Contents

6 Operations on Multiple Random Variables 133
6.1 Expected value of a function of random variables 133
6.2 Transformation of multiple random variables 135
6.3 Estimation theory 141

Chapter 6

Operations on Multiple Random Variables

6.1 Expected value of a function of random variables

The expected value of a function of N random variavles $X_{1}, X_{2}, \ldots, X_{N}$ can be calculated by the following integration:

$$
E\left[g\left(X_{1}, X_{2}, \ldots, X_{N}\right)\right]=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g\left(x_{1}, x_{2}, \ldots, x_{N}\right) d x_{1} d x_{2} \cdots d x_{N}
$$

Note:

Notice that if we are interested only in calculating the mathematical expectation of $g\left(X_{1}, X_{2}, \ldots, X_{N}\right)$, we do NOT have to compute the joint p.d.f. $f_{Y}(y)$ of the newly defined random variable $Y=g\left(X_{1}, X_{2}, \ldots, X_{N}\right)$ and apply the definition of the mathematical expectation as:

$$
E[Y] \triangleq \int_{-\infty}^{\infty} y \cdot f_{Y}(y) d y
$$

Based on the above fact, we can define the joint moments, joint central moments, and so on, similarly to the case of single random variable. We will discuss some special cases of multiple random variables, and the generalization to the case of N random variables is left to you!!!

1. Joint moment:

Definition 6.1 For N given random variables $X_{1}, X_{2}, \ldots, X_{N}$, the joint moment of 4 random variables X_{q}, X_{r}, X_{s} and X_{t} is denoted and deined as follows:

$$
\begin{aligned}
m_{q, r, s, t}^{k, l, m, n} & \triangleq E\left[X_{q}^{k} X_{r}^{l} X_{s}^{m} X_{t}^{n}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{q}^{k} x_{r}^{l} x_{s}^{m} x_{t}^{n} f_{4}\left(x_{q}, x_{r}, x_{s}, x_{t}\right) d x_{q} d x_{r} d x_{s} d x_{t}
\end{aligned}
$$

In the above definition, $f_{4}\left(x_{q}, x_{r}, x_{s}, x_{t}\right)$ corresponds to themarginal probability density function of 4 random variables X_{q}, X_{r}, X_{s} and X_{t}, which could be obtained by integrating the joint p.d.f. $f_{N}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ with respect to the remaining $N-4$ random variables:

$$
f_{4}\left(x_{q}, x_{r}, x_{s}, x_{t}\right)=\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_{N}\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{N}\right) d x_{1} d x_{2} \ldots d x_{i} \ldots d x_{N}
$$

where $x_{i} \neq x_{q}, x_{r}, x_{s}, x_{t}$.

2. Joint central moment:

Definition 6.2 For N given random variables $X_{1}, X_{2}, \ldots, X_{N}$, the joint moment of two random variables X_{q} and X_{m} is denoted and deined as follows:

$$
\mu_{q, m}^{k, l} \triangleq E\left[\left(X_{q}-m_{q}^{1}\right)^{k}\left(X_{m}-m_{m}^{1}\right)^{l}\right]
$$

6.2 Transformation of multiple random variables

Given N random variables $X_{1}, X_{2}, \ldots, X_{N}$, we define a new set of N random variables $Y_{1}, Y_{2}, \ldots, Y_{N}$ as functions of $\left\{X_{i}\right\}_{i=1}^{N}$, i.e.

$$
\left\{\begin{array}{c}
Y_{1} \triangleq T_{1}\left(X_{1}, X_{2}, \ldots, X_{N}\right) \\
Y_{2} \triangleq T_{2}\left(X_{1}, X_{2}, \ldots, X_{N}\right) \\
\vdots \\
Y_{N} \triangleq T_{N}\left(X_{1}, X_{2}, \ldots, X_{N}\right)
\end{array}\right.
$$

where T_{i} 's are continuous and have partial derivatives with respect to each X_{i} 's for $i=1,2, \ldots, N$.

Also assume that there \exists the inverses of the transformation T_{i} 's \ni :

$$
\left\{\begin{array}{c}
X_{1} \triangleq T_{1}^{-1}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right) \\
X_{2} \triangleq T_{2}^{-1}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right) \\
\vdots \\
X_{N} \triangleq T_{N}^{-1}\left(Y_{1}, Y_{2}, \ldots, Y_{N}\right)
\end{array}\right.
$$

\Longrightarrow This means that there is an one-to-one mapping between the X -space and the Y-space:

Figure 6.1: One-toone mapping between X -space and Y -space.

QUESTION: ${ }^{1}$
Given the joint probability density function $f_{N X}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ of $X_{1}, X_{2}, \ldots, X_{N}$, determine the corresponding joint probability density of the new set of random variables $Y_{1}, Y_{2}, \ldots, Y_{N}$, i.e. $f_{N Y}\left(y_{1}, y_{2}, \ldots, y_{N}\right)$

Review of 1-dimensional case:

For a given r.v. X, let:

$$
Y=g(X)
$$

where $g(\cdot)$ corresponds to the 1-to-1 mapping bwteen X and Y. Then, we have the following facts:
(i) Since $g(\cdot)$ is a one-to-one mapping, for a given value of y, we have:

$$
x=g^{-1}(y)
$$

(ii) ¿From the transformation $y=g(x)$, we have $d y=g^{\prime}(x) d x$ and thus:

$$
\begin{equation*}
\mathbf{d x}=\frac{d y}{g^{\prime}(x)} \triangleq|\mathbf{J}| \cdot \mathbf{d y} \tag{6.1}
\end{equation*}
$$

where $|J|$ is called the Jacobian.
(iii) ¿From (i) and (ii), following relation holds:

$$
\int_{y_{1}}^{y_{2}} f_{Y}(y) d y \equiv \int_{x_{1}}^{x_{2}} f_{X}(x) d x=\int_{g\left(x_{1}\right)}^{g\left(x_{2}\right)} f_{X}\left[g^{-1}(y)\right]|J| d y
$$

¿From which we can derive the p.d.f. of Y as follows:

$$
f_{Y}(y)=f_{X}\left[g^{-1}(y)\right]|J|
$$

[^0]Now, consider the two dimensional case, extending the concepts of the above one dimensional case:

Figure 6.2: One-to-one mapping in R^{2}-space.

Notice that:

$$
P\left\{\left(x_{1}, x_{2}\right) \in \mathcal{R}_{\S}\right\}=P\left\{\left(y_{1}, y_{2}\right) \in \mathcal{R}_{\dagger}\right\}
$$

Therefore, we have:

$$
\begin{equation*}
\iint_{\mathcal{R}_{\S}} f_{2 X}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\iint_{\mathcal{R}_{\dagger}} f_{2 Y}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \tag{6.2}
\end{equation*}
$$

Here, the relation of incremental area between the X -space and the Y -space is as follows: ${ }^{2}$

$$
d x_{1} d x_{2}=|J| d y_{1} d y_{2}
$$

where the Jacobian $|J|$ is defined as:

$$
\begin{aligned}
|J|=\text { Jacobian } & \triangleq \frac{1}{\left|\operatorname{det}\left[\begin{array}{ll}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]\right|} \\
& \stackrel{\text { let }}{\left|\operatorname{det}\left[\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right]\right|}
\end{aligned}
$$

Therefore, (6.2) becomes:

$$
\iint_{\mathcal{R}_{\dagger}} f_{2 X}\left(T_{1}^{-1}\left(y_{1}, y_{2}\right), T_{2}^{-1}\left(y_{1}, y_{2}\right)\right)|J| d y_{1} d y_{2}=\iint_{\mathcal{R}_{\dagger}} f_{2 Y}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}
$$

and the joint p.d.f. of Y_{1} and Y_{2} can be expressed as:

$$
\mathbf{f}_{2 \mathbf{Y}}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)=\mathbf{f}_{\mathbf{2}}\left(\mathbf{T}_{1}^{-1}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right), \mathbf{T}_{\mathbf{2}}^{-\mathbf{1}}\left(\mathbf{y}_{1}, \mathbf{y}_{2}\right)\right)|\mathbf{J}|
$$

[^1]Generalizing to the case of N dimension, the joint density of $Y_{1}, Y_{2}, \ldots, Y_{N}$ is in the following form:

$$
\begin{aligned}
& f_{N Y}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{N}}\right) \\
= & \mathrm{f}_{\mathbf{N X}}\left(\mathbf{T}_{1}^{-1}\left(\mathbf{y}_{1}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{N}}\right), \mathbf{T}_{\mathbf{2}}^{-1}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{N}}\right), \cdots, \mathbf{T}_{\mathbf{N}}^{-1}\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{N}}\right)\right)|\mathbf{J}|
\end{aligned}
$$

where

$$
\begin{aligned}
& |J|=\text { Jacobian } \triangleq\left|\operatorname{det}\left[\begin{array}{cccc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \cdots & \frac{\partial y_{1}}{\partial x_{N}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \cdots & \frac{\partial y_{2}}{\partial x_{N}} \\
& \vdots & & \vdots \\
\\
\frac{\partial y_{N}}{\partial x_{1}} & \frac{\partial y_{N}}{\partial x_{2}} & \cdots & \frac{\partial y_{N}}{\partial x_{N}}
\end{array}\right]\right| \\
& \stackrel{\text { let }}{=} \frac{1}{\left|\operatorname{det}\left[\frac{\partial\left(y_{1}, y_{2}, \ldots, y_{N}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{N}\right)}\right]\right|}
\end{aligned}
$$

Example 6.1

Suppose two random variables X_{1} and X_{2} have the joint p.d.f. as follows:

$$
f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}e^{-\left(x_{1}+x_{2}\right)}, & 0 \leq x_{1}, x_{2}<\infty \\ 0, & \text { elsewhere }\end{cases}
$$

A couple of new random variables Y_{1} and Y_{2} are given as functions of X_{1} and X_{2} below: ${ }^{3}$

$$
\left\{\begin{array}{l}
Y_{1}=X_{1}+X_{2} \tag{6.3}\\
Y_{2}=X_{1} / X_{2}
\end{array}\right.
$$

Determine the joint p.d.f. of Y_{1} and Y_{2}.

[^2]
Solution:

Figure 6.3: One-to-one mapping from X-space to Y-space.
Before we compute the joint p.d.f. of Y_{1} and Y_{2}, we first check that the given joing p.d.f. of X_{1} and X_{2} is a valid p.d.f., i.e.:

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-x_{1}} \cdot e^{-x_{2}} d x_{1} d x_{2} \\
& =\int_{0}^{\infty} e^{-x_{1}} d x_{1} \int_{0}^{\infty} e^{-x_{2}} d x_{2} \\
& =1 \times 1 \\
& =1
\end{aligned}
$$

Now, solving (6.3) for X_{1} and X_{2}, we get:

$$
\left\{\begin{array}{l}
X_{1}=Y_{1} Y_{2} /\left(1+Y_{2}\right) \tag{6.4}\\
X_{2}=Y_{1} /\left(1+Y_{2}\right)
\end{array}\right.
$$

and corresponding Jacobian is as follows:

$$
\begin{align*}
|J|=\frac{1}{\left|\operatorname{det}\left[\begin{array}{cc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right]\right|} & =\frac{1}{\left|\operatorname{det}\left[\begin{array}{cc}
1 & 1 \\
\frac{1}{x_{2}} & \frac{-x_{1}}{x_{2}^{2}}
\end{array}\right]\right|} \\
& =\frac{1}{\frac{x_{1}}{x_{2}^{2}}+\frac{1}{x_{2}}}=\frac{x_{2}^{2}}{x_{1}+x_{2}} \\
& =\frac{y_{1}^{2}}{\left(1+y_{2}\right)^{2}} \cdot \frac{1}{y_{1}}=\frac{y_{1}}{\left(1+y_{2}\right)^{2}} \tag{6.5}
\end{align*}
$$

¿From (6.4) and (6.5), we get:

$$
\begin{array}{rlr}
f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right) & =f_{X_{1} X_{2}}\left(x_{1}, x_{2}\right) \cdot|J| \\
& =e^{-\left(x_{1}+x_{2}\right)} \cdot \frac{x_{2}^{2}}{x_{1}+x_{2}} \\
& =e^{-\frac{y_{1} y_{2}+y_{1}}{1+y_{2}}} \cdot \frac{y_{1}}{\left(1+y_{2}\right)^{2}} & \\
& =e^{-y_{1}} \cdot \frac{y_{1}}{\left(1+y_{2}\right)^{2}} \quad \quad \text { for } 0 \leq y_{1}, y_{2}<\infty
\end{array}
$$

Check: The validity of $f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right)$ by showing the integration below:

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} \stackrel{?}{=} 1
$$

proof:

$$
\begin{aligned}
\mathrm{LHS}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{Y_{1} Y_{2}}\left(y_{1}, y_{2}\right) d y_{1} d y_{2} & =\int_{0}^{\infty} \int_{0}^{\infty} e^{-y_{1}} \cdot \frac{y_{1}}{\left(1+y_{2}\right)^{2}} d y_{1} d y_{2} \\
& =\underbrace{\int_{0}^{\infty} y_{1} e^{-y_{1}} d y_{1}}_{(1)} \cdot \underbrace{\int_{0}^{\infty} \frac{1}{\left(1+y_{2}\right)^{2}} d y_{2}}_{(2)} \\
& =1 \times 1 \\
& =1 \\
& =\text { RHS }
\end{aligned}
$$

(cf.) Derivation of the integrals (1) and (2): see below ${ }^{4}$
(1) The 1st integration by parts:

$$
\int_{0}^{\infty} y_{1} e^{-y_{1}} d y_{1}=\left[-y_{1} e^{-y_{1}}\right]_{0}^{\infty}+\int_{0}^{\infty} e^{-y_{1}} d y_{1}=\left[-e^{-y_{1}}\right]_{0}^{\infty}=1
$$

(2) The 2 nd integration by change of variable:

$$
\int_{0}^{\infty} \frac{1}{\left(1+y_{2}\right)^{2}} d y_{2}=\left[-\frac{1}{1+y_{2}}\right]_{0}^{\infty}=1
$$

6.3 Estimation theory

Suppose we have a system (or communication channel) with an input and a output:

Figure 6.4: A communication channel.

With the observation $X=x$ on our hand, we want determine the most probable value of Y which caused X :

$$
\widehat{\mathbf{Y}}=\left.\mathbf{g}(\mathbf{X})\right|_{\mathbf{X}=\mathrm{x}}
$$

: Best estimate of Y based on X

Criterion: Least Mean Squared Error (among many possible choices!)

$$
\begin{gathered}
\text { "Choose } \hat{Y} \ni: \quad e=E\left[(Y-\hat{Y})^{2}\right] \text { is minimum ", i.e. } \\
\hat{Y}=\operatorname{argmin}_{g(X)} E\left[(Y-g(X))^{2}\right]
\end{gathered}
$$

Procedure:

First, we caculate the mean squared error as follows: ${ }^{5}$

$$
\begin{aligned}
e & \triangleq E\left[(Y-\widehat{Y})^{2}\right] \\
& =E\left[(Y-g(X))^{2}\right] \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\{y-g(x)\}^{2} \cdot f_{X Y}(x, y) d x d y \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\{y-g(x)\}^{2} \cdot f_{Y \mid X}(y \mid x) \cdot f_{X}(x) d x d y \\
& =\int_{-\infty}^{\infty} f_{X}(x)\left\{\int_{-\infty}^{\infty} y^{2} f_{Y \mid X}(y \mid x) d y-2 g(x) \int_{-\infty}^{\infty} y f_{Y \mid X}(y \mid x) d y\right. \\
& =\int_{-\infty}^{\infty} f_{X}(x)\left\{E\left[Y^{2} \mid X=x\right]-2 g(x) \cdot E[Y \mid X=x]+g^{2}(x)\right\} d x \\
& =\int_{-\infty}^{\infty} f_{X \mid X}(x)\left\{E\left[Y^{2} \mid X=x\right]-2 g(x) \cdot E[Y \mid X=x]+g^{2}(x)+E^{2}[Y \mid X=x]\right. \\
& =\int_{-\infty}^{\infty} f_{X}(x)\left[\{g(x)-E[Y \mid X=x]\}^{2}+E\left[Y^{2} \mid X=x\right]-E^{2}[Y \mid X=x]\right] d x
\end{aligned}
$$

: What $g(x)$ makes the above mean squared error be minimum?

1. The best LMSEE(least mean squared error estimate): ${ }^{6}$

$$
\widehat{Y}=g(x)=E[Y \mid X=x]
$$

2. The resultant minimum mean squared error:

$$
\begin{aligned}
e_{\min }= & \int_{-\infty}^{\infty} f_{X}(x)\left\{E\left[Y^{2} \mid X=x\right]-E^{2}[Y \mid X=x]\right\} d x \\
& : \text { function of } x
\end{aligned}
$$

[^3]Best Linear Estimate: special case

The best linear estimate of Y given a value of X is in the following form:

$$
\widehat{Y}=g(X)=a X+b \quad \text { where } a, b \text { are constants }
$$

\Rightarrow We want to determine the values of a and $b \ni: E\left[(Y-\widehat{Y})^{2}\right]$ is minimum:

Procedure:

Again, we first calculate the mean squared error:

$$
\begin{align*}
e & \triangleq E\left[(Y-\hat{Y})^{2}\right] \\
& =E\left[(Y-a X-b)^{2}\right] \\
& =E\left[Y^{2}\right]+a^{2} E\left[X^{2}\right]+b^{2}-2 a E[X Y]-2 b E[Y]+2 a b E[X] \tag{6.6}
\end{align*}
$$

Now, we take the partial derivative of (6.6) with respect to a and b :

$$
\frac{\partial e}{\partial b}=2 b-2 E[Y]+2 a E[X]=0
$$

which gives ${ }^{7}$

$$
\begin{equation*}
b=E[Y]-a E[X] \tag{6.7}
\end{equation*}
$$

Inserting (6.7) into (6.6), we get;

$$
\begin{align*}
e= & E\left[Y^{2}\right]+a^{2} E\left[X^{2}\right]+\{E[Y]-a E[X]\}^{2}-2 a E[X Y]-2\{E[Y]-a E[X]\} E[Y] \\
& +2 a\{E[Y]-a E[X]\} E[X] \\
= & \left\{E\left[Y^{2}\right]-E^{2}[Y]\right\}-2 a\{E[X Y]-E[X] E[Y]\}+a^{2}\left\{E\left[X^{2}\right]-E^{2}[X]\right\} \\
\triangleq & \sigma_{Y}^{2}-2 a C_{X Y}+a^{2} \sigma_{X}^{2} \tag{6.8}
\end{align*}
$$

[^4]Now take the partial derivative of (6.8) w.r.t. a, then we get;

$$
\frac{\partial e}{\partial a}=-2 C_{X Y}+2 a \sigma_{X}^{2}=0
$$

which gives ${ }^{8}$

$$
\begin{equation*}
a=\frac{C_{X Y}}{\sigma_{X}^{2}}=\frac{\rho_{X Y} \sigma_{X} \sigma_{Y}}{\sigma_{X}^{2}}=\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}} \tag{6.9}
\end{equation*}
$$

Therefore, the best LINEAR estimator of Y given X is as follows:

$$
\begin{aligned}
\hat{Y} & =a X+b \\
& =a X+m_{Y}-a m_{X} \\
& =a\left(X-m_{X}\right)+m_{Y} \\
& =\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(X-m_{X}\right)+m_{Y}
\end{aligned}
$$

And the resultant minimum mean squared error is from (6.8);

$$
\begin{aligned}
e_{\min } & =\sigma_{Y}^{2}-2 \rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}} C_{X Y}+\rho_{X Y}^{2} \frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}} \sigma_{X}^{2} \\
& =\sigma_{Y}^{2}-2 \rho_{X Y}^{2} \sigma_{Y}^{2}+\rho_{X Y}^{2} \sigma_{Y}^{2} \\
& =\sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right)
\end{aligned}
$$

In general, when multiple observationa are available:

Figure 6.5: A multi-channel communication system.

[^5]The best estimator \hat{Y} based on multiple observations $X_{1}, X_{2}, \ldots, X_{N}$ is in the following form:

1. Non-linear estimator: $\widehat{Y}=g\left(X_{1}, X_{2}, \ldots, X_{N}\right)$

$$
\begin{aligned}
\widehat{Y} & =g\left(X_{1}, X_{2}, \ldots, X_{N}\right) \\
& =\operatorname{argmin}_{g(\underline{X})} E\left[\left\{Y-g\left(X_{1}, X_{2}, \ldots, X_{N}\right)\right\}^{2}\right]
\end{aligned}
$$

where $\underline{X}=\left(X_{1}, X_{2}, \ldots, X_{N}\right)$.

Following a similar procedure as in the case of single observation, we get:

$$
\begin{aligned}
\hat{Y} & =g\left(X_{1}, X_{2}, \ldots, X_{N}\right) \\
& =E\left[Y \mid X_{1}, X_{2}, \ldots, X_{N}\right]
\end{aligned}
$$

: conditional expectation
2. Linear estimator: $\widehat{Y}=\sum_{i=1}^{N} a_{i} X_{i}$

$$
\begin{aligned}
\widehat{Y} & =\sum_{i=1}^{N} a_{i} X_{i} \\
& =\operatorname{argmin}_{\left\{a_{i}\right\}} \underbrace{E\left[\left\{Y-\sum_{i=1}^{N} a_{i} X_{i}\right\}^{2}\right]}_{e}
\end{aligned}
$$

By taking partial derivatives of the mean squared error e w.r.t. $a_{1}, a_{2}, \ldots, a_{N}$ successively, we get;

$$
a_{i}=\rho_{i} \frac{\sigma_{Y}}{\sigma_{X_{i}}} \quad \text { where } \rho_{i}=\frac{C_{X_{i} Y}}{\sigma_{X_{i}} \sigma_{Y}}
$$

Thus, the best linear estimator becomes:

$$
\widehat{Y}=\sum_{i=1}^{N} \rho_{i} \frac{\sigma_{Y}}{\sigma_{X_{i}}} \cdot X_{i}
$$

proof: assignment

Example 6.2

Consider the following communication channel, where the input signal Y and the channel noise N are assumed to be statistically independent. Suppose we know the means and the variances of Y and N, i.e. $m_{Y}, m_{N}, \sigma_{Y}^{2}$ and σ_{N}^{2}. Then, what is the best linear estimate of Y based on the observation X ?

Figure 6.6: A communication channel with additive noise.

Solution:

We know that the best linear estimator is in the following form:

$$
\widehat{Y}=\rho_{X Y} \frac{\sigma_{Y}}{\sigma_{X}}\left(X-m_{X}\right)+m_{Y}
$$

All we need is computing m_{X}, σ_{X}, and $\rho_{X Y}$:
(i) Mean:

$$
m_{X}=E[X]=E[Y+N]=E[Y]+E[N]=m_{Y}+m_{N}
$$

(ii) Variance: ${ }^{9}$

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[X^{2}\right]-E^{2}[X] \\
& =\left\{E\left[Y^{2}\right]-m_{Y}^{2}\right\}+2 m_{Y} m_{N}+\left\{E\left[N^{2}\right]-m_{N}^{2}\right\}-2 m_{Y} m_{N} \\
& =\sigma_{Y}^{2}+\sigma_{N}^{2} \\
{ }^{9} \text { Note that } E\left[X^{2}\right]= & E\left[Y^{2}+2 Y N+N^{2}\right]=E\left[Y^{2}\right]+2 E[Y] E[N]+E\left[N^{2}\right] .
\end{aligned}
$$

(iii) Covariance:

$$
\begin{aligned}
C_{X Y} & =E\left[\left(X-m_{X}\right)\left(Y-m_{Y}\right)\right] \\
& =E[X Y]-m_{X} m_{Y} \\
& =E[(Y+N) Y]-\left(m_{Y}+m_{N}\right) m_{Y} \\
& =\left\{E\left[Y^{2}\right]-m_{Y}^{2}\right\}+E[Y] E[N]-m_{Y} m_{N} \\
& =\sigma_{Y}^{2}
\end{aligned}
$$

From which we get the correlation coefficient as:

$$
\rho_{X Y}=\frac{C_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{\sigma_{Y}}{\sigma_{X}}
$$

Therefore, the best linear estimator becomes:

$$
\begin{aligned}
\widehat{Y} & =\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}\left(X-m_{X}\right)+m_{Y} \\
& =\frac{\sigma_{Y}^{2}}{\sigma_{Y}^{2}+\sigma_{N}^{2}}\left(X-m_{Y}-m_{N}\right)+m_{Y}
\end{aligned}
$$

The corresponding minimum mean squared error is :

$$
\begin{aligned}
e_{\min } & =\sigma_{Y}^{2}\left(1-\rho_{X Y}^{2}\right) \\
& =\sigma_{Y}^{2}\left(1-\frac{\sigma_{Y}^{2}}{\sigma_{X}^{2}}\right) \\
& =\sigma_{Y}^{2}\left(1-\frac{\sigma_{Y}^{2}}{\sigma_{Y}^{2}+\sigma_{N}^{2}}\right) \\
& =\frac{\sigma_{Y}^{2} \sigma_{N}^{2}}{\sigma_{Y}^{2}+\sigma_{N}^{2}}
\end{aligned}
$$

[^0]: ${ }^{1}$ Recall that for the one dimensional case where a new random variable Y is defines as $Y=g(X)$, the p.d.f. of the newly defined Y in terms of the p.d.f $f_{X}(x)$ is as follows:

 $$
 f_{Y}(y)=\sum_{i=1}^{M} \frac{f_{X}\left(x_{i}\right)}{\left|\frac{d y}{d x}\right|_{x=x_{i}}}, \quad x_{i}=g^{-1}(y), \quad i=1,2, \ldots, M
 $$

[^1]: ${ }^{2}$ The proof of this relation is beyond the scope of this course, but if you refer the one dimensional case in (6.1), the given relationship would seem reasonable...

[^2]: ${ }^{3}$ Notice that $f_{Y_{1} Y_{2}}\left(y_{!}, y_{2}\right) \neq 0$ only if $0 \leq y_{1}, y_{2}<\infty$.

[^3]: ${ }^{5}$ Be reminded that $X=x$ is given, or observed!!!
 ${ }^{6}$ Notice that the best LMSEE is the conditional expectation of Y given $X=x$.

[^4]: ${ }^{7}$ Notice that $\frac{\partial^{2} e}{\partial b^{2}}=2>0$, which means that e is convex at the given value of b, thus providing the minimum.

[^5]: ${ }^{8}$ Notice that $\frac{\partial^{2} e}{\partial a^{2}}=2 \sigma_{X}^{2}>0$, which means that e is convex at the given value of a, thus providing the minimum.

