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Chapter 4

The Operations on One Random
Variable - Expectation

4.1 Mathematical expectation

Definition 4.1 Given a probability space (S,F , P ) and a random variable X(ω), the
mathematical expectation of X(ω) is defines as:

E [X(ω)]
d
= E [X]

∆
=

∫ ∞

−∞
x · fX(x)dx

(cf) Other terms:

(i) Mean

(ii) Average

(iii) Statistical average

Note:
The above definition is good(valid) for all types of random variables, whether it is
continuous, discrete, or mixed r.v.’s.
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Remarks:

(1) Recall that if X(ω) is a discrete type r.v., then the p.d.f. of X(ω) can be written
as:

fX(x) =
N∑

i=1

p(xi)δ(x− xi)

Therefore, the mathematical expectation of a discrete r.v. X(ω) becomes:

E[X] =
∫ ∞

−∞
x · fX(x)dx

=
∫ ∞

−∞
x

N∑

i=1

p(xi)δ(x− xi)dx

=
N∑

i=1

p(xi)
∫ ∞

−∞
xδ(x− xi)dx

=
N∑

i=1

xi · p(xi) (by sifting property of δ(x).)

: well known form of expectation for discrete r.v..

Example 4.1

In a game of tossing a coin, suppse that you get 100 won if head comes up,
while you lose 100 won if tail shows up, from which the following random
variable X(ω) is defines:

X(H) = 100
d
= x1

X(T ) = −100
d
= x2

Assuming that the coin is fair, what is the expected value of X(ω)?

Figure 4.1: The sample space S of coin tossing game.
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Solution:

Since the coin is fair, we have:

P (H) = P (T ) =
1

2

Figure 4.2: The p.d.f. of X(ω).

Therefore, the mathematical expectation of X is then:

E[X] =
2∑

i=1

xi · p(xi) = 100× 1

2
+ (−100)× 1

2
= 0

which means that after many trials ( of the coin tossing game), you would
not gain or lose any money at all, just wasting your valuable time!!!

Example 4.2

In the same game of tossing a coin, suppose that you can manipulate the
coin such that:

P (H) = p, and P (T ) = 1− p

Assume tha you get 100 won if head comes up, while you lose 200 won if
tail shows up, which might be a sweet attraction to other people to join the
game. If you do not want to lose your money, how should you manipulate
the coin for the value of p?

Solution:

From the rule of the game, we have:

X(H) = 100

X(T ) = −200

Therefore, the mathematical expectation of X must then be:

E[X] = 100p + (−200)(1− p) = 300p− 200 ≥ 0 (should be)

which gives you the coin must be made biased so that p ≥ 2
3
.
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(2) If the p.d.f. fX(x) is an even function (i.e. symmetric about x = 0), then;

E[X] =
∫ ∞

−∞
x · fX(x)dx = 0

proof:

E[X] =
∫ ∞

−∞
x · fX(x)dx =

∫ 0

−∞
x · fX(x)dx +

∫ ∞

0
x · fX(x)dx

(let u = −x in the 1st integral)

=
∫ 0

∞
−u · fX(−u)(−du) +

∫ ∞

0
x · fX(x)dx

= −
∫ ∞

0
x · fX(x)dx +

∫ ∞

0
x · fX(x)dx

= 0

q.e.d.

Figure 4.3: A symmetric p.d.f. fX(x).

(cf.)

(i) Notice that since fX(x) is an even function, while x is an odd function,
the integrand in the mathematical expectation becomes odd, of which in-
tegration from −∞ to ∞ therefore is zero.

E[X] =
∫ ∞

−∞
x︸︷︷︸

odd

· fX(x)︸ ︷︷ ︸
even

dx

(ii) The above fact applies to the example of coin tossing game, where the
p.d.f. is an even function.
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(3) Generalization of (2):

If the p.d.f. fX(x) is symmetric about x = a, i.e. fX(x + a) = fX(−x + a),
then;

E[X] = a

Figure 4.4: A p.d.f. such that fX(x + a) = fX(−x + a).

proof:

We will consider E[X − a], and show that E[X − a] = 0, which in turn will
indicate that E[X] = a, since:

E[X − a] =
∫ ∞

−∞
(x− a)fX(x)dx

=
∫ ∞

−∞
xfX(x)dx−

∫ ∞

−∞
afX(x)dx

=
∫ ∞

−∞
xfX(x)dx− a

∫ ∞

−∞
fX(x)dx

= E[X]− a

≡ 0

which means that:
E[X] = a

Now, we show that E[X − a] = 0 in the following:
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E[X − a] =
∫ ∞

−∞
(x− a)fX(x)dx

(let x− a = y)

=
∫ ∞

−∞
y · fX(y + a)dy

=
∫ 0

−∞
y · fX(y + a)dy +

∫ ∞

0
y · fX(y + a)dy

= (let z = −y in the 1st integral)

=
∫ 0

∞
−z · fX(−z + a)(−dz) +

∫ ∞

0
y · fX(y + a)dy

= −
∫ ∞

0
z · fX(−z + a)dz +

∫ ∞

0
y · fX(y + a)dy

= 0 (since fX(−y + a) = fX(y + a))

Conditional expectation:

Definition 4.2 The conditional expectation of a r.v. X(ω) given an event B is
denoted and defined as follows:

E[X|B]
∆
=

∫ ∞

−∞
x · fX(x|B)dx
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4.2 Expectation of functions of a random variable

Theorem 4.1 Given a transformation (or function) y = g(x), we define a new
rnadom variable Y 3:

Y = g(X)

Then, the mathematical expectation E[Y ] of the newly defined r.v. Y is given by:

E[Y ] = E [g(X)] =
∫ ∞

−∞
g(x) · fX(x)dx

Proof: See Papoulis at p.105.

Remarks:

(1) The ordinary and straightforward way of calculatin E[Y ] would be as follows:

(i) Compute fY (y). 1

(ii) The, calculate E[Y ] according to the definition of the mathematical ex-
pectation:

E[Y ] =
∫ ∞

−∞
y · fY (y)dy

(2) This applies to the case when we proved E[X] = a if the p.d.f. FX(x) is
symmetric around x = a , by showing E[X − a] = 0.

1We will later discuss the methodology of how we get the p.d.f. of a newly defined r.v. Y which
is a function of a r.v. X, i.e. Y = g(X).

88



1. Moments (mn):

Definition 4.3 The n-th moment of a r.v. X(ω) is defined as:

mn = n-th moment
∆
= E [Xn] =

∫ ∞

−∞
xn · fX(x)dx

2. Central moments (µn):

Definition 4.4 The n-th central moment of a r.v. X(ω) is defined as:

µn = n-th central moment
∆
= E [(X −m1)

n]

=
∫ ∞

−∞
(x−m1)

n · fX(x)dx

3. Variance (σ2
X):

Definition 4.5 The variance of a r.v. X(ω) is defined as:

σ2
X = variance

∆
= E

[
(X −m1)

2
]

= µ2 (2nd central moment)

(cf.) Note that:

σ2
X = E[X2]−m2

1

4. Standard deviation (σX):

Definition 4.6 The standard deviation of a r.v. X(ω) is defined as the square root
of the variance:

σX = standard deviation
∆
=
√

µ2
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5. The characteristic function of a r.v. X(ω):

Definition 4.7 The characteristic function of a r.v. X is defined as:

Φ(ω)
∆
= E

[
ejωX

]

=
∫ ∞

−∞
ejωx · fX(x)dx

Note:

(i) Here, ω is just a parameter(or variable), not a point in the sample space. Do
not be confused!!!

(ii) Notice that the characteristic function in in the form of the inverse Fourier
transform of fX(x).

(iii) Using the similarity to the Fourier transform pair, we can compute the p.d.f.
fX(x) from Φ(ω) as:

fX(x) =
1

2π

∫ ∞

−∞
Φ(ω)e−jωxdω

(Cf.) The Leibnitz Rule:

Let

g(x) =
∫ β(x)

α(x)
f(x, u)du

where f(x, u) is a continuous function w.r.t. x and u, then the derivative of g(x) can
be expressed in the following form:

dg(x)

dx
= f (x, β(x))

dβ(x)

dx
− f (x, α(x))

dα(x)

dx
+

∫ β(x)

α(x)

∂

∂x
f(x, u)du
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NOW, notice that:

d

dω
Φ(ω) =

d

dω

∫ ∞

−∞
ejωxfX(x)dx

=
∫ ∞

−∞
∂

∂ω

{
ejωxfX(x)

}
dx (by the Leibnitz rule)

= j
∫ ∞

−∞
xejωxfX(x)dx

Therefore, we have

d

dω
Φ(ω)

∣∣∣∣∣
ω=0

= j
∫ ∞

−∞
x · fX(x)dx = jm1

Likewise,

d2

dω2
Φ(ω)

∣∣∣∣∣
ω=0

= j2
∫ ∞

−∞
x2 · fX(x)dx = j2m2

...
...

...
...

In general, we have:

dn

dωn
Φ(ω)

∣∣∣∣∣
ω=0

= jnmn (4.1)

From (4.1), we can compute the moments of the r.v. X directly from the character-
istic function in the following way:

mn =
1

jn
· dn

dωn
Φ(ω)

∣∣∣∣∣
ω=0

Moment generating function

MX(ν)
∆
= E

[
eνX

]
=

∫ ∞

−∞
eνxfX(x)dx

where nu is a real number.
In the same way as for the characteristic function, the n-th moment of r.v. X can be
obtained via the moment generating function as follows:

mn =
dn

dνn
MX(ν)

∣∣∣∣∣
ν=0

(cf.) Notice that the definition of MX(ν) is similar to the Laplace transform.
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4.3 Non-linear function of a random variable
2

Concept:

Given a non-linear system whose input is a r.v. X(ω) with its p.d.f. of fX(x), we
wish to find the p.d.f. fY (y) of the output r.v. Y (ω).

Figure 4.5: A Non-linear system with input X and the output Y .

(e.g.)

1. Square law device

2. Full wave rectifier

3. Saturated amplifier

Question:

Given a probability space (S,F , P ), and a continuous r.v. X(ω) : S → R1-line for
which FX(x) and fX(x) are known.
Define a new r.v. Y (ω) 3: Y (ω) = T [X(ω)], where y = T [x] is a continuous function
of x (T [·] is called a transformation).

Figure 4.6: A non-linear transformation T [·].

Then, what is the distribution FY (y) of the newly defined r.v. Y (ω), and/or corre-
sponding p.d.f. fY (y)?

2The linear transformation can be considered as a special case.

92



Answer:

1. The distribution function: FY (y)

FY (y)
∆
= P {ω | Y (ω) ≤ y} let≡ P (Y ≤ y)

= P {ω | T [X(ω)] ≤ y} let≡ P (T [X] ≤ y) (4.2)

2. The density function: fY (y)

fY (y)
∆
=

d

dy
FY (y) (4.3)

Note:
Notice that the cdf in (4.2) of Y (ω), which is in the form of a probability, can be
evaluated via the cdf FX(x) or the p.d.f. fX(x) of X(ω), and thus the corresponding
p.d.f. in (4.3) of Y ω) as well.

There exist three different cases: (simple case → general case)

1. y = T [x] is a monotone increasing continuous function of x (i.e. dy
dx

> 0):

Figure 4.7: A monotone increasing transformation T [·].

(1) The distribution function FY (y):

In this case, we have:

P [Y ≤ y] = P [X ≤ x]

where x = T−1[y].
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Therefore, the distribution function FY (y) in (4.2) becomes:

FY (y) = P {ω | Y (ω) ≤ y} = P {ω | X(ω) ≤ x}

= FX(x)|x=T−1(y)

(2) The density function fY (y):

Corrsponding p.d.f. fY (y) is then:

fY (y) =
dFY (y)

dy
=

dFX(x)

dy

=
dFX(x)

dx
· dx

dy

= fX(x) · 1
dy
dx

= fX(x) · 1∣∣∣ dy
dx

∣∣∣
(since dy

dx
> 0)

where x = T−1(y).

2. y = T [x] is a monotone decreasing continuous function of x (i.e. dy
dx

< 0):

Figure 4.8: A monotone decreasing transformation T [·].

94



(1) The distribution function FY (y):

For the case of decreasing T [·], we have:

P [Y ≤ y] = P [X ≥ x] = 1− P [X < x] = 1− P [X ≤ x]

where x = T−1[y].

cf: This is because T [·] is a continuous function of x and X is a continuous
r.v., thus P [X = x] = 0!!!

Therefore, the distribution function FY (y) in (4.2) becomes:

FY (y) = P {ω | Y (ω) ≤ y} = P {ω | X(ω) ≥ x}

= 1− P {ω | X(ω) ≤ x}

= 1− FX(x)|x=T−1(y)

(2) The density function fY (y):

Corrsponding p.d.f. fY (y) is then:

fY (y) =
dFY (y)

dy
=

d

dy
[1− FX(x)]

=
dFX(x)

dx
· dx

dy

= −fX(x) · 1
dy
dx

= fX(x) · 1∣∣∣ dy
dx

∣∣∣
(since dy

dx
< 0)

where x = T−1(y).

95



3. y = T [x] is a mixed continuous function of x (i.e. ↗ and ↘):

(Direct derivation of the p.d.f.)

Figure 4.9: A mixed transformation T [·].

Assumptions:

(i) X is a continuous r.v..

(ii) T [·] is NOT equal to a constant over any interval of x, i.e.

Figure 4.10: An example of “not allowable” transformation T [·].

Consider the following probability:

P {ω | y < Y (ω) ≤ y + ∆y} (4.4)
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It can be expressed as follows:

P {ω | y < Y (ω) ≤ y + ∆y}

= FY (y + ∆y)− FY (y)

=
∫ y+∆y

−∞
fY (α)dα−

∫ y

−∞
fY (α)dα

=
∫ y+∆y

y
fY (α)dα

= fY (y) ·∆y (by the mean value theorem for small ∆y)

≡ P {ω | x1 < X(ω) ≤ x1 + ∆x1}+ P {ω | x2 + ∆x2 ≤ X(ω) < x2}

+P {ω | x3 < X(ω) ≤ x3 + ∆x3}

=
∫ x1+∆x1

x1

fX(x)dx +
∫ x2

x2+∆x2

fX(x)dx +
∫ x3+∆x3

x3

fX(x)dx

= fX(x1) ·∆x1 + fX(x2) · |∆x2|+ fX(x3) ·∆x3

Therefore,

fY (y) ·∆y = fX(x1) ·∆x1 + fX(x2) · |∆x2|+ fX(x3) ·∆x3

⇒ fY (y) = fX(x1) ·
∣∣∣∣∣
∆x1

∆y

∣∣∣∣∣ + fX(x2) ·
∣∣∣∣∣
∆x2

∆y

∣∣∣∣∣ + fX(x3) ·
∣∣∣∣∣
∆x3

∆y

∣∣∣∣∣

∆y→0
=⇒ fY (y) = fX(x1) · 1∣∣∣ dy

dx

∣∣∣
x=x1

+ fX(x2) · 1∣∣∣ dy
dx

∣∣∣
x=x2

+ fX(x3) · 1∣∣∣ dy
dx

∣∣∣
x=x3

Generalizing the above concept, we have:

fY(y) =
m∑

i=1

fX(xi) ·
1∣∣∣dy
dx

∣∣∣
x=xi

(4.5)

where xi = T−1[y] for i = 1,2,3, . . . ,m

Note: (4.5) can be applicable to the cases #1 and #2 as well. (Check!!!)
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Example 4.3

Square law detector:

Suppose a r.v. X w/ its p.d.f. fX(x) is applied to a square law detector to yield
an output r.v. Y 3:

Y = a ·X2

where a is a positive constant, i.e. a > 0.

Figure 4.11: A square law detector y = ax2.

Determine the p.d.f. fY (y) of the output r.v. Y (ω) in terms of the input p.d.f.
fX(x).

Solution:

¿From the i/o relation of the square law detector, we get the roots for a specific
y > 0 as:

y = ax2 −→ x = ±
√

y

a
−→ let x1 =

√
y

a
, x2 = −

√
y

a

Therefore,

∣∣∣∣∣
dy

dx

∣∣∣∣∣ = |2ax| = 2a |x| =⇒





∣∣∣ dy
dx

∣∣∣
x=x1

= 2a
√

y
a

= 2
√

ay

∣∣∣ dy
dx

∣∣∣
x=x2

= 2a
√

y
a

= 2
√

ay

Then, from (4.5), we get fY (y) as:

(i) y > 0

fY (y) = = fX

(√
y

a

)
· 1

2
√

ay
+ fX

(
−

√
y

a

)
· 1

2
√

ay

=
1

2
√

ay

[
fX

(√
y

a

)
+ fX

(
−

√
y

a

)]

(ii) y ≤ 0

fY (y) = 0
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OR

¿From the definition of the distribution function, we have:

FY (y) = P (T ≤ y) = P (x2leqX ≤ x1)

= FX(x1)− FX(x2)

= FX

(√
y

a

)
− FX

(
−

√
y

a

)
for y > 0

Therefore, the p.d.f. fY (y) can be derived by taking the derivative of FY (y) as:

fY (y) =
d

dy
FY (y) = fX

(√
y

a

)
· 1

2
√

ay
− fX

(
−

√
y

a

)
·
(
− 1

2
√

ay

)

=
1

2
√

ay

[
fX

(√
y

a

)
+ fX

(
−

√
y

a

)]

which provides the same result!!!

Example 4.4

Fullwave rectifier:

Repeat the above example for a fullwave rectifier where the i/o relationship is
as follows:

Y = |X|

Figure 4.12: A fullwave rectifier y = |x|.
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Solution:

¿From the i/o relation of the fullwave rectifier, we get the roots for a specific
y > 0 as:

y = |x| −→ x = ±y −→ let x1 = y, x2 = −y

Therefore,

∣∣∣∣∣
dy

dx

∣∣∣∣∣ = |±1| =⇒





∣∣∣ dy
dx

∣∣∣
x=x1

= |1| = 1

∣∣∣ dy
dx

∣∣∣
x=x2

= | − 1| = 1

Then, from (4.5), we get fY (y) as:

(i) y > 0

fY (y) = fX(y)
1

1
+ fX(−y)

1

1
= fX(y) + fX(−y)

(ii) y ≤ 0

fY (y) = 0

Example 4.5

Saturated amplifier:

Repeat the above example for a saturated amplofier where the i/o relationship
is as in the following figure 3::

Y =





−b, X < −a

b
a
X, −a ≤ X < a

b, X ≥ a
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Figure 4.13: A saturated amplifier.

Solution:

We will first get the distribution function of Y , and then the p.d.f. by taking
the derivative:

(i) −b ≤ y < b

FY (y) = P {ω | Y (ω) ≤ y} = P
{
ω | X(ω) ≤ a

b
y
}

∆
= FX

(
a

b
y
)

−→ fY (y) =
d

dy
FY (y) =

d

dy
FX

(
a

b
y
)

= fX

(
a

b
y
)
· a

b

(ii) y ≥ b

FY (y) = P {ω | Y (ω) ≤ y} = P {ω | X(ω) ≤ ∞} = FX(∞) = 1

−→ fY (y) =
d

dy
FY (y) = 0

(iii) y < −b

FY (y) = P {ω | Y (ω) ≤ y} = P {ω | X(ω) ≤ −∞} = FX(−∞) = 0

−→ fY (y) =
d

dy
FY (y) = 0

(cf.)

Notice that for the cases of (ii) and (iii) above, there is NO intersection for a
specific y within that interval, and thus the p.d.f. fY (y) = 0. On the other
hand, for the case of (i), we have a root x = a

b
y for a specific value y, where∣∣∣ dy

dx

∣∣∣ = b
a
, and thus from (4.5), we have:

fY (y) =
fX

(
a
b
y
)

b
a

= fX

(
a

b
y
)
· a

b
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