Contents

5	Mu	ltiple Random Variables	102
	5.1	Two random variables	102
		5.1.1 Continuous random variables:	102
		5.1.2 Discrete random variables:	110
	5.2	Conditional distribution and conditional density between two random	
		variables	113
	5.3	Relationships between two random variables	119
		5.3.1 Statistical independence	119
		5.3.2 The correlation of random variables	120
	5.4	Sum of two random variables	125
		5.4.1 The distribution and density functions	125
		5.4.2 The characteristic function	129
	5.5	Generalization to multiple random variables	130

Chapter 5

Multiple Random Variables

5.1 Two random variables

5.1.1 Continuous random variables:

We are given a probability space (S, \mathcal{F}, P) , and we define two random variables $X(\omega)$ and $Y(\omega)$ as follows:

Figure 5.1: Two r.v.'s $X(\omega)$ and $Y(\omega)$ mapping into R^2 -plane.

(cf.)

Note that for the case of two random variables, each element $\omega \in S$ is being mapped into a point in the R^2 -plane, whereas a single r.v. maps each $\omega \in S$ into a point on R^1 -line!!!

Definition 5.1 The joint probability distribution function of two random variables $X(\omega)$ and $Y(\omega)$ is denoted and defined as follows:

$$F_{XY}(x,y) \stackrel{\Delta}{=} P\{\omega \mid (X(\omega) \le x) \cap (Y(\omega) \le y)\}$$

Figure 5.2: The event defining the joint PDF $F_{XY}(x, y)$.

Note:

- (i) The event defining the joint PDF is in area.
- (ii) $F_{XY}(x,y)$ is a 2-dimensional surface as a function of x, and y on the xy-plane.
- (iii) Recall the definition of PDF for a single r.v. ∋:

$$F_X(x) \stackrel{\Delta}{=} P\left\{\omega \mid X(\omega) \le x\right\}$$

where the event defining the PDF is in *interval*.

Definition 5.2 The joint probability density function of two random variables $X(\omega)$ and $Y(\omega)$ is denoted and defined as follows:

$$f_{XY}(x,y) \stackrel{\Delta}{=} \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

Remark: Notice that the relationship between the joint PDF and the joint p.d.f. is differentiation/integration, and thus the joint PDF can be expressed in terms of the joint p.d.f. as follows:

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(\alpha,\beta) d\alpha d\beta$$

Properties of $F_{XY}(x,y)$:

1. $F_{XY}(x,y)$ in both of x and y at $-\infty$ is zero:

$$F_{XY}(-\infty, -\infty) = 0$$

2. $F_{XY}(x,y)$ in one of x or y at $-\infty$ is also zero:

$$F_{XY}(x, -\infty) = F_{XY}(-\infty, y) = 0 \quad \forall x, y$$

3. $F_{XY}(x,y)$ in both of x and y at ∞ is unity:

$$F_{XY}(\infty,\infty)=1$$

4. If we let one of x or y be ∞ , we get the PDF of y and x respectively, i.e.:

$$F_{XY}(x,\infty) = F_X(x)$$

$$F_{XY}(\infty, y) = F_Y(y)$$

and we call these PDF's the "marginal dsitributions".

- 5. $F_{XY}(x, y)$ is a non-decreasing function of x and y.
- 6. $F_{XY}(x, y)$ is right-hand continuous in both of x and y.
- 7. For $F_{XY}(x,y)$ to be a valid joint PDF, it must satisfy the following inequality:

$$F_{XY}(x_2, y_2) - F_{XY}(x_1, y_2) - F_{XY}(x_2, y_1) + F_{XY}(x_1, y_1) \ge 0$$

$$\forall x_2 \ge x_1, \ y_2 \ge y_1$$

Brief proof:

1. Notice that:

$$F_{XY}(-\infty, -\infty) = P\left\{ (X \le -\infty) \cap (Y \le -\infty) \right\} = P\left(\phi \cap \phi\right) = P(\phi) = 0$$

2. We have:

$$F_{XY}(x, -\infty) = P\{(X \le x) \cap (Y \le -\infty)\} = P\{(X \le x) \cap \phi\} = P(\phi) = 0$$
 and

$$F_{XY}(-\infty, y) = P\{(X \le -\infty) \cap (Y \le y)\} = P\{\phi \cap (Y \le y)\} = P(\phi) = 0$$

3. This is so since:

$$F_{XY}(\infty, \infty) = P\left\{ (X \le \infty) \cap (Y \le \infty) \right\} = P\left(S \cap S \right) = P(S) = 1$$

4. Notice that:

$$F_{XY}(x,\infty) = P \{ \omega \mid (X(\omega) \le x) \cap (Y(\omega) \le \infty) \}$$

$$= P \{ \omega \mid (X(\omega) \le x) \cap S \}$$

$$= P \{ \omega \mid X(\omega) \le x \}$$

$$\triangleq F_X(x)$$

Similarly, we can prove that $F_{XY}(\infty, y) = F_Y(y)$ as well.

- 5. This is implicitly indicated in the process of proving the property 7 below.
- 6. We omit, but you can prove this property in a similar way as in the case of single random variable, and the property is due to the inequality $sign(\leq)$ in the definition of the joint PDF. If we had defined it using the strict inequality sign(<), it would have been *left-hand continuous*.

7. From the figure below, we have the following probability of the shaded area:

Figure 5.3: The range space of X and Y.

$$P\{\omega \mid (x_{1} < X(\omega) \leq x_{2}) \cap (y_{1} < Y(\omega) \leq y_{2})\}\$$

$$= P\{\omega \mid (X(\omega) \leq x_{2}) \cap (Y(\omega) \leq y_{2})\} - P\{\omega \mid (X(\omega) \leq x_{1}) \cap (Y(\omega) \leq y_{2})\}\$$

$$-P\{\omega \mid (X(\omega) \leq x_{2}) \cap (Y(\omega) \leq y_{1})\} + P\{\omega \mid (X(\omega) \leq x_{1}) \cap (Y(\omega) \leq y_{1})\}\$$

$$\triangleq F_{XY}(x_{2}, y_{2}) - F_{XY}(x_{1}, y_{2}) - F_{XY}(x_{2}, y_{1}) + F_{XY}(x_{1}, y_{1})$$

$$\geq 0 \quad \text{(from the axiom } \#1 \text{ of probability } \ni: P(\cdot) \geq 0)$$

(cf.) Notice that we have implicitly used the fact that the *disjoint* areas in R^2 -space correspond to the *mutually exclusive* events!!!

Example 5.1

Is $F_{XY}(x,y)$ given below a valid joint PDF?

$$F_{XY}(x,y) = \begin{cases} 0, & x < 0, \text{ or } x + y < 1 \text{ or } y < 0 \\ 1, & \text{elsewhere} \end{cases}$$

Figure 5.4: $F_{XY}(x, y)$ in xy-plane.

Solution:

We can check that all the properties from 1 to 6 are satisfied, but the probability of the shaded area A in above figure is:

$$P\left\{\omega \mid (x_{1} < X(\omega) \leq x_{2}) \cap (y_{1} < Y(\omega) \leq y_{2})\right\}$$

$$= F_{XY}(x_{2}, y_{2}) - F_{XY}(x_{1}, y_{2}) - F_{XY}(x_{2}, y_{1}) + F_{XY}(x_{1}, y_{1})$$

$$(\text{let } x_{1} = \frac{1}{2}, \quad x_{2} = 1, \quad y_{1} = \frac{1}{4}, \quad y_{2} = \frac{3}{4})$$

$$= F_{XY}(1, \frac{3}{4}) - F_{XY}(\frac{1}{2}, \frac{3}{4}) - F_{XY}(1, \frac{1}{4}) + F_{XY}(\frac{1}{2}, \frac{1}{4})$$

$$= 1 - 1 - 1 + 0$$

$$= -1$$

$$< 0 \quad (\text{wrong!!!})$$

which means that the property 7 is violated.

Therefore, above $F_{XY}(x,y)$ CANNOT be a valid joint distribution function...

Properties of $f_{XY}(x,y)$:

1. The joint density is non-negative for all x and y:

$$f_{XY}(x,y) \ge 0$$

2. The volume under the joint p.d.f. is always unity:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

3. The **marginal** PDF and p.d.f. of $Y(\omega)$ can respectively be obtained by the integrations below:

$$F_Y(y) = \int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{XY}(\alpha, \beta) d\beta d\alpha$$

$$f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

4. Similarly, the **marginal** PDF and p.d.f. of $X(\omega)$ can be obtained respectively by the integrations below:

$$F_X(x) = \int_{-\infty}^x \int_{-\infty}^\infty f_{XY}(\alpha, \beta) d\beta d\alpha$$

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$$

5. The probability of a rectangle in \mathbb{R}^2 -space can be calculated using the joint p.d.f. as:

$$P\{(x_1 < X \le x_2) \cap (y_1 < Y \le y_2)\} = \int_{x_1}^{x_2} \int_{y_1}^{y_2} f_{XY}(x, y) dy dx$$

In general, the probability of an event such that r.v.'s X and Y mapping into any area A in \mathbb{R}^2 -space is as follows:

$$P\{(X,Y) \in A\} = \int_A \int f_{XY}(x,y) dy dx$$

Figure 5.5: Any area A in XY-plane.

Brief proof:

- 1. This is because the joint PDF is non-decreasing function of x and y, and $f_{XY}(x,y)$ is the derivative of $F_{XY}(x,y)$ w.r.t. x and y.
- 2. Notice that from the differentiation/integration relation of the joint PDF and p.d.f., we have:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy \equiv F_{XY}(\infty, \infty) = 1$$

3. From the property of the joing PDF, we know that the marginal PDF of Y is $F_Y(y) = F_{XY}(\infty, y)$, thus:

$$F_Y(y) = F_{XY}(\infty, y)$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{XY}(\alpha, \beta) d\beta d\alpha$

Therefore, by taking the derivative of $F_Y(y)$ w.r.t. y, we get the density of Y as:

$$f_Y(y) \stackrel{\Delta}{=} \frac{d}{dy} F_Y(y) = \int_{-\infty}^{\infty} \frac{d}{dy} \left\{ \int_{-\infty}^{y} f_{XY}(\alpha, \beta) d\beta \right\} d\alpha \quad \text{(Leibnitz rule)}$$

$$= \int_{-\infty}^{\infty} \frac{dy}{dy} \cdot f_{XY}(\alpha, y) d\alpha \quad \text{(Leibnitz rule)}$$

$$= \int_{-\infty}^{\infty} f_{XY}(x, y) dx$$

: called "marginal density"

- 4. This can be proved in the same manner as in 3.
- 5. Assignment: Express the probability in terms of the joint PDF, and use the relation between the joint PDF and p.d.f..

5.1.2 Discrete random variables:

We begin with a specific example of two discrete random variables:

Example 5.2

For the two random variables X and Y defined below, find the joint probability distribution function $F_{XY}(x,y)$.

$$S = \{\omega_1, \omega_2, \omega_3\}$$

$$\begin{cases} X(\omega_1) = 1, & Y(\omega_1) = 1 \\ X(\omega_2) = 2, & Y(\omega_2) = 1 \\ X(\omega_3) = 3, & Y(\omega_3) = 3 \end{cases}$$

where $P(\omega_1) = 0.2$, $P(\omega_2) = 0.3$, and $P(\omega_3) = 0.5$.

Figure 5.6: The sample space S and r.v.'s X, Y mapping into XY-plane.

Solution:

From the definition of the joint PDF, we have:

$$F_{XY}(x,y) = P\left\{\omega \mid (X(\omega) \le x) \cap (Y(\omega) \le y)\right\}$$

(i)
$$x = 0$$
, $y = 0$: $F_{XY}(0,0) = P(\phi) = 0$

(ii)
$$x = 1$$
, $y = 0$: $F_{XY}(1,0) = P(\phi) = 0$

(iii)
$$x = 1, y = 1$$
: $F_{XY}(1, 1) = P(\{\omega_1\}) = 0.2$

:

:

Let

$$p(x,y) \stackrel{\Delta}{=} P\{\omega \mid (X(\omega) = x) \cap (Y(\omega) = y)\}\$$

then, the joint PDF can be expressed as a sum of the weighted, and shifted 2-dimensional unit step function (or surface), similarly to the case of single discrete r.v., i.e.:

$$F_{XY}(x,y) = p(1,1)u(x-1)u(y-1) + p(2,1)u(x-2)u(y-1) + p(3,3)u(x-3)u(y-3)$$

In general, if there $\exists NM$ points in \mathbb{R}^2 -space such as $(x_i, y_i), i = 1, 2, \dots, N, j = 1, 2, \dots, M$:

Figure 5.7: NM points in XY-plane being mapped by two discrete r.v.'s X, Y.

Then, the joint PDF can be represented in the following **fixed** formula:

$$F_{XY}(x,y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) u(x - x_i) u(y - y_j)$$

where $p(x_i, y_j) \stackrel{\Delta}{=} P\{\omega \mid (X(\omega) = x_i) \cap (Y(\omega) = y_j)\}$

Corresponding joint p.d.f. for discrete two r.v.'s is also in the fixed form of:

$$f_{XY}(x,y) \stackrel{\triangle}{=} \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)$$

$$= \frac{\partial^2}{\partial x \partial y} \left\{ \sum_{i=1}^N \sum_{j=1}^M p(x_i, y_j) u(x - x_i) u(y - y_j) \right\}$$

$$= \sum_{i=1}^N \sum_{j=1}^M p(x_i, y_j) \frac{\partial^2}{\partial x \partial y} \left\{ u(x - x_i) u(y - y_j) \right\}$$

$$= \sum_{i=1}^N \sum_{j=1}^M p(x_i, y_j) \delta(x - x_i) \delta(y - y_j)$$

where $\delta(\cdot)$ is the Dirac delta function.

Figure 5.8: An example of the joint p.d.f. for two discrete r.v.'s X, Y.

Summary:

Given a probability space (S, \mathcal{F}, P) , the joint PDF and the joint p.d.f. of two random variables X and Y are as follows, regardless of whether they are *continuous* or *discrete*:

$$\begin{cases} F_{XY}(x,y) \stackrel{\Delta}{=} P\left\{\omega \mid (X(\omega) \le x) \cap (Y(\omega) \le y)\right\} \\ f_{XY}(x,y) \stackrel{\Delta}{=} \frac{\partial^2}{\partial x \partial y} F_{XY}(x,y) \end{cases}$$

5.2 Conditional distribution and conditional density between two random variables

We now consider the concept of the conditional distribution and density functions of a r.v. $X(\omega)$ given a value of another r.v. $Y(\omega)$, i.e. Y = y, where the joint PDF and joint p.d.f. $F_{XY}(x,y)$ and $f_{XY}(x,y)$ are known. ¹

Figure 5.9: Two r.v.'s X and Y mapping into R^2 -space.

Here, an element $\omega \in S$ maps into a point (x,y) in R^2 -plane via two r.v.'s $X(\omega)$ and $Y(\omega)$ as:

$$X(\omega) \longrightarrow x$$

$$Y(\omega) \longrightarrow y$$

Recall:

Let two events A and B be as follows:

$$A = \{ \omega \mid X(\omega) \le x \}$$

$$B = \{ \omega \mid X(\omega) \in \mathcal{R} \}$$

where \mathcal{R} is the set of real numbers, and thus B is some kind of event related to the r.v. $Y(\omega)$.

The one dimensional slice(or cut) image of $F_{XY}(x,y)$ along the line Y=y.

Then, the conditional distribution function and the conditional density function of $X(\omega)$ based on the event B are defined respectively as follows:

$$F_{X|Y}(x|B) \stackrel{\Delta}{=} P\left[\{X(\omega) \le x\} \mid B\right]$$

$$= \frac{P\left[\{\omega \mid (X(\omega) \le x) \cap B\}\right]}{P(B)}$$
(5.1)

$$f_{X|Y}(x|y) \stackrel{\Delta}{=} \frac{d}{dx} F_{X|Y}(x|B)$$
 (5.2)

(cf.) You may have to check that (5.1) and (5.2) are valid definitions.

Now, let the event B be specifically as:

$$B = \{ \omega \mid y - \Delta y < Y(\omega) \le y + \Delta y \}$$

Then, the conditional distribution in (5.1) becomes:

$$F_{X|Y}(x|B) = \frac{P\left[\left\{\omega \mid (X(\omega) \le x) \cap (y - \Delta y < Y(\omega) \le y + \Delta y)\right\}\right]}{P\left(\omega \mid y - \Delta y < Y(\omega) \le y + \Delta y\right)}$$
(5.3)

Here in (5.3), the numerator and the denominator can each be claculated as:

numerator =
$$P\left[\left\{\omega \mid (X(\omega) \le x) \cap (y - \Delta y < Y(\omega) \le y + \Delta y)\right\}\right]$$

= $\int_{-\infty}^{x} \int_{y-\Delta y}^{y+\Delta y} f_{XY}(u, v) dv du$ (5.4)

and

denominator =
$$P(\omega \mid y - \Delta y < Y(\omega) \le y + \Delta y)$$

 = $\int_{y-\Delta y}^{y+\Delta y} f_Y(v) dv$ (5.5)

Inserting (5.4) and (5.5) into (5.3), we get:

$$F_{X|Y}(x \mid y - \Delta y < Y(\omega) \le y + \Delta y) = \frac{\int_{-\infty}^{x} \int_{y - \Delta y}^{y + \Delta y} f_{XY}(u, v) dv du}{\int_{y - \Delta y}^{y + \Delta y} f_{Y}(v) dv}$$
(5.6)

Case #1: X and Y are both continuous r.v.'s

In this case, as $\Delta y \to 0$ the integrals in (5.6) can be approximated to the following expressions by the **mean value theorem**:

As $\Delta y \rightarrow 0$, we have:

$$\int_{y-\Delta y}^{y+\Delta y} f_{XY}(u,v)dv = f_{XY}(u,y) \cdot 2\Delta y$$

$$\int_{y-\Delta y}^{y+\Delta y} f_Y(v) dv = f_Y(y) \cdot 2\Delta y$$

Figure 5.10: Approximation of integral by the mean value theorem.

Therefore, from (5.6), we get:

$$F_{X|Y}(x|Y=y) \stackrel{\text{let}}{=} F_{X|Y}(x|y) = \lim_{\Delta y \to 0} F_{X|Y}(x \mid y - \Delta y < Y(\omega) \le y + \Delta y)$$

$$= \frac{\int_{-\infty}^{x} f_{XY}(u, y) \cdot 2\Delta y \, du}{f_{Y}(y) \cdot 2\Delta y}$$

$$= \frac{\int_{-\infty}^{x} f_{XY}(u, y) du}{f_{Y}(y)}$$

Also from (5.2), the conditional p.d.f. of X given Y = y is in the following form:

$$\begin{split} f_{X|Y}(x|Y=y) &\stackrel{\text{let}}{=} f_{X|Y}(x|y) &= \frac{d}{dx} F_{X|Y}(x|y) \\ &= \frac{\frac{d}{dx} \int_{-\infty}^{x} f_{XY}(u,y) du}{f_{Y}(y)} \\ &= \frac{f_{XY}(x,y)}{f_{Y}(y)} & \text{(by the Leibnitz rule)} \end{split}$$

Case #2: X and Y are both discrete r.v.'s

In this case, recall that the joint p.d.f. of $X(\omega)$ and $Y(\omega)$, and the marginal p.d.f. of $Y(\omega)$ are in the following fixed forms:

$$f_{XY}(x,y) = \sum_{i=1}^{N} \sum_{j=1}^{M} p(x_i, y_j) \delta(x - x_i) \delta(y - y_j)$$

and

$$f_Y(y) = \sum_{j=1}^{M} p(y_j)\delta(y - y_j)$$

Applying above two expressions to (5.6) and 5.2), we will eventually obtain the conditional PDF and p.d.f. of X given $Y = y_k$ as follows:

$$F_{X|Y}(x|Y = y_k) = \frac{\sum_{i=1}^{N} p(x_i y_k) u(x - x_i)}{p(y_k)}$$

$$f_{X|Y}(x|Y = y_k) = \frac{\sum_{i=1}^{N} p(x_i y_k) \delta(x - x_i)}{p(y_k)}$$

proof: assignment ²

²Or, we can directly apply (5.3) to obtain the conditional distribution function.

Example 5.3

Given the joint p.d.f. of two r.v.'s X and Y below, find the conditional p.d.f. of Y given X=x, i.e. $f_{Y|X}(y|X=x)$.

$$f_{XY}(x,y) = \begin{cases} 2, & 0 \le x \le y \le 1 \\ 0, & \text{elsewhere} \end{cases}$$

Figure 5.11: The joint p.d.f. $f_{XY}(x,y)$.

(cf.) Notice the above $f_{XY}(x,y)$ satisfies the following property which is required to be a valid p.d.f.:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = \int \int_{\text{shaded area}} f_{XY}(x, y) dx dy$$
$$= 2 \times 1 \times 1 \times \frac{1}{2}$$
$$= 1$$

Solution:

The conditional p.d.f. which we want to obtain is as follows:

$$f_{Y|X}(y|X=x) = \frac{f_{XY}(x,y)}{f_X(x)}$$

Since we are given $f_{XY}(x,y)$, we must compute the marginal p.d.f. $f_X(x)$ of $X(\omega)$ which is:

$$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy = \int_{x}^{1} 2dy = \begin{cases} 2(1 - x), & 0 \le x \le 1\\ 0, & \text{otherwise} \end{cases}$$

Figure 5.12: The marginal p.d.f. $f_X(x)$.

Therefore, the conditional p.d.f. becomes: $^{3-4}$

$$f_{Y|X}(y|X=x) = \frac{2}{2(1-x)}$$

$$= \begin{cases} 1/(1-x), & (0 \le)x \le y \le 1\\ undefined, & \text{otherwise} \end{cases}$$

Figure 5.13: The conditional p.d.f. $f_{Y|X}(y|x)$.

Check:

(1)
$$\int_{-\infty}^{\infty} f_X(x) dx = 1 \times 2 \times \frac{1}{2} = 1$$

(2)
$$\int_{-\infty}^{\infty} f_{Y|X}(y|x)dy = \int_{x}^{1} \frac{1}{1-x}dy = \frac{1-x}{1-x} = 1$$

 $^{^3}$ In this expression, x is a fixed parameter, NOT a variable!!!

⁴The p.d.f. is not defined for the cases other than $x \leq y \leq 1$, since $f_X(x) = 0$.

5.3 Relationships between two random variables

5.3.1 Statistical independence

Recall: If we are given two *independent* events A and B, then

$$P(A \cap B) = P(A) \cdot P(B)$$

Independent random variables:

Let $X(\omega)$ and $Y(\omega)$ be two *independent* ⁵ rnadom variables, then we have the following relationships for the joint PDF and the conditional PDF of $X(\omega)$ and $Y(\omega)$:

(1) The joint distribution:

$$F_{XY}(x,y) \stackrel{\triangle}{=} P \{ \omega \mid (X(\omega) \le x) \cap (Y(\omega) \le y) \}$$

$$\stackrel{\text{let}}{=} P \{ \underbrace{(X \le x)}_{A} \cap \underbrace{(Y \le y)}_{B} \}$$

$$= P(X \le x) \cdot P(Y \le y)$$

$$= F_{X}(x) \cdot F_{Y}(y)$$
(5.7)

(2) The conditional distribution:

$$F_{X|Y}(x|Y=y) \stackrel{\Delta}{=} \frac{P\{(X \le x) \cap (Y=y)\}}{P(Y=y)}$$

$$= \frac{P(X \le x) \cdot P(Y=y)}{P(Y=y)}$$

$$= F_X(x)$$
(5.8)

⁵This means that events A and B defined by random variables $X(\omega)$ and $Y(\omega)$ respectively, are independent!!!

(cf.)

Above argument is not correct in rigorous sense, since P(Y = y) = 0 for continuous r.v. $Y(\omega)$. Instead, we could have derived the relation in the following way:

$$F_{X|Y}(x|y) = \frac{\int_{-\infty}^{x} f_{XY}(u, y) du}{f_{Y}(y)}$$

$$= \frac{\int_{-\infty}^{x} f_{X}(u) du \cdot f_{Y}(y)}{f_{Y}(y)}$$

$$= \int_{-\infty}^{x} f_{X}(u) du$$

$$= F_{X}(x)$$

Differentiating (5.7) and (5.8), we can show the following relationships of the joint p.d.f. and the conditional p.d.f. for *independent* r.v.'s $X(\omega)$ and $Y(\omega)$:

$$\begin{cases} f_{XY}(x,y) = f_X(x) \cdot f_Y(y) \\ f_{X|Y}(x|y) = f_X(x) \end{cases}$$

5.3.2 The correlation of random variables

Correlation:

Definition 5.3 The *correlation* of two random variables $X(\omega)$ and $Y(\omega)$ is denoted and defined as the following mathematical expectation:

$$R_{XY} \stackrel{\Delta}{=} E[XY] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \cdot f_{XY}(x,y) dxdy$$

Definition 5.4 According to the correlation R_{XY} , we define the following relationships between two r.v.'s $X(\omega)$ and $Y(\omega)$:

- (1) If $R_{XY} = 0$, then $X(\omega)$ and $Y(\omega)$ are said to be **orthogonal**.
- (2) If $R_{XY} = E[X]E[Y]$, then $X(\omega)$ and $Y(\omega)$ are said to be **uncorrelated**.

Remarks:

(i) If X and Y are *independent*, then X and Y are *uncorrelated*, but NOT vice versa, i.e.

$$X$$
 and Y are independent $\stackrel{O}{\longrightarrow}$ X and Y are uncorrelated (...)

- (ii) Be careful with the definition of the "uncorrelatedness", i.e. notice that: $R_{XY} = 0$ does NOT indicate that X and Y are uncorrelated!!!
 - (cf.) Do not be confused between *independence* and *uncorrelatedness*.

Covariance:

Definition 5.5 The *covariance* of two random variables $X(\omega)$ and $Y(\omega)$ is denoted and defined as the following joint central moment:

$$C_{XY} \stackrel{\Delta}{=} E\left[(X - m_X)(Y - m_Y) \right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - m_X)(y - m_Y) \cdot f_{XY}(x, y) dx dy$$

Note:

The uncorrelatedness between teo r.v.'s X and Y can be defined in terms of the covariance as follows:

If the covariance of X and Y is $C_{XY} = 0$, then X and Y are uncorrelated

proof: assignment(easy!)

Correlation coefficient:

Definition 5.6 The *correlation coefficient* of two random variables $X(\omega)$ and $Y(\omega)$ is denoted and defined as the following normalized joint central moment:

$$\rho_{XY} \stackrel{\Delta}{=} E\left[\left(\frac{X - m_X}{\sigma_X} \right) \left(\frac{Y - m_Y}{\sigma_Y} \right) \right] = \frac{C_{XY}}{\sigma_X \sigma_Y}$$

FACT: The maginitude of the correlation coefficient is less than or equal to unity, i.e.:

$$|\rho_{XY}| < 1$$

Proof:

Let an expectation A defined as follows:

$$A \stackrel{\Delta}{=} E \left[\left\{ \alpha (X - m_X) + (Y - m_Y) \right\}^2 \right]$$

where α is an any real number. ⁶

Then, since A is an expectation of a square term, it must be non-negative, i.e. $A \ge 0$. Now, we have:

$$A = E\left[\alpha^{2}(X - m_{X})^{2} + 2\alpha(X - m_{X})(Y - m_{Y}) + (Y - m_{Y})^{2}\right]$$

$$= \alpha^{2}E\left[(X - m_{X})^{2}\right] + 2\alpha E\left[(X - m_{X})(Y - m_{Y})\right] + E\left[(Y - m_{Y})^{2}\right]$$

$$= \alpha^{2}\sigma_{X}^{2} + 2\alpha C_{XY} + \sigma_{Y}^{2}$$

$$\geq 0 \quad \forall \alpha$$
(should be)

Therefore, the discriminant must be as follows:

$$\frac{D}{4} = C_{XY}^2 - \sigma_X^2 \sigma_Y^2 \le 0$$

from which it follows:

$$\frac{C_{XY}^2}{\sigma_X^2\sigma_Y^2} \le 1 \quad \longrightarrow \quad -1 \le \rho_{XY} \le 1$$

 $^{^{6}\}alpha$ is called the Lagrange multiplier.

Example 5.4

Let a new random variable Y be as:

$$Y = cX$$

where c is a real constant.

Then find the mean m_Y , variance σ_Y^2 of the newly defind r.v. Y, and the correlation coefficient ρ_{XY} between X and Y.

Solution:

(i) Mean m_Y :

$$m_Y = E[Y] = E[cX] = c \cdot E[X] = c \cdot m_X$$

(ii) Variance σ_V^2 :

$$\begin{split} \sigma_Y^2 &= E[Y^2] - m_Y^2 &= E[c^2 X^2] - c^2 m_X^2 \\ &= c^2 \left\{ E[X^2] - m_X^2 \right\} \\ &= c^2 \sigma_X^2 \end{split}$$

(iii) Correlation coefficient ρ_{XY} :

The covariance C_{XY} is:

$$C_{XY} = E[(X - m_X)(Y - m_Y)] = E(x - m_X)(cX - c \cdot m_X)]$$
$$= c \cdot E[(X - m_X)^2]$$
$$= c \cdot \sigma_X^2$$

Therefore, the correlation coefficient becomes:

$$\rho_{XY} = \frac{C_{XY}}{\sigma_X \sigma_Y} = \frac{c \cdot \sigma_X^2}{\pm c \cdot \sigma_X^2} = \pm 1$$

Note: Notice that depending on the sign of the constant c, ρ_{XY} respectively is:

$$\left\{ \begin{array}{ll} +1, & \quad \text{if } c > 0 \\ \\ -1, & \quad \text{if } c < 0 \end{array} \right.$$

Joint characteristic function:

Definition 5.7 The joint characteristic function of two randoma variables X and Y is denoted and defined as the following mathematical expectation:

$$\Phi(\omega_1, \omega_2) \stackrel{\Delta}{=} E\left[e^{j(\omega_1 X + \omega_2 Y)}\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j(\omega_1 x + \omega_2 y)} f_{XY}(x, y) dx dy$$

Note:

- (i) The definition of joint characteristic function is similar to the two dimensional inverse Fourier transform.
- (ii) Based on the similarity mentioned in (i), the joint p.d.f. $f_{XY}(x,y)$ can be obtained from $\Phi(\omega_1,\omega_2)$ as:

$$f_{XY}(x,y) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Phi(\omega_1, \omega_2) e^{-j(\omega_1 x + \omega_2 y)} d\omega_1 d\omega_2$$

(iii) If two r.v.'s X and Y are independent, then the joint characteristic function becomes:

$$\Phi(\omega_1, \omega_2) = \Phi_X(\omega_1) \cdot \Phi_Y(\omega_2)$$

proof: assignment

5.4 Sum of two random variables

5.4.1 The distribution and density functions

Let X and Y be two (independent) random variables, and suppose the joint and marginal p.d.f.'s $f_{XY}(x,y)$, $f_X(x)$, and $f_Y(y)$ are given. Define a new random variable W as the sum of the given two r.v.'s, i.e.:

$$W \stackrel{\Delta}{=} X + Y$$

Then, determine the probability distribution and density functions $F_W(w)$ and $f_W(w)$ of the newly defined r.v. W.

1. The PDF $F_W(w)$:

$$F_W(w) = P[W \le w]$$

$$= P[X + Y \le w]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{w-y} f_{XY}(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} f_Y(y) \left\{ \int_{-\infty}^{w-y} f_X(x) dx \right\} dy \quad (\text{if } X \text{ and } Y \text{ are independent})$$

Figure 5.14: The integration region in the order of x and y.

(cf.) If we reverse the order of integration we could get another expression or formula as follows;

$$F_W(w) = \int_{-\infty}^{\infty} \int_{-\infty}^{w-x} f_{XY}(x, y) dy dx$$

$$= \int_{-\infty}^{\infty} f_X(x) \left\{ \int_{-\infty}^{w-x} f_Y(y) dy \right\} dx \quad \text{(if } X \text{ and } Y \text{ are independent)}$$

Figure 5.15: The integration region in the order of y and x.

2. The p.d.f. $f_W(w)$:

$$f_{W}(w) = \frac{d}{dw} F_{W}(w)$$

$$= \frac{d}{dw} \int_{-\infty}^{\infty} \int_{-\infty}^{w-y} f_{XY}(x, y) dx dy$$

$$= \int_{-\infty}^{\infty} \left\{ \frac{d}{dw} \int_{-\infty}^{w-y} f_{XY}(x, y) dx \right\} dy \quad \text{(by the Leibnitz rule)}$$

$$= \int_{-\infty}^{\infty} f_{XY}(w - y, y) dy \quad \text{(by the Leibnitz rule)}$$

$$= \int_{-\infty}^{\infty} f_{X}(w - y) f_{Y}(y) dy \quad \text{(if } X \text{ and } Y \text{ are independent)}$$

$$\stackrel{\triangle}{=} f_{Y}(w) * f_{X}(w)$$

: CONVOLUTION INTEGRAL

(cf.) If we reverse the order of integration we could get another expression or formula for the case of independent X and Y as follows;

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx \stackrel{\Delta}{=} f_X(w) * f_Y(w)$$

Example 5.5

We are given two independent r.v.'s $X(\omega)$ and $Y(\omega)$, whose p.d.f.'s are as follows:

$$f_X(x) = \frac{1}{a} \{ u(x) - u(x - a) \}$$

$$f_Y(y) = \frac{1}{b} \{ u(x) - u(x - b) \}$$

where b > a. That is; X and Y are uniformly distributed in the intervals of [0, a) and [0, b) respectively, i.e. $X \sim U[0, a)$ and $Y \sim U[0, b)$.

Then, find the p.d.f. of a new random variable defined as the sum of X amd Y:

$$W \stackrel{\Delta}{=} X + Y$$

Figure 5.16: The p.d.f. $f_X(x)$ and $f_Y(y)$.

Solution:

The p.d.f. $f_W(w)$ is the convolution of $f_Y(w)$ and $f_X(w)$, since X and Y are independent:

$$f_W(w) = f_Y(w) * f_X(w) = \int_{-\infty}^{\infty} f_Y(y) f_X(w - y) dy$$

Figure 5.17: The convolution $f_W(w) = f_Y(w) * f_X(w)$.

(i) w < 0:

$$f_W(w) = 0$$

(ii) $0 \le w < a$:

$$f_W(w) = \int_0^w \frac{1}{a} \cdot \frac{1}{b} dy = \frac{1}{ab} w$$

(iii) $a \le w < b$:

$$f_W(w) = \int_{w-a}^{w} \frac{1}{a} \cdot \frac{1}{b} dy = \frac{1}{ab}(w - w + a) = \frac{1}{b}$$

(iv) $b \le w < a + b$:

$$f_W(w) = \int_{w-a}^{b} \frac{1}{a} \cdot \frac{1}{b} dy = \frac{1}{ab} (b - w + a) = -\frac{w}{ab} + \frac{a+b}{ab}$$

(v) $w \ge a + b$:

$$f_W(w) = 0$$

Figure 5.18: The p.d.f. $f_W(w)$.

(cf.)

(1) Note that the integration of $f_W(w)$ over the entire real line is unity:

$$\int_{-\infty}^{\infty} f_W(w)dw = \frac{a}{b} + \frac{b-a}{b} = 1$$

(2) Try $f_W(w) = f_X(w) * f_Y(w)$, and see if you get the same result. : assignment

5.4.2 The characteristic function

Suppose we define a new r.v. Z as the sum of two independent r.v.'s X and Y as:

$$Z \stackrel{\Delta}{=} X + Y$$

Then, the characteristic function of the newly defined r.v. Z becomes:

$$\Phi_{Z}(\omega) \stackrel{\triangle}{=} E\left[e^{j\omega Z}\right]
= E\left[e^{j\omega(X+Y)}\right]
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j\omega(x+y)} f_{XY}(x,y) dx dy
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{j\omega x} \cdot e^{j\omega y} f_{X}(x) \cdot f_{Y}(y) dx dy \text{ (since } X \text{ and } Y \text{ are indep.)}
= \int_{-\infty}^{\infty} e^{j\omega x} f_{X}(x) dx \cdot \int_{-\infty}^{\infty} e^{j\omega y} f_{Y}(y) dy
\stackrel{\triangle}{=} \Phi_{X}(\omega) \cdot \Phi_{Y}(\omega)$$

(cf.) Note that $\Phi_Z(\omega)$ is a one dimensional function of ω , NOT a joint characteristic function: do not be confused!!!

Remark:

Notice that $f_X(x)$ and $f_Y(y)$ play similar roles of the input signals and the impulse response of an LTI system, and $\Phi_X(\omega)$ and $\Phi_Y(\omega)$ play roles of their Fourier transforms (i.e. F.T of the input signals and the system's transfer function.)

: All under the assumption that X and Y are independent!!!

Figure 5.19: The sum of two independent r.v.'s vs. an LTI system.

$$f_Z = f_X * f_Y$$

$$\Phi_Z = \Phi_X \cdot \Phi_Y$$
 where
$$\Phi_X(\omega) = \int_{-\infty}^{\infty} f_X(x) e^{j\omega x} dx$$

5.5 Generalization to multiple random variables

We can now generalize the concepts discussed in the previous section to the multiple (i.e. more that three r.v.'s) random variable case.

For a probability space (S, \mathcal{F}, P) , we are given N random variables, $X_1(\omega)$, $X_2(\omega)$,, $X_N(\omega)$ mapping into a point in \mathbb{R}^N -space as follows:

Figure 5.20: The sum of two independent r.v.'s vs. an LTI system.

NOTE:

This generalization will be the foundation of formulating the concept of the **random process** in later section!!!

1. The joint probability distribution function:

Definition 5.8 The joint probability distribution function of N random variables X_1, X_2, \ldots, X_N is denoted and defined as the following probability:

$$F_N(x_1, x_2, \dots, x_N) \stackrel{\Delta}{=} P\left\{\omega \mid (X_1(\omega) \le x_1) \cap (X_2(\omega) \le x_2) \cap \dots (X_N(\omega) \le x_N)\right\}$$

$$= P\left\{\bigcap_{i=1}^N (X_i(\omega) \le x_i)\right\}$$

2. The joint probability density function:

Definition 5.9 The corresponding joint probability density function of N random variables X_1, X_2, \ldots, X_N is denoted and defined as follows:

$$f_N(x_1, x_2, \dots, x_N) \stackrel{\Delta}{=} \frac{\partial^N}{\partial x_1 \partial x_2 \cdots \partial x_N} F_N(x_1, x_2, \dots, x_N)$$

(cf.)

Notice that the joint PDF and the joint p.d.f. of N r.v.'s are related by integration/differentiation:

$$F_N(x_1, x_2, \dots, x_N) = \int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \cdots \int_{-\infty}^{x_N} f_N(\alpha_1, \alpha_2, \dots, \alpha_N) d\alpha_1 d\alpha_2 \cdots d\alpha_N$$

3. Properties of the joint probability distribution function:

- (1) $F_N(x_1, x_2, \dots, x_N)$ is non-decreasing function of each of its argument.
- (2) $F_N(x_1, x_2, \dots, x_N)$ is right-hand continuous in each of its argument, i.e.:

$$\lim_{\epsilon_{L} \to 0, \ \epsilon_{L} > 0} F_{N}(x_{1} + \epsilon_{1}, x_{2} + \epsilon_{2}, \dots, x_{N} + \epsilon_{N}) = F_{N}(x_{1}, x_{2}, \dots, x_{N})$$

(3) If any one of the arguments is at $-\infty$, the joint PDF is zero, i.e.:

$$F_N(x_1, x_2, \dots, x_N) = 0$$
 if any $x_k \to -\infty$

And, of course we have:

$$F_N(-\infty, -\infty, \dots, -\infty) = 0$$

(4) The joint PDF is unity when all of the arguments are at ∞ , i.e.:

$$F_N(\infty,\infty,\ldots,\infty)=1$$

(5) The marginal distribution function can be obtained as follows:

$$F_K(x_1, x_2, ..., x_K) = F_N(x_1, x_2, ..., x_K, \infty, \infty, ..., \infty),$$
 where $K < N$

4. Conditional distribution and density functions:

Definition 5.10 Among the N given random variables, the conditional probability distribution function of K r.v.'s (where K < N), given N - K remaining r.v.'s is obtained as follows:

$$F_K(x_1, x_2, \dots, x_K \mid x_{K+1}, \dots, x_N)$$

$$= \frac{\int_{-\infty}^{x_1} \int_{-\infty}^{x_2} \dots \int_{-\infty}^{x_K} f_N(\alpha_1, \alpha_2, \dots, \alpha_K, x_{K+1}, \dots, x_N) d\alpha_1 d\alpha_2 \dots d\alpha_K}{f_{N-K}(x_{K+1}, \dots, x_N)}$$

Definition 5.11 Corresponding conditional probability density function of K r.v.'s (where K < N), given N - K remaining r.v.'s among total of N rnadom variables is then obtained as:

$$f_K(x_1, x_2, \dots, x_K \mid x_{K+1}, \dots, x_N) = \frac{f_N(x_1, x_2, \dots, x_N)}{f_{N-K}(x_{K+1}, \dots, x_N)}$$