a Dirac delta function, and denote it as:

$$
\delta\left(x-x_{i}\right) \triangleq \frac{d}{d x}\left\{u\left(x-x_{i}\right)\right\}
$$

Therefore, the pdf $f(x)$ of $X(\omega)$ in the above example can be expressed in a fixed mathematical form given below:

$$
\begin{aligned}
f(x)=\frac{d}{d x} F(x) & =\sum_{i=1}^{5} p_{i} \frac{d}{d x}\left\{u\left(x-x_{i}\right)\right\} \\
& =\sum_{i=1}^{5} p_{i} \delta\left(x-x_{i}\right)
\end{aligned}
$$

(cf.) Dirac delta function (Unit step function)

Definition 3.6 The Dirac delta function is usually defined by the following two conditions:

$$
\begin{gathered}
\delta(x) \triangleq \frac{d}{d x}\{u(x)\}= \begin{cases}\infty, & x=0 \\
0, & x \neq 0\end{cases} \\
\text { and } \quad \int_{-\infty}^{\infty} \delta(x) d x=1
\end{gathered}
$$

Graphical interpretation:

Define a unit ${ }^{2}$ pulse $u_{\epsilon}(x)$ as follows:

$$
u_{\epsilon}(x)= \begin{cases}\frac{1}{\epsilon}, & 0 \leq x \leq \epsilon \\ 0, & \text { elsewhere }\end{cases}
$$

Figure 3.21: $u_{\epsilon}(x) \rightarrow \delta(x)$.

Then, we can see that:

$$
\delta(x)=\lim _{\epsilon \rightarrow 0} u_{\epsilon}(x)
$$

Note:

Notice that the area of $\delta(x)$ is maintained to be unity (i.e. 1):

$$
\int_{-\infty}^{\infty} \delta(x) d x=1
$$

or

$$
\int_{-\infty}^{\alpha} \delta(x) d x= \begin{cases}1, & \alpha \geq 0 \\ 0, & \alpha<0\end{cases}
$$

[^1]A special and useful property of the Dirac delta function is as follows, which is called the "sifting property" of $\delta(x)$.

$$
\int_{-\infty}^{\alpha} g(x) \delta(x-a) d x=\int_{-\infty}^{\alpha} g(a) \delta(x-a) d x= \begin{cases}g(a), & \alpha \geq a \\ 0, & \alpha<a\end{cases}
$$

Figure 3.22: Sifting property of $\delta(x)$.

Now we go back to the discussion of the pdf of a discrete r.v.'s.
The pdf $f(x)$ of the example 3.3 can then be graphically represented as follows;

Figure 3.23: The pdf $f(x)$ of $X(\omega)$.

Note:

(1) As an example of calculating the probability of an event described in $X(\omega)$:

$$
P\{\omega \mid-3<X(\omega) \leq 6\}=\int_{-3}^{5} f_{X}(x) d x=p_{1}+p_{2}+p_{3}+p_{4}
$$

(2) Notice that the area under $f(x)$ is unity, which should always be true:

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{\infty} \sum_{i=1}^{5} p_{i} \delta\left(x-x_{i}\right)_{d} x \\
& =\sum_{i=1}^{5} p_{i} \int_{-\infty}^{\infty} \delta\left(x-x_{i}\right)_{d} x \\
& =\sum_{i=1}^{5} p_{i} \\
& =1
\end{aligned}
$$

If the sample space S has N elements (or outcomes), we can generalize the above discussion into the followng forms of PDF and pdf:

$$
\begin{aligned}
F(x) & =\sum_{i=1}^{N} p_{i} u\left(x-x_{i}\right): \text { weighted \& delayed sum of } u(x) \\
f(x) & =\sum_{i=1}^{N} p_{i} \delta\left(x-x_{i}\right): \text { weighted \& delayed sum of } \delta(x)
\end{aligned}
$$

EXAMPLES of discrete random variables:

(1) Binomial random variable
(2) Poisson random variable
: Self-study (READ)

3.5.2 Continuous random variables

In the case of continuous random variables, there \exists numerous different cases, and the PDF's and pdf's cannot be generalized in a fixed mathematical forms as in the discrete random variables.

So, we consider some typical cases which are frequently encountered...

(1) Uniform random variable:

Definition 3.7 A random variable $X(\omega)$ is called a uniform random variable if it has the following form of p.d.f.:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text { elsewhere }\end{cases}
$$

Figure 3.24: A typical pdf $f(x)$ of a uniform r.v. $X(\omega)$.

Then, the distribution function $F_{X}(x)$ is:

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} f_{X}(\alpha) d \alpha \\
& = \begin{cases}0, & x<a \\
\int_{a}^{x} f_{X}(\alpha) d \alpha=\frac{x-a}{b-a}, & a \leq x<b \\
\int_{a}^{b} f_{X}(\alpha) d \alpha=\frac{b-a}{b-a}=1, & x \geq b\end{cases}
\end{aligned}
$$

Figure 3.25: A typical PDF $F(x)$ of a uniform r.v. $X(\omega)$.

Note:

We use a r.v. of uniform distribution with $a=-1$, and $b=1$ in many computer simulations, and they usually are provided as subroutines or internal functions of common computer languages such as MATLAB, Fortran, C etc..
: Random number generator

Figure 3.26: A pdf $f(x)$ of uniform random number generator.
(2) Gaussian random variable:

Definition 3.8 A random variable $X(\omega)$ is called a Gaussian random variable if it has the following form of p.d.f.:

$$
f_{X}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-m)^{2}}{2 \sigma^{2}}\right\}
$$

where m and σ^{2} are called the mean and variance of $X(\omega)$ respectively. σ is known as the standard deviation.

Figure 3.27: A typical pdf $f(x)$ of a Gaussian r.v. $X(\omega)$.
(cf.) Many of statistical data are known to have Gaussian distribution, e.g. graded points of certain examination, amplitude of certain noises etc...

Before we discuss the PDF of a Gaussian randoma variable, we briefly pause to mention the so called "error function".

Definition 3.9 The error function in an integral form is defined as follows:

$$
\operatorname{erf}(x) \triangleq \int_{0}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha
$$

Figure 3.28: The error function $\operatorname{erf}(x)$.

Note:

(i) Notice that the error function is an odd (or anti-symmetric) function of x, i.e.:

$$
\operatorname{erf}(-x)=-\operatorname{erf}(x)
$$

(ii) In place of the error function, we sometimes use the "Q-function" defined in a similar fashion as:

$$
\begin{aligned}
\mathrm{Q}(x) & \triangleq \int_{x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha \\
& =\frac{1}{2}-\operatorname{erf}(x)
\end{aligned}
$$

Now, the probability distribution function(PDF) $F(x)$ of a gaussian r.v. is:
(i) Suppose $x \geq m$:

$$
\begin{aligned}
F(x)=\int_{-\infty}^{x} f(\alpha) d \alpha= & \int_{-\infty}^{m} f(\alpha) d \alpha+\int_{m}^{x} f(\alpha) d \alpha \\
= & \frac{1}{2}+\int_{m}^{x} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(\alpha-m)^{2}}{2 \sigma^{2}}\right\} d \alpha \\
& \left(\operatorname{let} \frac{\alpha-m}{\sigma}=\beta, \text { then } \frac{1}{\sigma} d \alpha=d \beta\right) \\
= & \frac{1}{2}+\int_{0}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\beta^{2}}{2}\right\} d \beta \\
= & \frac{1}{2}+\operatorname{erf}\left(\frac{x-m}{\sigma}\right)
\end{aligned}
$$

: scaled and shifted error function with bias
(ii) Suppose $x<m$:

Figure 3.29: The pdf of Gaussian r.v. when $x<m$.

$$
\begin{aligned}
F(x) & =1-F(2 m-x) \\
& =1-\left\{\frac{1}{2}+\operatorname{erf}\left(\frac{2 m-x-m}{\sigma}\right)\right\} \\
& =\frac{1}{2}-\operatorname{erf}\left(\frac{m-x}{\sigma}\right) \\
& =\frac{1}{2}+\operatorname{erf}\left(\frac{x-m}{\sigma}\right)
\end{aligned}
$$

Therefore, regardless of the magnitude of x (i.e. for all $-\infty<x<\infty$, the PDF of a Gaussian r.v. is in the following form:

$$
\frac{1}{2}+\operatorname{erf}\left(\frac{x-m}{\sigma}\right)
$$

Figure 3.30: The PDF of Gaussian r.v. $X(\omega)$.
(cf.) Note that $P\left(x_{1}<X \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)$.

Remark:

Appendix B of the textbook has the table of $F(x)$ values for the case of $m=0$ and $\sigma=1$, i.e.:

$$
F_{0}(x)=\frac{1}{2}+\operatorname{erf}(x), \quad \text { for } x \geq 0
$$

Figure 3.31: The pdf $f_{0}(x)$ for the case of $m=0$ and $\sigma=1$.

Question: How do we use the table if:
(i) $x<0$
(ii) $m \neq 0$ and/or $\sigma \neq 1$.

Answer:

(i) Let $x>0$, then:

$$
\begin{aligned}
F_{0}(-x)=\int_{-\infty}^{-x} f_{0}(\alpha) d \alpha= & \int_{-\infty}^{-x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha \\
= & \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha-\int_{-x}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\alpha^{2}}{2}} d \alpha \\
& (\operatorname{let} \beta=-\alpha) \\
= & 1-\int_{x}^{-\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\beta^{2}}{2}}(-d \beta) \\
= & 1-\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\beta^{2}}{2}} d \beta \\
= & 1-F_{0}(x)
\end{aligned}
$$

Figure 3.32: $F_{0}(-\alpha)$ where $\alpha>0$ in terms of the pdf $f_{0}(x)$.
(ii) For the case when $m \neq 0, \sigma \neq 1$:

$$
\begin{aligned}
F(x)= & \int_{-\infty}^{x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(\alpha-m)^{2}}{2 \sigma^{2}}} d \alpha \\
& \left(\text { let } \frac{\alpha-m}{\sigma}=\beta, \text { then } \frac{1}{\sigma} d \alpha=d \beta\right) \\
= & \int_{-\infty}^{\frac{x-m}{\sigma}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{\beta^{2}}{2}} d \beta \\
\triangleq & F_{0}\left(\frac{x-m}{\sigma}\right)
\end{aligned}
$$

: scaled and shifted version of $F_{0}(x)$

Interpretation of σ :

Figure 3.33: The Gaussian pdf $f(x)$.

Note that:

$$
\begin{aligned}
F_{X}(m-\sigma)=F_{0}(-1) & =1-F_{0}(1) \\
& =1-0.8413 \\
& \approx 0.1587
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P(m-\sigma \leq X \leq m+\sigma) & =1-2 P(X \leq m-\sigma) \\
& =1-2 F_{X}(m-\sigma) \\
& =1-2 \times 0.1587 \\
& =0.6826 \\
& =70 \%
\end{aligned}
$$

OR

$$
\begin{aligned}
P(m-\sigma \leq X \leq m+\sigma) & =P(X \leq m+\sigma)-P(X \leq m-\sigma) \\
& =F_{X}(m+\sigma)-F_{X}(m-\sigma) \\
& =F_{0}(1)-F_{0}(-1) \\
& =2 F_{0}(1)-1 \\
& =2 \times 0.8413-1 \\
& =0.6826
\end{aligned}
$$

The above result indicates that the probability of a Gaussian r.v. $X(\omega)$ to have its value within the interval $[m-\sigma, \leq m+\sigma]$ (i.e deviating in amount of the standard deviation σ from its mean m) is about 70%.
(3) Exponential random variable:
: Self study
(4) Rayleigh random variable:
: Self study

3.5.3 Mixed random variables

The distribution function $F(x)$ of a mixed r.v. will be in the following form:

Figure 3.34: The PDF $F(x)$ of a mixed random variable.

Then, the probability density function $f(x)$ must be expressed as follows:

$$
f(x)=\underbrace{\frac{d F(x)}{d x}}_{\text {continuous }}+\underbrace{\sum_{i=1}^{N} \Delta f\left(x_{i}\right)}_{\text {discrete }}
$$

where

$$
\Delta f\left(x_{i}\right)=\left\{F\left(x_{i}\right)-F\left(x_{i}^{-}\right)\right\} \delta\left(x-x_{i}\right)
$$

3.6 Conditional distribution \& density functions

3.6.1 Conditional distribution function

Recall that given a probability space (S, \mathcal{F}, P), the conditional probability of an event A given event B is:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}, \quad \text { where } P(B)>0
$$

Let $A=\{\omega \mid X(\omega) \leq x\}$, then we have the following defintion of the conditional distribution function:

Definition 3.10 The conditional distribution function of a r.v. $X(\omega)$ based on a event B is defined and denoted as follows:

$$
\begin{aligned}
F_{X}(x \mid B) & \triangleq P[\overbrace{\{\omega \mid X(\omega) \leq x\}}^{A} \mid B] \\
& =\frac{P[\{\omega \mid X(\omega) \leq x\} \cap B]}{P(B)}
\end{aligned}
$$

Then, we could verify the following properties:

1. $F_{X}(-\infty \mid B)=0 \quad$ and $\quad F_{X}(\infty \mid B)=1$.
2. $F_{X}\left(x_{2} \mid B\right) \geq F_{X}\left(x_{1} \mid N\right)$ if $x_{2} \geq x_{1}$: monotone non-decreasing
3. $\lim _{\epsilon \rightarrow 0, \epsilon>0} F_{X}(x+\epsilon \mid B)=F_{X}(x \mid B)$: right-hand continuous

Proof: Assignment

Example 3.4

Suppose we know the distribution function $F_{X}(x)$ of a r.v. $X(\omega)$, and let an event B be:

$$
B=\{\omega \mid b<X(\omega) \leq a\}
$$

$$
B=X^{-1}\left(I_{b a}\right)
$$

Figure 3.35: Corresponding interval $I_{b a}$ for the event B.

Determine the conditional distribution $F_{X}(x \mid B)$ in terms of $F_{X}(x)$.

Solution:

Let the events A as before. i.e.

$$
A=\{\omega \mid X(\omega) \leq x\}
$$

Then, we have :
(1) $P(B)$:

$$
P(B)=F_{X}(a)-F_{X}(b)
$$

(2) $P(A \cap B)$:

$$
A \cap B= \begin{cases}\phi, \quad x \leq b \\ \{\omega \mid b<X(\omega) \leq x\}, & b<x<a \\ \{\omega \mid b<X(\omega) \leq a\}, & x \geq a\end{cases}
$$

Therefore, we get:

$$
P(A \cap B)= \begin{cases}0, \quad x \leq b & \\ F_{X}(x)-F_{X}(b), & b<x<a \\ F_{X}(a)-F_{X}(b), & x \geq a\end{cases}
$$

From (1) and (2), we get the conditional distribution function as:

$$
\begin{aligned}
F_{X}(x \mid B) & =\frac{P(A \cap B)}{P(B)} \\
& = \begin{cases}0, & x \leq b \\
\frac{F_{X}(x)-F_{X}(b)}{F_{X}(a)-F_{X}(b)}, & b<x<a \\
1, & x \geq a\end{cases}
\end{aligned}
$$

(cf.) Notice that $F_{X}(x \mid B)$ is a scaled and biased version of $F_{X}(x)$!!!

Figure 3.36: Comparison b/w $F_{X}(x)$ and $F_{X}(x \mid B)$.

3.6.2 Conditional density function

Definition 3.11 The conditional probability density function of a r.v. $X(\omega)$ given an event B is defined and denoted as follows:

$$
f_{X}(x \mid B) \triangleq \frac{d}{d x}\left\{F_{X}(x \mid B)\right\}
$$

(cf.)
Note that the conditional pdf and PDF's are related as differentiation/integration to each other, i.e.:

$$
\int_{-\infty}^{x} f_{X}(\alpha \mid B) d \alpha=F_{X}(x \mid B)
$$

Properties of $f_{X}(x \mid B)$:
(1) The p.d.f. is non-negative:

$$
f_{X}(x \mid B) \geq 0
$$

(2) The integration of p.d.f. over entire R^{1}-line is unity:

$$
\int_{-\infty}^{\infty} f_{X}(x \mid B) d x=1
$$

(3) The probablity of an event $\{\omega \mid a<X(\omega) \leq b\}$ given that an event B has occurred, can be evaluated using conditional p.d.f. of $X(\omega)$ as:

$$
P[\{\omega \mid a<X(\omega) \leq b\} \mid B]=\int_{a}^{b} f_{X}(x \mid B) d x
$$

Proof: Assignment (easy from the properties of $F_{X}(x \mid B)$.)

[^0]: ${ }^{1}$ Rigorously speaking, it should be expressed as $P\left(\left\{\omega \mid x_{1}<X(\omega) \leq x_{2}\right\}\right)$.

[^1]: ${ }^{2}$ This mean that the area is 1 .

