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Chapter 6

Operations on Multiple Random
Variables

6.1 Expected value of a function of random vari-
ables

The expected value of a function of N random variavles X1, X2, . . . , XN can be cal-
culated by the following integration:

E [g (X1, X2, . . . , XN)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(x1, x2, . . . , xN)dx1dx2 · · · dxN

Note:
Notice that if we are interested only in calculating the mathematical expectation
of g (X1, X2, . . . , XN), we do NOT have to compute the joint p.d.f. fY (y) of the
newly defined random variable Y = g(X1, X2, . . . , XN) and apply the definition of
the mathematical expectation as:

E[Y ]
∆
=

∫ ∞

−∞
y · fY (y)dy

Based on the above fact, we can define the joint moments, joint central moments, and
so on, similarly to the case of single random variable. We will discuss some special
cases of multiple random variables, and the generalization to the case of N random
variables is left to you!!!
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1. Joint moment:

Definition 6.1 For N given random variables X1, X2, . . . , XN , the joint moment of
4 random variables Xq, Xr, Xs and Xt is denoted and deined as follows:

mk,l,m,n
q,r,s,t

∆
= E

[
Xk

q X l
rX

m
s Xn

t

]

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xk

qx
l
rx

m
s xn

t f4(xq, xr, xs, xt)dxqdxrdxsdxt

In the above definition, f4(xq, xr, xs, xt) corresponds to themarginal probability den-
sity function of 4 random variables Xq, Xr, Xs and Xt, which could be obtained by
integrating the joint p.d.f.fN(x1, x2, . . . , xN) with respect to the remaining N − 4
random variables:

f4(xq, xr, xs, xt) =
∫ ∞

−∞
. . .

∫ ∞

−∞
fN(x1, x2, . . . , xi, . . . , xN)dx1dx2 . . . dxi . . . dxN

where xi 6= xq, xr, xs, xt.

2. Joint central moment:

Definition 6.2 For N given random variables X1, X2, . . . , XN , the joint moment of
two random variables Xq and Xm is denoted and deined as follows:

µk,l
q,m

∆
= E

[(
Xq −m1

q

)k (
Xm −m1

m

)l
]
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6.2 Transformation of multiple random variables

Given N random variables X1, X2, . . . , XN , we define a new set of N random variables
Y1, Y2, . . . , YN as functions of {Xi}N

i=1, i.e.





Y1
∆
= T1 (X1, X2, . . . , XN)

Y2
∆
= T2 (X1, X2, . . . , XN)

...

YN
∆
= TN (X1, X2, . . . , XN)

where Ti’s are continuous and have partial derivatives with respect to each Xi’s for
i = 1, 2, . . . , N .

Also assume that there ∃ the inverses of the transformation Ti’s 3:





X1
∆
= T−1

1 (Y1, Y2, . . . , YN)

X2
∆
= T−1

2 (Y1, Y2, . . . , YN)

...

XN
∆
= T−1

N (Y1, Y2, . . . , YN)

=⇒ This means that there is an one-to-one mapping between the X-space and the
Y-space:

Figure 6.1: One-toone mapping between X-space and Y-space.
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QUESTION: 1

Given the joint probability density function fNX(x1, x2, . . . , xN) of X1, X2, . . . , XN ,
determine the corresponding joint probability density of the new set of random vari-
ables Y1, Y2, . . . , YN , i.e. fNY (y1, y2, . . . , yN)

Review of 1-dimensional case:

For a given r.v. X, let:

Y = g(X)

where g(·) corresponds to the 1-to-1 mapping bwteen X and Y .
Then, we have the following facts:

(i) Since g(·) is a one-to-one mapping, for a given value of y, we have:

x = g−1(y)

(ii) ¿From the transformation y = g(x), we have dy = g
′
(x)dx and thus:

dx =
dy

g′(x)
∆
= |J| · dy (6.1)

where |J | is called the Jacobian.

(iii) ¿From (i) and (ii), following relation holds:

∫ y2

y1

fY (y)dy ≡
∫ x2

x1

fX(x)dx =
∫ g(x2)

g(x1)
fX

[
g−1(y)

]
|J |dy

¿From which we can derive the p.d.f. of Y as follows:

fY (y) = fX

[
g−1(y)

]
|J |

1Recall that for the one dimensional case where a new random variable Y is defines as Y = g(X),
the p.d.f. of the newly defined Y in terms of the p.d.f fX(x) is as follows:

fY (y) =
M∑

i=1

fX(xi)∣∣∣ dy
dx

∣∣∣
x=xi

, xi = g−1(y), i = 1, 2, . . . , M
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Now, consider the two dimensional case, extending the concepts of the above one
dimensional case:

Figure 6.2: One-to-one mapping in R2-space.

Notice that:

P {(x1, x2) ∈ R§} = P {(y1, y2) ∈ R†}
Therefore, we have:

∫ ∫

R§
f2X(x1, x2)dx1dx2 =

∫ ∫

R†
f2Y (y1, y2)dy1dy2 (6.2)

Here, the relation of incremental area between the X-space and the Y-space is as
follows: 2

dx1dx2 = |J |dy1dy2

where the Jacobian |J | is defined as:

|J | = Jacobian
∆
=

1
∣∣∣∣∣∣∣
det




∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2




∣∣∣∣∣∣∣

let
=

1∣∣∣det
[

∂(y1,y2)
∂(x1,x2)

]∣∣∣

Therefore, (6.2) becomes:
∫ ∫

R†
f2X

(
T−1

1 (y1, y2), T
−1
2 (y1, y2)

)
|J |dy1dy2 =

∫ ∫

R†
f2Y (y1, y2)dy1dy2

and the joint p.d.f. of Y1 and Y2 can be expressed as:

f2Y(y1,y2) = f2X

(
T−1

1 (y1,y2),T−1
2 (y1,y2)

)
|J|

2The proof of this relation is beyond the scope of this course, but if you refer the one dimensional
case in (6.1), the given relationship would seem reasonable...
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Generalizing to the case of N dimension, the joint density of Y1, Y2, . . . , YN is in the
following form:

fNY(y1,y2, . . . ,yN)

= fNX

(
T−1

1 (y1,y2, . . . ,yN),T−1
2 (y1,y2, . . . ,yN), · · · ,T−1

N (y1,y2, . . . ,yN)
)
|J|

where

|J | = Jacobian
∆
=

1∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

det




∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xN

∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xN

...
...

∂yN

∂x1

∂yN

∂x2
· · · ∂yN

∂xN




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

let
=

1∣∣∣det
[

∂(y1,y2,...,yN )
∂(x1,x2,...,xN )

]∣∣∣

Example 6.1

Suppose two random variables X1 and X2 have the joint p.d.f. as follows:

fX1X2(x1, x2) =





e−(x1+x2), 0 ≤ x1, x2 < ∞

0, elsewhere

A couple of new random variables Y1 and Y2 are given as functions of X1 and
X2 below: 3





Y1 = X1 + X2

Y2 = X1/X2

(6.3)

Determine the joint p.d.f. of Y1 and Y2.

3Notice that fY1Y2(y!, y2) 6= 0 only if 0 ≤ y1, y2 < ∞.
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Solution:

Figure 6.3: One-to-one mapping from X-space to Y -space.

Before we compute the joint p.d.f. of Y1 and Y2, we first check that the given
joing p.d.f. of X1 and X2 is a valid p.d.f., i.e.:

∫ ∞

−∞

∫ ∞

−∞
fX1X2(x1, x2)dx1dx2 =

∫ ∞

0

∫ ∞

0
e−x1 · e−x2dx1dx2

=
∫ ∞

0
e−x1dx1

∫ ∞

0
e−x2dx2

= 1× 1

= 1

Now, solving (6.3) for X1 and X2, we get:





X1 = Y1Y2/(1 + Y2)

X2 = Y1/(1 + Y2)
(6.4)

and corresponding Jacobian is as follows:

|J | = 1
∣∣∣∣∣∣∣
det




∂y1

∂x1

∂y1

∂x2

∂y2

∂x1

∂y2

∂x2




∣∣∣∣∣∣∣

=
1

∣∣∣∣∣∣∣
det




1 1

1
x2

−x1

x2
2




∣∣∣∣∣∣∣

=
1

x1

x2
2

+ 1
x2

=
x2

2

x1 + x2

=
y2

1

(1 + y2)2
· 1

y1

=
y1

(1 + y2)2
(6.5)
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¿From (6.4) and (6.5), we get:

fY1Y2(y1, y2) = fX1X2(x1, x2) · |J |

= e−(x1+x2) · x2
2

x1 + x2

= e
− y1y2+y1

1+y2 · y1

(1 + y2)2

= e−y1 · y1

(1 + y2)2
for 0 ≤ y1, y2 < ∞

Check: The validity of fY1Y2(y1, y2) by showing the integration below:
∫ ∞

−∞

∫ ∞

−∞
fY1Y2(y1, y2)dy1dy2

?
= 1

proof:

LHS =
∫ ∞

−∞

∫ ∞

−∞
fY1Y2(y1, y2)dy1dy2 =

∫ ∞

0

∫ ∞

0
e−y1 · y1

(1 + y2)2
dy1dy2

=
∫ ∞

0
y1e

−y1dy1

︸ ︷︷ ︸
(1)

·
∫ ∞

0

1

(1 + y2)2
dy2

︸ ︷︷ ︸
(2)

= 1× 1

= 1

= RHS

(cf.) Derivation of the integrals (1) and (2): see below 4

4

(1) The 1st integration by parts:
∫ ∞

0

y1e
−y1dy1 =

[−y1e
−y1

]∞
0

+
∫ ∞

0

e−y1dy1 =
[−e−y1

]∞
0

= 1

(2) The 2nd integration by change of variable:
∫ ∞

0

1
(1 + y2)2

dy2 =
[
− 1

1 + y2

]∞

0

= 1
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6.3 Estimation theory

Suppose we have a system (or communication channel) with an input and a output:

Figure 6.4: A communication channel.

With the observation X = x on our hand, we want determine the most probable
value of Y which caused X:

Ŷ = g(X)|X=x

: Best estimate of Y based on X

Criterion: Least Mean Squared Error (among many possible choices!)

“ Choose Ŷ 3: e = E
[
(Y − Ŷ )2

]
is minimum ”, i.e.

Ŷ = argming(X)E
[
(Y − g(X))2

]
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Procedure:
First, we caculate the mean squared error as follows: 5

e
∆
= E

[
(Y − Ŷ )2

]

= E
[
(Y − g(X))2

]

=
∫ ∞

−∞

∫ ∞

−∞
{y − g(x)}2 · fXY (x, y)dxdy

=
∫ ∞

−∞

∫ ∞

−∞
{y − g(x)}2 · fY |X(y|x) · fX(x)dxdy

=
∫ ∞

−∞
fX(x)

{∫ ∞

−∞
y2fY |X(y|x)dy − 2g(x)

∫ ∞

−∞
yfY |X(y|x)dy

+g2(x)
∫ ∞

−∞
fY |X(y|x)dy

}
dx

=
∫ ∞

−∞
fX(x)

{
E[Y 2|X = x]− 2g(x) · E[Y |X = x] + g2(x)

}
dx

=
∫ ∞

−∞
fX(x)

{
E[Y 2|X = x]− 2g(x) · E[Y |X = x] + g2(x) + E2[Y |X = x]

−E2[Y |X = x]
}

dx

=
∫ ∞

−∞
fX(x)

[
{g(x)− E[Y |X = x]}2 + E[Y 2|X = x]− E2[Y |X = x]

]
dx

: What g(x) makes the above mean squared error be minimum?

1. The best LMSEE(least mean squared error estimate): 6

Ŷ = g(x) = E[Y |X = x]

2. The resultant minimum mean squared error:

emin =
∫ ∞

−∞
fX(x)

{
E[Y 2|X = x]− E2[Y |X = x]

}
dx

: function of x

5Be reminded that X = x is given, or observed!!!
6Notice that the best LMSEE is the conditional expectation of Y given X = x.
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Best Linear Estimate: special case

The best linear estimate of Y given a value of X is in the following form:

Ŷ = g(X) = aX + b where a, b are constants

⇒ We want to determine the values of a and b 3: E
[
(Y − Ŷ )2

]
is minimum:

Procedure:

Again, we first calculate the mean squared error:

e
∆
= E

[
(Y − Ŷ )2

]

= E
[
(Y − aX − b)2

]

= E[Y 2] + a2E[X2] + b2 − 2aE[XY ]− 2bE[Y ] + 2abE[X] (6.6)

Now, we take the partial derivative of (6.6) with respect to a and b:

∂e

∂b
= 2b− 2E[Y ] + 2aE[X] = 0

which gives 7

b = E[Y ]− aE[X] (6.7)

Inserting (6.7) into (6.6), we get;

e = E[Y 2] + a2E[X2] + {E[Y ]− aE[X]}2 − 2aE[XY ]− 2 {E[Y ]− aE[X]}E[Y ]

+2a {E[Y ]− aE[X]}E[X]

=
{
E[Y 2]− E2[Y ]

}
− 2a {E[XY ]− E[X]E[Y ]}+ a2

{
E[X2]− E2[X]

}

∆
= σ2

Y − 2aCXY + a2σ2
X (6.8)

7Notice that ∂2e
∂b2 = 2 > 0, which means that e is convex at the given value of b, thus providing

the minimum.
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Now take the partial derivative of (6.8) w.r.t. a, then we get;

∂e

∂a
= −2CXY + 2aσ2

X = 0

which gives 8

a =
CXY

σ2
X

=
ρXY σXσY

σ2
X

= ρXY
σY

σX

(6.9)

Therefore, the best LINEAR estimator of Y given X is as follows:

Ŷ = aX + b

= aX + mY − amX

= a (X −mX) + mY

= ρXY
σY

σX

(X −mX) + mY

And the resultant minimum mean squared error is from (6.8);

emin = σ2
Y − 2ρXY

σY

σX

CXY + ρ2
XY

σ2
Y

σ2
X

σ2
X

= σ2
Y − 2ρ2

XY σ2
Y + ρ2

XY σ2
Y

= σ2
Y

(
1− ρ2

XY

)

In general, when multiple observationa are available:

Figure 6.5: A multi-channel communication system.

8Notice that ∂2e
∂a2 = 2σ2

X > 0, which means that e is convex at the given value of a, thus providing
the minimum.
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The best estimator Ŷ based on multiple observations X1, X2, . . . , XN is in the follow-
ing form:

1. Non-linear estimator: Ŷ = g(X1, X2, . . . , XN)

Ŷ = g(X1, X2, . . . , XN)

= argming(X)E
[
{Y − g(X1, X2, . . . , XN)}2

]

where X = (X1, X2, . . . , XN).

Following a similar procedure as in the case of single observation, we get:

Ŷ = g(X1, X2, . . . , XN)

= E[Y |X1, X2, . . . , XN ]

: conditional expectation

2. Linear estimator: Ŷ =
∑N

i=1 aiXi

Ŷ =
N∑

i=1

aiXi

= argmin{ai} E




{
Y −

N∑

i=1

aiXi

}2



︸ ︷︷ ︸
e

By taking partial derivatives of the mean squared error e w.r.t. a1, a2, . . . , aN

successively, we get;

ai = ρi
σY

σXi

where ρi =
CXiY

σXi
σY

Thus, the best linear estimator becomes:

Ŷ =
N∑

i=1

ρi
σY

σXi

·Xi

proof: assignment
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Example 6.2

Consider the following communication channel, where the input signal Y and
the channel noise N are assumed to be statistically independent. Suppose we
know the means and the variances of Y and N , i.e. mY ,mN , σ2

Y and σ2
N .

Then, what is the best linear estimate of Y based on the observation X?

Figure 6.6: A communication channel with additive noise.

Solution:

We know that the best linear estimator is in the following form:

Ŷ = ρXY
σY

σX

(X −mX) + mY

All we need is computing mX , σX , and ρXY :

(i) Mean:

mX = E[X] = E[Y + N ] = E[Y ] + E[N ] = mY + mN

(ii) Variance: 9

σ2
X = E[X2]− E2[X]

=
{
E[Y 2]−m2

Y

}
+ 2mY mN +

{
E[N2]−m2

N

}
− 2mY mN

= σ2
Y + σ2

N

9Note that E[X2] = E[Y 2 + 2Y N + N2] = E[Y 2] + 2E[Y ]E[N ] + E[N2].
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(iii) Covariance:

CXY = E [(X −mX)(Y −mY )]

= E[XY ]−mXmY

= E[(Y + N)Y ]− (mY + mN)mY

=
{
E[Y 2]−m2

Y

}
+ E[Y ]E[N ]−mY mN

= σ2
Y

From which we get the correlation coefficient as:

ρXY =
CXY

σXσY

=
σY

σX

Therefore, the best linear estimator becomes:

Ŷ =
σ2

Y

σ2
X

(X −mX) + mY

=
σ2

Y

σ2
Y + σ2

N

(X −mY −mN) + mY

The corresponding minimum mean squared error is :

emin = σ2
Y (1− ρ2

XY )

= σ2
Y

(
1− σ2

Y

σ2
X

)

= σ2
Y

(
1− σ2

Y

σ2
Y + σ2

N

)

=
σ2

Y σ2
N

σ2
Y + σ2

N
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