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Chapter 5

Multiple Random Variables

5.1 Two random variables

5.1.1 Continuous random variables:

We are given a probability space (S,F , P ), and we define two random variables X(ω)
and Y (ω) as follows:

Figure 5.1: Two r.v.’s X(ω) and Y (ω) mapping into R2-plane.

(cf.)
Note that for the case of two random variables, each element ω ∈ S is being mapped
into a point in the R2-plane, whereas a single r.v. maps each ω ∈ S into a point on
R1-line!!!
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Definition 5.1 The joint probability distribution function of two random variables
X(ω) and Y (ω) is denoted and defined as follows:

FXY (x, y)
∆
= P {ω | (X(ω) ≤ x) ∩ (Y (ω) ≤ y)}

Figure 5.2: The event defining the joint PDF FXY (x, y).

Note:

(i) The event defining the joint PDF is in area.

(ii) FXY (x, y) is a 2-dimensional surface as a function of x, and y on the xy-plane.

(iii) Recall the definition of PDF for a single r.v. 3:

FX(x)
∆
= P {ω | X(ω) ≤ x}

where the event defining the PDF is in interval.

Definition 5.2 The joint probability density function of two random variables X(ω)
and Y (ω) is denoted and defined as follows:

fXY (x, y)
∆
=

∂2

∂x∂y
FXY (x, y)

Remark: Notice that the relationship between the joint PDF and the joint p.d.f. is
differentiation/integration, and thus the joint PDF can be expressed in terms of the
joint p.d.f. as follows:

FXY (x, y) =
∫ x

−∞

∫ y

−∞
fXY (α, β)dαdβ

103



Properties of FXY (x, y):

1. FXY (x, y) in both of x and y at −∞ is zero:

FXY (−∞,−∞) = 0

2. FXY (x, y) in one of x or y at −∞ is also zero:

FXY (x,−∞) = FXY (−∞, y) = 0 ∀ x, y

3. FXY (x, y) in both of x and y at ∞ is unity:

FXY (∞,∞) = 1

4. If we let one of x or y be ∞, we get the PDF of y and x respectively, i.e.:

FXY (x,∞) = FX(x)

FXY (∞, y) = FY (y)

and we call these PDF’s the “marginal dsitributions”.

5. FXY (x, y) is a non-decreasing function of x and y.

6. FXY (x, y) is right-hand continuous in both of x and y.

7. For FXY (x, y) to be a valid joint PDF, it must satisfy the following inequality:

FXY (x2, y2)− FXY (x1, y2)− FXY (x2, y1) + FXY (x1, y1) ≥ 0

∀ x2 ≥ x1, y2 ≥ y1
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Brief proof:

1. Notice that:

FXY (−∞,−∞) = P {(X ≤ −∞) ∩ (Y ≤ −∞)} = P (φ ∩ φ) = P (φ) = 0

2. We have:

FXY (x,−∞) = P {(X ≤ x) ∩ (Y ≤ −∞)} = P {(X ≤ x) ∩ φ} = P (φ) = 0

and

FXY (−∞, y) = P {(X ≤ −∞) ∩ (Y ≤ y)} = P {φ ∩ (Y ≤ y)} = P (φ) = 0

3. This is so since:

FXY (∞,∞) = P {(X ≤ ∞) ∩ (Y ≤ ∞)} = P (S ∩ S) = P (S) = 1

4. Notice that:

FXY (x,∞) = P {ω | (X(ω) ≤ x) ∩ (Y (ω) ≤ ∞)}

= P {ω | (X(ω) ≤ x) ∩ S}

= P {ω | X(ω) ≤ x}

∆
= FX(x)

Similarly, we can prove that FXY (∞, y) = FY (y) as well.

5. This is implicitly indicated in the process of proving the property 7 below.

6. We omit, but you can prove this property in a similar way as in the case of
single random variable, and the property is due to the inequality sign(≤) in
the definition of the joint PDF. If we had defined it using the strict inequality
sign(<), it would have been left-hand continuous.
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7. From the figure below, we have the following probability of the shaded area:

Figure 5.3: The range space of X and Y .

P {ω | (x1 < X(ω) ≤ x2) ∩ (y1 < Y (ω) ≤ y2)}

= P {ω| (X(ω) ≤ x2) ∩ (Y (ω) ≤ y2)} − P {ω| (X(ω) ≤ x1) ∩ (Y (ω) ≤ y2)}
−P {ω| (X(ω) ≤ x2) ∩ (Y (ω) ≤ y1)}+ P {ω| (X(ω) ≤ x1) ∩ (Y (ω) ≤ y1)}

∆
= FXY (x2, y2)− FXY (x1, y2)− FXY (x2, y1) + FXY (x1, y1)

≥ 0 (from the axiom #1 of probability 3: P (·) ≥ 0)

(cf.) Notice that we have implicitly used the fact that the disjoint areas in
R2-space correspond to the mutually exclusive events!!!

Example 5.1

Is FXY (x, y) given below a valid joint PDF?

FXY (x, y) =





0, x < 0, or x + y < 1 or y < 0

1, elsewhere
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Figure 5.4: FXY (x, y) in xy-plane.

Solution:

We can check that all the properties from 1 to 6 are satisfied, but the probability
of the shaded area A in above figure is:

P {ω | (x1 < X(ω) ≤ x2) ∩ (y1 < Y (ω) ≤ y2)}

= FXY (x2, y2)− FXY (x1, y2)− FXY (x2, y1) + FXY (x1, y1)

(let x1 = 1
2
, x2 = 1, y1 = 1

4
, y2 = 3

4
)

= FXY (1,
3

4
)− FXY (

1

2
,
3

4
)− FXY (1,

1

4
) + FXY (

1

2
,
1

4
)

= 1− 1− 1 + 0

= −1

< 0 (wrong!!!)

which means that the property 7 is violated.

Therefore, above FXY (x, y) CANNOT be a valid joint distribution function...
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Properties of fXY (x, y):

1. The joint density is non-negative for all x and y:

fXY (x, y) ≥ 0

2. The volume under the joint p.d.f. is always unity:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1

3. The marginal PDF and p.d.f. of Y (ω) can respectively be obtained by the
integrations below:

FY (y) =
∫ ∞

−∞

∫ y

−∞
fXY (α, β)dβdα

fY (y) =
∫ ∞

−∞
fXY (x, y)dx

4. Similarly, the marginal PDF and p.d.f. of X(ω) can be obtained respectively
by the integrations below:

FX(x) =
∫ x

−∞

∫ ∞

−∞
fXY (α, β)dβdα

fX(x) =
∫ ∞

−∞
fXY (x, y)dy

5. The probability of a rectangle in R2-space can be calculated using the joint
p.d.f. as:

P {(x1 < X ≤ x2) ∩ (y1 < Y ≤ y2)} =
∫ x2

x1

∫ y2

y1

fXY (x, y)dydx

In general, the probability of an event such that r.v.’s X and Y mapping into
any area A in R2-space is as follows:

P {(X,Y ) ∈ A} =
∫

A

∫
fXY (x, y)dydx

Figure 5.5: Any area A in XY -plane.
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Brief proof:

1. This is because the joint PDF is non-decreasing function of x and y, and
fXY (x, y) is the derivative of FXY (x, y) w.r.t. x and y.

2. Notice that from the differentiation/integration relation of the joint PDF and
p.d.f., we have:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy ≡ FXY (∞,∞) = 1

3. From the property of the joing PDF, we know that the marginal PDF of Y is
FY (y) = FXY (∞, y), thus:

FY (y) = FXY (∞, y)

=
∫ ∞

−∞

∫ y

−∞
fXY (α, β)dβdα

Therefore, by taking the derivative of FY (y) w.r.t. y, we get the density of Y
as:

fY (y)
∆
=

d

dy
FY (y) =

∫ ∞

−∞
d

dy

{∫ y

−∞
fXY (α, β)dβ

}
dα (Leibnitz rule)

=
∫ ∞

−∞
dy

dy
· fXY (α, y)dα (Leibnitz rule)

=
∫ ∞

−∞
fXY (x, y)dx

: called “marginal density”

4. This can be proved in the same manner as in 3.

5. Assignment : Express the probability in terms of the joint PDF, and use the
relation between the joint PDF and p.d.f..
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5.1.2 Discrete random variables:

We begin with a specific example of two discrete random variables:

Example 5.2

For the two random variables X and Y defined below, find the joint probability
distribution function FXY (x, y).

S = {ω1, ω2, ω3}





X(ω1) = 1, Y (ω1) = 1

X(ω2) = 2, Y (ω2) = 1

X(ω3) = 3, Y (ω3) = 3

where P (ω1) = 0.2, P (ω2) = 0.3, and P (ω3) = 0.5.

Figure 5.6: The sample space S and r.v.’s X, Y mapping into XY -plane.

Solution:

From the definition of the joint PDF, we have:

FXY (x, y) = P {ω | (X(ω) ≤ x) ∩ (Y (ω) ≤ y)}

(i) x = 0, y = 0: FXY (0, 0) = P (φ) = 0

(ii) x = 1, y = 0: FXY (1, 0) = P (φ) = 0

(iii) x = 1, y = 1: FXY (1, 1) = P ({ω1}) = 0.2

...

...
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Let

p(x, y)
∆
= P {ω | (X(ω) = x) ∩ (Y (ω) = y)}

then, the joint PDF can be expressed as a sum of the weighted, and shifted 2-
dimensional unit step function (or surface), similary to the case of single discrete
r.v., i.e.:

FXY (x, y) = p(1, 1)u(x−1)u(y−1)+p(2, 1)u(x−2)u(y−1)+p(3, 3)u(x−3)u(y−3)

In general, if there ∃ NM points in R2-space such as (xi, yi), i = 1, 2, . . . , N, j =
1, 2, . . . , M :

Figure 5.7: NM points in XY -plane being mapped by two discrete r.v.’s X, Y .

Then, the joint PDF can be represented in the following fixed formula:

FXY (x, y) =
N∑

i=1

M∑

j=1

p(xi, yj)u(x− xi)u(y − yj)

where p(xi, yj)
∆
= P {ω | (X(ω) = xi) ∩ (Y (ω) = yj)}
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Corresponding joint p.d.f. for discrete two r.v.’s is also in the fixed form of:

fXY (x, y)
∆
=

∂2

∂x∂y
FXY (x, y)

=
∂2

∂x∂y





N∑

i=1

M∑

j=1

p(xi, yj)u(x− xi)u(y − yj)





=
N∑

i=1

M∑

j=1

p(xi, yj)
∂2

∂x∂y
{u(x− xi)u(y − yj)}

=
N∑

i=1

M∑

j=1

p(xi, yj)δ(x− xi)δ(y − yj)

where δ(·) is the Dirac delta function.

Figure 5.8: An example of the joint p.d.f. for two discrete r.v.’s X, Y .

Summary:
Given a probability space (S,F , P ), the joint PDF and the joint p.d.f. of two random
variables X and Y are as follows, regardless of whether they are continuous or discrete:





FXY (x, y)
∆
= P {ω | (X(ω) ≤ x) ∩ (Y (ω) ≤ y)}

fXY (x, y)
∆
= ∂2

∂x∂y
FXY (x, y)
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5.2 Conditional distribution and conditional den-
sity between two random variables

We now consider the concept of the conditional distribution and density functions of
a r.v. X(ω) given a value of another r.v. Y (ω), i.e. Y = y, where the joint PDF and
joint p.d.f. FXY (x, y) and fXY (x, y) are known. 1

Figure 5.9: Two r.v.’s X and Y mapping into R2-space.

Here, an element ω ∈ S maps into a point (x, y) in R2-plane via two r.v.’s X(ω) and
Y (ω) as:

X(ω) −→ x

Y (ω) −→ y

Recall:

Let two events A and B be as follows:

A = {ω | X(ω) ≤ x}

B = {ω | X(ω) ∈ R}

where R is the set of real numbers, and thus B is some kind of event related to the
r.v. Y (ω).

1The one dimensional slice(or cut) image of FXY (x, y) along the line Y = y.
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Then, the conditional distribution function and the conditional density function of
X(ω) based on the event B are defined respectively as follows:

FX|Y (x|B)
∆
= P [{X(ω) ≤ x} | B]

=
P [{ω | (X(ω) ≤ x) ∩B}]

P (B)
(5.1)

fX|Y (x|y)
∆
=

d

dx
FX|Y (x|B) (5.2)

(cf.) You may have to check that (5.1) and (5.2) are valid definitions.

Now, let the event B be specifically as:

B = {ω | y −∆y < Y (ω) ≤ y + ∆y}

Then, the conditional distribution in (5.1) becomes:

FX|Y (x|B) =
P [{ω | (X(ω) ≤ x) ∩ (y −∆y < Y (ω) ≤ y + ∆y)}]

P (ω | y −∆y < Y (ω) ≤ y + ∆y)
(5.3)

Here in (5.3), the numerator and the denominator can each be claculated as:

numerator = P [{ω | (X(ω) ≤ x) ∩ (y −∆y < Y (ω) ≤ y + ∆y)}]

=
∫ x

−∞

∫ y+∆y

y−∆y
fXY (u, v)dvdu (5.4)

and

denominator = P (ω | y −∆y < Y (ω) ≤ y + ∆y)

=
∫ y+∆y

y−∆y
fY (v)dv (5.5)
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Inserting (5.4) and (5.5) into (5.3), we get:

FX|Y (x | y −∆y < Y (ω) ≤ y + ∆y) =

∫ x
−∞

∫ y+∆y
y−∆y fXY (u, v)dvdu
∫ y+∆y
y−∆y fY (v)dv

(5.6)

Case #1: X and Y are both continuous r.v.’s

In this case, as ∆y → 0 the integrals in (5.6) can be approximated to the following
expressions by the mean value theorem:

As ∆y → 0, we have:

∫ y+∆y

y−∆y
fXY (u, v)dv = fXY (u, y) · 2∆y

∫ y+∆y

y−∆y
fY (v)dv = fY (y) · 2∆y

Figure 5.10: Approximation of integral by the mean value theorem.

Therefore, from (5.6), we get:

FX|Y (x|Y = y)
let
= FX|Y (x|y) = lim

∆y→0
FX|Y (x | y −∆y < Y (ω) ≤ y + ∆y)

=

∫ x
−∞ fXY (u, y) · 2∆y du

fY (y) · 2∆y

=

∫ x
−∞ fXY (u, y)du

fY (y)
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Also from (5.2), the conditional p.d.f. of X given Y = y is in the following form:

fX|Y (x|Y = y)
let
= fX|Y (x|y) =

d

dx
FX|Y (x|y)

=
d
dx

∫ x
−∞ fXY (u, y)du

fY (y)

=
fXY (x, y)

fY (y)
( by the Leibnitz rule)

Case #2: X and Y are both discrete r.v.’s

In this case, recall that the joint p.d.f. of X(ω) and Y (ω), and the marginal p.d.f. of
Y (ω) are in the following fixed forms:

fXY (x, y) =
N∑

i=1

M∑

j=1

p(xi, yj)δ(x− xi)δ(y − yj)

and

fY (y) =
M∑

j=1

p(yj)δ(y − yj)

Applying above two expressions to (5.6) and 5.2), we will eventually obtain the con-
ditional PDF and p.d.f. of X given Y = yk as follows:

FX|Y (x|Y = yk) =

∑N
i=1 p(xiyk)u(x− xi)

p(yk)

fX|Y (x|Y = yk) =

∑N
i=1 p(xiyk)δ(x− xi)

p(yk)

proof: assignment 2

2Or, we can directly apply (5.3) to obtain the conditional distribution function.
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Example 5.3

Given the joint p.d.f. of two r.v.’s X and Y below, find the conditional p.d.f.
of Y given X = x, i.e. fY |X(y|X = x).

fXY (x, y) =





2, 0 ≤ x ≤ y ≤ 1

0, elsewhere

Figure 5.11: The joint p.d.f. fXY (x, y).

(cf.) Notice the above fXY (x, y) satisfies the following property which is re-
quired to be a valid p.d.f.:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy =

∫ ∫

shaded area
fXY (x, y)dxdy

= 2× 1× 1× 1

2

= 1

Solution:

The conditional p.d.f. which we want to obtain is as follows:

fY |X(y|X = x) =
fXY (x, y)

fX(x)

Since we are given fXY (x, y), we must compute the marginal p.d.f. fX(x) of
X(ω) which is:

fX(x) =
∫ ∞

−∞
fXY (x, y)dy =

∫ 1

x
2dy =





2(1− x), 0 ≤ x ≤ 1

0, otherwise
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Figure 5.12: The marginal p.d.f. fX(x).

Therefore, the conditional p.d.f. becomes: 3 4

fY |X(y|X = x) =
2

2(1− x)

=





1/(1− x), (0 ≤)x ≤ y ≤ 1

undefined, otherwise

Figure 5.13: The conditional p.d.f. fY |X(y|x).

Check:

(1)
∫ ∞

−∞
fX(x)dx = 1× 2× 1

2
= 1

(2)
∫ ∞

−∞
fY |X(y|x)dy =

∫ 1

x

1

1− x
dy =

1− x

1− x
= 1

3In this expression, x is a fixed parameter, NOT a variable!!!
4The p.d.f. is not defined for the cases other than x ≤ y ≤ 1, since fX(x) = 0.
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5.3 Relationships between two random variables

5.3.1 Statistical independence

Recall: If we are given two independent events A and B, then

P (A ∩B) = P (A) · P (B)

Independent random variables:

Let X(ω) and Y (ω) be two independent 5 rnadom variables, then we have the following
relationships for the joint PDF and the conditional PDF of X(ω) and Y (ω):

(1) The joint distribution:

FXY (x, y)
∆
= P {ω | (X(ω) ≤ x) ∩ (Y (ω) ≤ y)}

let
= P{(X ≤ x)︸ ︷︷ ︸

A

∩ (Y ≤ y)︸ ︷︷ ︸
B

}

= P (X ≤ x) · P (Y ≤ y)

= FX(x) · FY (y) (5.7)

(2) The conditional distribution:

FX|Y (x|Y = y)
∆
=

P{(X ≤ x) ∩ (Y = y)}
P (Y = y)

=
P (X ≤ x) · P (Y = y)

P (Y = y)

= FX(x) (5.8)

5This means that events A and B defined by random variables X(ω) and Y (ω) respectively, are
independent!!!
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(cf.)
Above argument ia not correct in rigorous sense, since P (Y = y) = 0 for continu-

ous r.v. Y (ω). Instead, we could have derived the relation in the following way:

FX|Y (x|y) =

∫ x
−∞ fXY (u, y)du

fY (y)

=

∫ x
−∞ fX(u)du · fY (y)

fY (y)

=
∫ x

−∞
fX(u)du

= FX(x)

Differentiating (5.7) and (5.8), we can show the following relationships of the joint
p.d.f. and the conditional p.d.f. for independent r.v.’s X(ω) and Y (ω):





fXY (x, y) = fX(x) · fY (y)

fX|Y (x|y) = fX(x)

5.3.2 The correlation of random variables

Correlation:

Definition 5.3 The correlation of two random variables X(ω) and Y (ω) is denoted
and defined as the following mathematical expectation:

RXY
∆
= E [XY ] =

∫ ∞

−∞

∫ ∞

−∞
xy · fXY (x, y)dxdy
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Definition 5.4 According to the correlation RXY , we define the following relation-
ships between two r.v.’s X(ω) and Y (ω):

(1) If RXY = 0, then X(ω) and Y (ω) are said to be orthogonal.

(2) If RXY = E[X]E[Y ], then X(ω) and Y (ω) are said to be uncorrelated.

Remarks:

(i) If X and Y are independent, then X and Y are uncorrelated, but NOT vice
versa, i.e.

X and Y are independent
O−→ X and Y are uncorrelated

( . . . )
X←− ( . . . )

(ii) Be careful with the definition of the “uncorrelatedness”, i.e. notice that:

RXY = 0 does NOT indicate that X and Y are uncorrelated!!!

(cf.) Do not be confused between independence and uncorrelatedness.

Covariance:

Definition 5.5 The covariance of two random variables X(ω) and Y (ω) is denoted
and defined as the following joint central moment:

CXY
∆
= E [(X −mX)(Y −mY )] =

∫ ∞

−∞

∫ ∞

−∞
(x−mX)(y −mY ) · fXY (x, y)dxdy

Note:
The uncorrelatedness between teo r.v.’s X and Y can be defined interms of the co-
variance as follows:

If the covariance of X and Y is CXY = 0, then X and Y are uncorrelated

proof: assignment(easy!)
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Correlation coefficient:

Definition 5.6 The correlation coefficient of two random variables X(ω) and Y (ω)
is denoted and defined as the following normalized joint central moment:

ρXY
∆
= E

[(
X −mX

σX

) (
Y −mY

σY

)]
=

CXY

σXσY

FACT: The maginitude of the correlation coefficient is less than or equal to unity,
i.e.:

|ρXY | ≤ 1

Proof:
Let an expectation A defined as follows:

A
∆
= E

[
{α(X −mX) + (Y −mY )}2

]

where α is an any real number. 6

Then, since A is an expectation of a square term, it must be non-negative, i.e. A ≥ 0.
Now, we have:

A = E
[
α2(X −mX)2 + 2α(X −mX)(Y −mY ) + (Y −mY )2

]

= α2E
[
(X −mX)2

]
+ 2αE [(X −mX)(Y −mY )] + E

[
(Y −mY )2

]

= α2σ2
X + 2αCXY + σ2

Y

≥ 0 ∀ α

(should be)

Therefore, the discriminant must be as follows:

D

4
= C2

XY − σ2
Xσ2

Y ≤ 0

from which it follows:

C2
XY

σ2
Xσ2

Y

≤ 1 −→ −1 ≤ ρXY ≤ 1

6α is called the Lagrange multiplier.
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Example 5.4

Let a new random variable Y be as:

Y = cX

where c is a real constant.

Then find the mean mY , variance σ2
Y of the newly defind r.v. Y , and the

correlation coefficient ρXY between X and Y .

Solution:

(i) Mean mY :

mY = E[Y ] = E[cX] = c · E[X] = c ·mX

(ii) Variance σ2
Y :

σ2
Y = E[Y 2]−m2

Y = E[c2X2]− c2m2
X

= c2
{
E[X2]−m2

X

}

= c2σ2
X

(iii) Correlation coefficient ρXY :

The covariance CXY is:

CXY = E[(X −mX)(Y −mY )] = E(x−mX)(cX − c ·mX)]

= c · E
[
(X −mX)2

]

= c · σ2
X

Therefore, the correlation coefficient becomes:

ρXY =
CXY

σXσY

=
c · σ2

X

±c · σ2
X

= ±1

Note: Notice that depending on the sign of the constant c, ρXY respec-
tively is:





+1, if c > 0

−1, if c < 0
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Joint characteristic function:

Definition 5.7 The joint characteristic function of two randoma variables X and Y
is denoted and defined as the following mathematical expectation:

Φ(ω1, ω2)
∆
= E

[
ej(ω1X+ω2Y )

]

=
∫ ∞

−∞

∫ ∞

−∞
ej(ω1x+ω2y)fXY (x, y)dxdy

Note:

(i) The definition of joint characteristic function is similar to the two dimensional
inverse Fourier transform.

(ii) Based on the similarity mentioned in (i), the joint p.d.f. fXY (x, y) can be
obtained from Φ(ω1, ω2) as :

fXY (x, y) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Φ(ω1, ω2)e

−j(ω1x+ω2y)dω1dω2

(iii) If two r.v.’s X and Y are independent, then the joint characteristic function
becomes:

Φ(ω1, ω2) = ΦX(ω1) · ΦY (ω2)

proof: assignment
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5.4 Sum of two random variables

5.4.1 The distribution and density functions

Let X and Y be two (independent) random variables, and suppose the joint and
marginal p.d.f.’s fXY (x, y), fX(x), and fY (y) are given. Define a new random variable
W as the sum of the given two r.v.’s, i.e.:

W
∆
= X + Y

Then, determine the probability distribution and density functions FW (w) and fW (w)
of the newly defined r.v. W .

1. The PDF FW (w):

FW (w) = P [W ≤ w]

= P [X + Y ≤ w]

=
∫ ∞

−∞

∫ w−y

−∞
fXY (x, y)dxdy

=
∫ ∞

−∞
fY (y)

{∫ w−y

−∞
fX(x)dx

}
dy ( if X and Y are independent)

Figure 5.14: The integration region in the order of x and y.
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(cf.) If we reverse the order of integration we could get another expression or
formula as follows;

FW (w) =
∫ ∞

−∞

∫ w−x

−∞
fXY (x, y)dydx

=
∫ ∞

−∞
fX(x)

{∫ w−x

−∞
fY (y)dy

}
dx ( if X and Y are independent)

Figure 5.15: The integration region in the order of y and x.

2. The p.d.f. fW (w):

fW (w) =
d

dw
FW (w)

=
d

dw

∫ ∞

−∞

∫ w−y

−∞
fXY (x, y)dxdy

=
∫ ∞

−∞

{
d

dw

∫ w−y

−∞
fXY (x, y)dx

}
dy (by the Leibnitz rule)

=
∫ ∞

−∞
fXY (w − y, y)dy (by the Leibnitz rule)

=
∫ ∞

−∞
fX(w − y)fY (y)dy ( if X and Y are independent)

∆
= fY (w) ∗ fX(w)

: CONVOLUTION INTEGRAL

(cf.) If we reverse the order of integration we could get another expression or
formula for the case of independent X and Y as follows;

fW (w) =
∫ ∞

−∞
fX(x)fY (w − x)dx

∆
= fX(w) ∗ fY (w)
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Example 5.5

We are given two independent r.v.’s X(ω) and Y (ω), whose p.d.f.’s are as follows:

fX(x) =
1

a
{u(x)− u(x− a)}

fY (y) =
1

b
{u(x)− u(x− b)}

where b > a. That is; X and Y are uniformly distributed in the intervals of
[0, a) and [0, b) respectively, i.e. X ∼ U [0, a) and Y ∼ U [0, b) .

Then, find the p.d.f. of a new random variable defined as the sum of X amd Y :

W
∆
= X + Y

Figure 5.16: The p.d.f. fX(x) and fY (y).

Solution:

The p.d.f. fW (w) is the convolution of fY (w) and fX(w), since X and Y are
independent:

fW (w) = fY (w) ∗ fX(w) =
∫ ∞

−∞
fY (y)fX(w − y)dy

Figure 5.17: The convolution fW (w) = fY (w) ∗ fX(w).
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(i) w < 0:

fW (w) = 0

(ii) 0 ≤ w < a:

fW (w) =
∫ w

0

1

a
· 1

b
dy =

1

ab
w

(iii) a ≤ w < b:

fW (w) =
∫ w

w−a

1

a
· 1

b
dy =

1

ab
(w − w + a) =

1

b

(iv) b ≤ w < a + b:

fW (w) =
∫ b

w−a

1

a
· 1

b
dy =

1

ab
(b− w + a) = −w

ab
+

a + b

ab

(v) w ≥ a + b:

fW (w) = 0

Figure 5.18: The p.d.f. fW (w).

(cf.)

(1) Note that the integration of fW (w) over the entire real line is unity:

∫ ∞

−∞
fW (w)dw =

a

b
+

b− a

b
= 1

(2) Try fW (w) = fX(w) ∗ fY (w), and see if you get the same result.

: assignment
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5.4.2 The characteristic function

Suppose we define a new r.v. Z as the sum of two independent r.v.’s X and Y as:

Z
∆
= X + Y

Then, the characteristic function of the newly defined r.v. Z becomes:

ΦZ(ω)
∆
= E

[
ejωZ

]

= E
[
ejω(X+Y )

]

=
∫ ∞

−∞

∫ ∞

−∞
ejω(x+y)fXY (x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
ejωx · ejωyfX(x) · fY (y)dxdy (since X and Y are indep.)

=
∫ ∞

−∞
ejωxfX(x)dx ·

∫ ∞

−∞
ejωyfY (y)dy

∆
= ΦX(ω) · ΦY (ω)

(cf.) Note that ΦZ(ω) is a one dimensional function of ω, NOT a joint characteristic
function: do not be confused!!!

Remark:
Notice that fX(x) and fY (y) play similar roles of the input signals and the impulse re-
sponse of an LTI system, and ΦX(ω) and ΦY (ω) play roles of their Fourier transforms
(i.e. F.T of the input signals and the system’s transfer function.)
: All under the assumption that X and Y are independent!!!

Figure 5.19: The sum of two independent r.v.’s vs. an LTI system.

fZ = fX ∗ fY

ΦZ = ΦX · ΦY

where ΦX(ω) =
∫ ∞

−∞
fX(x)ejωxdx
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5.5 Generalization to multiple random variables

We can now generalize the concepts discussed in the previous section to the multiple
(i.e. more that three r.v.’s) random variable case.

For a probability space (S,F , P ), we are given N random variables, X1(ω), X2(ω),
. . . . . . , XN(ω) mapping into a point in RN -space as follows:

Figure 5.20: The sum of two independent r.v.’s vs. an LTI system.

NOTE:
This generalization will be the foundation of formulating the concept of the random
process in later section!!!

1. The joint probability distribution function:

Definition 5.8 The joint probability distribution function of N random variables
X1, X2, . . . , XN is denoted and defined as the followng probability:

FN(x1, x2, . . . , xN)
∆
= P {ω | (X1(ω) ≤ x1) ∩ (X2(ω) ≤ x2) ∩ · · · (XN(ω) ≤ xN)}

= P

{
N⋂

i=1

(Xi(ω) ≤ xi)

}
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2. The joint probability density function:

Definition 5.9 The corresponding joint probability density function of N random
variables X1, X2, . . . , XN is denoted and defined as follows:

fN(x1, x2, . . . , xN)
∆
=

∂N

∂x1∂x2 · · · ∂xN

FN(x1, x2, . . . , xN)

(cf.)
Notice that the joint PDF and the joint p.d.f. of N r.v.’s are related by integra-
tion/differentiation:

FN(x1, x2, . . . , xN) =
∫ x1

−∞

∫ x2

−∞
· · ·

∫ xN

−∞
fN(α1, α2, . . . , αN)dα1dα2 · · · dαN

3. Properties of the joint probability distribution function:

(1) FN(x1, x2, . . . , xN) is non-decreasing function of each of its argument.

(2) FN(x1, x2, . . . , xN) is right-hand continuous in each of its argument, i.e.:

lim
εk→0, εk>0

FN(x1 + ε1, x2 + ε2, . . . , xN + εN) = FN(x1, x2, . . . , xN)

(3) If any one of the arguments is at −∞, the joint PDF is zero, i.e.:

FN(x1, x2, . . . , xN) = 0 if any xk → −∞

And, of course we have:

FN(−∞,−∞, . . . ,−∞) = 0

(4) The joint PDF is unity when all of the arguments are at ∞, i.e.:

FN(∞,∞, . . . ,∞) = 1

(5) The marginal distribution function can be obtained as follows:

FK(x1, x2, . . . , xK) = FN(x1, x2, . . . , xK ,∞,∞, . . . ,∞), where K < N
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4. Conditional distribution and density functions:

Definition 5.10 Among the N given random variables, the conditional probability
distribution function of K r.v.’s (where K < N), given N − K remainig r.v.’s is
obtained as follows:

FK(x1, x2, . . . , xK | xK+1, . . . , xN)

=

∫ x1
−∞

∫ x2
−∞ · · ·

∫ xK
−∞ fN(α1, α2, . . . , αK , xK+1, . . . , xN)dα1dα2 · · · dαK

fN−K(xK+1, . . . , xN)

Definition 5.11 Corresponding conditional probability density function of K r.v.’s
(where K < N), given N −K remainig r.v.’s among total of N rnadom variables is
then obtained as :

fK(x1, x2, . . . , xK | xK+1, . . . , xN) =
fN(x1, x2, . . . . . . . . . , xN)

fN−K(xK+1, . . . , xN)
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