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Chapter 7

Random Processes - Temporal
Characteristics

7.1 Intorduction

There ∃ two kinds of signals( or processes) we deal with in engineering problems:

(1) Detrministic processes

(2) Random (Stochastic) processes

(1) Deterministic processes:

A deterministic process is a signal whose characteristics are completely known!!!

=⇒ It can be expressed in an exact mathematical way.

=⇒ The history and the future behavior (or trajectory) is transparent,
i.e. completely known and can be exactly predicted.
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Example 7.1

The output signal of a waveform generator: (e.g.) sine wave, saw-tooth wave
etc..

x(t) = sin(t)

Figure 7.1: Generation of a sinusoidal wave.

(cf.) x(t1) at any time t1 is exactly known!!!

(2) Random (or Stochastic) processes:

A random process is a signal whose behavior (or value) cannot exactly predicted
from past values!

=⇒ Thus, only can be described in a probabilistic (statistical) sense.
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Example 7.2

(i) The bit stream of a binary communication system.

(e.g.)

P
[
x(t)|t=t1

= 0
]

= p

P
[
x(t)|t=t1

= 1
]

= 1− p

(ii) Noises in a communication channel.

(e.g.)

E[n(t1)] = mN

Var[n(t1)] = σ2
N

P (n1 < n(t) < n2) ≤ 1− α

where the confidence level α is given, and we want to find the corrsponding
ranges n1 and n2 of n(t).

QUESTION:

How do we represent the random processes in a systematic mathematical
way?
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7.2 The random process concept

Figure 7.2: The concept of random process evolved from random variable.

Characteristics:

(1) Random variable X(ω):

A random variable (r.v.) is a function of elements (ω: outcome of an experi-
ment) in sample space S

(2) Random process X(ω, t):

A random process (r.p.) is a function of both ω and t, i.e. it represents the
family or ensemble of time functions.

Notational representation:

(i) Random variable: X(ω)
abbr.−→ X

fix ω−→ x (specific value of X)

(ii) Random process: X(ω, t)
abbr.−→ X(t)

fix ω−→ x(t) (specific time function)
1

(cf.) Experimental outcome:

(i) A r.v.: a value (number)

(ii) A r.p.: a function of time

1The specific time function x(t) is called the “sample function”.
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Example 7.3

Output signals of random noise generator:

Figure 7.3: Sample functions from a random noise generator.

Special cases of r.p. X(ω, t):

(a) ω is fixed (i.e. specific experiment):

X(ω, t) is a specific time function: “sample function”

(b) time t is fixed, i.e. t = t1:

X(ω, t) is a “random variable”

(c) both t and ω are fixed:

X(ω, t) is merely a “number”

Definition of Random Process:

A random process is a “family of random variables”, {X1, X2, X3, . . . . . .}.
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Classification of random process:

Criteria:

1. characteristics of t: parameter

(i) continuous

(ii) discrete

2. characteristics of X(t) for a fixed t (i.e. X): random variable

(i) continuous

(ii) discrete

(1) Continuous process w/ continuous parameter(t):

: Both X and t are continuous

Figure 7.4: A sample function of a continuous random process.

(cf.)

(i) It is called a “continuous random process”

(ii) It is in the form of continuous signal.

(iii) A typical example is the random noise 3: communication channel noise.
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(2) Continuous process w/ discrete parameter(t):

: X is continuous, but t is discrete

Figure 7.5: A sample function of a continuous random sequence.

(cf.)

(i) It is called a “continuous random sequence”

(ii) It is in the form of discrete signal.

(iii) Usually it comes from sampling the continuous random process.

(3) Discrete process w/ continuous parameter(t):

: X is discrete, but t is continuous

Figure 7.6: A sample function of a discrete random process.

(cf.)

(i) It is called a “discrete random process”

(ii) A typical example is the Poisson process.
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(4) Discrete process w/ discrete parameter(t):

: Both X and t are discrete

Figure 7.7: A sample function of a discrete random sequence.

(cf.)

(i) It is called a “discrete random sequence”

(ii) It is in the form of digital signal.

(iii) Usually it comes from sampling the discrete random process.

Note:
Mostly, we deal with processes of type (1) and (3), i.e. the continuous random process
and the discrete random process !!!

Example 7.4

A typical representation of a random process:

X(t) = A cos (ωt + Θ)

where A, ω, and Θ could be random variables.
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7.3 Stationarity and Independence

Idea (Bachground or intuition):

Figure 7.8: The sample functions of a random process X(ω, t).

If each one and/or combinations of random variables Xi (i = 1, 2, 3, . . . , M, . . .)
possess the same statistical characteristics, the random process X(t) is called a
stationary process !!!

(i) {Xi}i=1,... , {Xi, Xj}i,j=1,... etc..

(ii) Mean, variance, joint moments etc. : statistical characteristics

=⇒ Depending on the degree (or order) of statistical characteristics, we categorize
stationarity 3: first order stationarity, second order stationarity ( e.g. WSS: wide
sense stationarity), upto the strict sense stationarity (SSS) with the highest order
possible.
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7.3.1 Prerequisites

(1) Distrubution and density functions (of a r.p. X(t))

Definition 7.1 The (fist order) distribution function of a random process X(t) at
time t = t1 (i.e. random variable X1) is defined as: 2

FX(x1; t1)
∆
= P [X(t1) ≤ x1] : 1st order distribution

where x1 is a real number.

Definition 7.2 Similarly, the N-th order joint distribution function of a random
process X(t) at times t1, t2, . . . , tN is defined as:

FX(x1, x2, . . . , xN ; t1, t2, . . . , tN)
∆
= P [{X(t1) ≤ x1} ∩ · · · ∩ {X(tN) ≤ xN}]

: N-th order distribution

where x1, x2, . . . , xN are real numbers.

Definition 7.3 Corresponding probability density functions are defined as deriva-
tives of the distribution functions:

fX(x1; t1)
∆
=

dFX(x1; t1)

dx1

...

fX(x1, x2, . . . , xN ; t1, t2, . . . , tN)
∆
=

∂NFX(x1, x2, . . . , xN ; t1, t2, . . . , tN)

∂x1∂x2 · · · ∂xN

2Note that X(t1) = X1 is a random variable, and the definition of the 1st order distribution
function of a r.p. comes from the definition of the probability distribution function of a r.v..
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(2) Statistical independence (of random processes)

Definition 7.4 Two random processes X(t) and Y (t) are called statistically inde-

pendent if random vectors {X(t1), X(t2), · · · , X(tN)} and
{
Y (t

′
1), Y (t

′
2), · · · , Y (t

′
N)

}

are independent, i.e. if:

fXY

(
x1, . . . , xN , y1, . . . , yM ; t1, . . . , tN , t

′
1, . . . , t

′
M

)

= fX (x1, . . . , xN ; t1, . . . , tN) · fY

(
y1, . . . , yM ; t

′
1, . . . , t

′
M

)

7.3.2 First order stationary random process

Definition 7.5 A random process X(t) is called to be 1st order stationary if for any
t1 and ∆;

fX(x; t1) = fX(x; t1 + ∆)

i.e. the probability density function (p.d.f.) is invariant under time shift!!!
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FACT:

If a r.p. X(t) is 1st order stationay, the mean is constant, i.e. independent of time: 3

E [X(t)] = constant
∆
= X

proof:

Choose any two arbitrary times t1 and t2 along the r.p. X(t), and let:

t2 = t1 + ∆

Then, we have:

E [X(t2)] = E [X(t1 + ∆)]

=
∫ ∞

−∞
xfX(x; t1 + ∆)dx

=
∫ ∞

−∞
xfX(x; t1)dx

= E [X(t1)]

i.e. we have

E [X(t1 + ∆)] = E [X(t1)] = constant

since t1 and ∆ are assumed to be arbitrary.

(cf.) In the above proof, we have used the following definition of the expectation of
a r.p. at time t1, which is the expectation of a random variable X(t1) = X1:

E [X(t1)] =
∫ ∞

−∞
xfX(x; t1)dx

3Note that the reverse does not hold, i.e. if the mean of a r.p. is constant, that does not
necessarily mean that the r.p. is 1st order stationary.
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7.3.3 Second order and wide sense stationarity

Definition 7.6 A random process X(t) is called to be second order stationary if for
any t1, t2 and ∆;

fX(x1, x2; t1, t2) = fX(x1, x2; t1 + ∆, t2 + ∆)

Figure 7.9: A sample function of the 2nd order stationary r.p..

NOTE:

The joint distribution function of X(t) at two time points t1 and t2 depends only on

the time difference τ
∆
= t2 − t1, i.e.

fX(x1, x2; t1, t2) = fX(x1, x2; t1 + ∆, t2 + ∆)

∆=−t1−→ fX(x1, x2; 0, τ)

= fX(x1, x2; τ)
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Definition 7.7 The autocorrelation function of a random process X(t) at time t1
and t2 is defined as follows; 4

RXX(t1, t2)
∆
= E [X(t1)X(t2)]

(cf.) Note that this is the correlation of two random variables X(t1) and X(t2).

Fact:

The autocorrelation function of a second order stationary random process X(t) is a
function of only τ = t2 − t1 !!!

proof:

RXX(t1, t2)
∆
= E [X(t1)X(t2)] =

∫ ∞

−∞

∫ ∞

−∞
x1x2fX(x1, x2; t1, t2)dx1dx2

=
∫ ∞

−∞

∫ ∞

−∞
x1x2fX(x1, x2; τ)dx1dx2

= RXX(τ)

: function of τ only

More relaxed form of the second order stationarity:
−→ wide sense stationarity (WSS)

Definition 7.8 A random process X(t) is called a WSS process if:

(i) E [X(t)] = constant

(ii) E [X(t1)X(t2)] = RXX(τ) where τ = t2 − t1.

Remark:
Notice that the conditions on WSS are only in terms of the expected values, NOT on
the distribution or density functions of X(t) !!!

4This will form the base concept for the definition of the WSS(wide sense stationary) random
process!

161



Note: The relationship among 1st order, 2nd order, and wide sense stationarities:

Figure 7.10: Relationship among stationarities.

Example 7.5

Determine whether the following r.p. X(t) is WSS or not, for each given case:

X(t) = A cos(ω0t + Θ)

(1) A ∼ U [0, 1] and ω0 & Θ are contants.

(2) ω0 ∼ U [0,W ] and A & Θ are contants.

(3) Θ ∼ U [0, 2π] and A & ω0 are contants.

Solution:

(1) A ∼ U [0, 1] and ω0 & Θ are contants.

(i) Mean:

E[X(t)] =
∫ 1

0
a cos(ω0t + θ)fA(a)da

=

[
a2

2

]1

0

cos(ω0t + θ)

=
1

2
cos(ω0t + θ)

: depends on t
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(ii) Autocorrelation:

RXX(t1, t2) =
∫ 1

0
a2 cos(ω0t1 + θ) cos(ω0t2 + θ)fA(a)da

=
1

3
cos(ω0t1 + θ) cos(ω0t2 + θ)

=
1

6
{cos [ω0(t1 + t2) + 2θ] + cos [ω0(t1 − t2)]}

: depends on t1 and t2

=⇒ X(t) is NOT WSS!

(2) ω0 ∼ U [0,W ] and A & Θ are contants.

(i) Mean:

E[X(t)] =
1

W

∫ W

0
A cos(ω0t + θ)dω0

=
A

W

[
sin(ω0t + θ)

t

]W

0

=
A

Wt
{sin(Wt + θ)− sin(θ)}

: depends on t

(ii) Autocorrelation:

RXX(t1, t2) =
1

W

∫ W

0
A2 cos(ω0t1 + θ) cos(ω0t2 + θ)dω0

=
A2

2W

∫ W

0
{cos [ω0(t1 + t2) + 2θ] + cos [ω0(t1 − t2)]} dω0

=
A2

2W

sin[ω0(t1 + t2) + 2θ]

t1 + t2

∣∣∣∣∣
W

0

+
sin[ω0(t1 − t2)]

t1 − t2

∣∣∣∣∣
W

0

=
A2

2W

{
sin[W (t1 + t2) + 2θ]− sin(2θ)

t1 + t2
+

sin[W (t1 − t2)]

t1 − t2

}

: depends on t1 and t2

=⇒ X(t) is NOT WSS!
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(3) Θ ∼ U [0, 2π] and A & ω0 are contants.

(i) Mean:

E[X(t)] =
∫ 2π

0
A cos(ω0t + θ)

1

2π
dθ

=
A

2π
sin(ω0t + θ)|2π

0

= 0

: independent of t

(ii) Autocorrelation:

RXX(t1, t2) =
∫ 2π

0
A2 cos(ω0t1 + θ) cos(ω0t2 + θ)

1

2π
dθ

=
A2

2π
· 1

2

∫ 2π

0
{cos[ω0(t1 + t2) + 2θ] + cos[ω0(t1 − t2)]} dθ

=
A2

4π
· 2π cos [ω0(t1 − t2)]

=
A2

2
cos(ω0τ)

: depends only on τ
∆
= t1 − t2

=⇒ X(t) is wide sense stationary (WSS)!

Definition 7.9 Two random processes X(t) and Y (t) are called jointly WSS (JWSS)
if: 5

(i) X(t) and Y (t) are WSS individually.

(ii) RXY (t1, t2)
∆
= E [X(t1)Y (t2)] = RXY (τ)

i.e. function of the time difference τ only, where τ = t2 − t1.

5RXY (t1, t2) in this definition is the cross-correlation between X(t) and Y (t), which will be
defined at later section along with its properties.
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7.3.4 N-th order & strict sense stationarity : Generaliza-
tion

Definition 7.10 A random process X(t) is called N-th order stationary if its N-th
order probability density function is independent of the absolute time, i.e.

fX(x1, x2, . . . , xN ; t1, t2, . . . , tN) = fX(x1, x2, . . . , xN ; t1 + ∆, t2 + ∆, . . . , tN + ∆)

∀ ti and ∆ i = 1, 2, . . . , N

Note:

N-th order stationarity
O−→ k-th order stationarity ∀ k ≤ N

Definition 7.11 A random process X(t) is called strict sense stationary (SSS) if it
is stationary for all orders, N = 1, 2, . . . . . . . . ..
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7.3.5 Time averages and ergodicity

Definition 7.12 The time average of a function f(t) is denoted and defined as fol-
lows:

A [f(t)]
∆
= lim

T→∞
1

2T

∫ T

−T
f(t)dt

Note:
The notation of operator A comes as the counterpart of the mathematical expectation
E:

(i) A[·] : Time average

(ii) E[·] : Statistical (or ensemble) average

Definition 7.13 The mean and the autocorrelation function of a random process
X(t), as time averages are defined as follows;

(1) Time mean:

x
∆
= A [X(t)] = lim

T→∞
1

2T

∫ T

−T
X(t)dt

(2) Time autocorrelation function:

RXX(τ)
∆
= A [X(t)X(t + τ)] = lim

T→∞
1

2T

∫ T

−T
X(t)X(t + τ)dt

(cf.) Notice that x and RXX(τ) varies depending on the sample function x(t) of the
r.p. X(t).
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FACT:
x and RXX(τ) for a fixed τ are:

(i) constants for a specific sample function x(t). 6

(ii) random variables for the random process X(t). 7

By taking expectations of the time mean and the time autocorrelation function, we
have for a stationary (or at least WSS: 2nd order) random process X(t):

E [RXX(τ)] = lim
T→∞

1

2T

∫ T

−T
E [X(t)X(t + τ)] dt = lim

T→∞
2T

2T
·X = X

E [x] = lim
T→∞

1

2T

∫ T

−T
E [X(t)] dt = lim

T→∞
2T

2T
·RXX(τ) = RXX(τ)

: from which we can conclude that for a stationary random process X(t):

E [time average] = statistical average

Ergodic Theorem:

If random variables x and RXX(τ) have zero variances (i.e. they are constants) 8, we
have:

E [x] = x ≡ X (7.1)

E [RXX(τ)] = RXX(τ) ≡ RXX(τ) (7.2)

=⇒ Time averages and statistical averages of a r.p. X(t) become equal.

=⇒ Then, X(t) is called an ergodic process !!!

6In the same token, x and RXX(τ) for a fixed τ are constants for deterministic signals.
7Be reminded that X(t) implies many possible sample function x(t)’s.
8For X(t) to be an ergodic r.p., the time average of every sample function should be the same,

i.e. independent of ω in the sample space S.
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Why ergodicity?

In real world, we cannot deal with entire ensemble of X(t), i.e. we only deal with one
or a few sample functions of it !

−→ we cannot compute statistical (i.e. ensemble) averages of X(t).

−→ we have to replace it by the time averages of x(t).

−→ we need the concept of ergodicity !!!

Figure 7.11: Concept of ergodocity.

Note: 9

(i) If only (7.1) is satisfied : Mean ergodic(1st order)

(ii) If both (7.1) and (7.2) are satisfied : Variance ergodic(2nd order)

Fact:

ergodic process −→ stationary process

9Most of the cases, we deal w/ the variance ergodic (i.e. 2nd order) processes.
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(e.g.)

If a r.p. X(t) is ergodic, then

(i) E[X(t)] = A[X(t)] ≡ constant (zero variance r.v.):

E[X(t)] = X = constatnt ∀ t

(ii) E[X(t)X(t + τ)] = A[X(t)X(t + τ)] ≡ RXX(τ):

RXX(t, t + τ) = RXX(τ) : function of τ only

Therefore, from (i) and (ii), X(t) must be stationary.

Definition 7.14 Two random processes X(t) and Y (t) are called jointly ergodic if:

(i) X(t) and Y (t) are ergodic individually

(ii) Time cross-correlation is equal to the statistical cross-correlation, i.e.

RXY (τ) ≡ RXY (τ)

where

RXY (τ)
∆
= A [X(t)Y (t + τ)] = lim

T→∞
1

2T

∫ T

−T
X(t)Y (t + τ)dt

RXY (τ)
∆
= E [X(t)Y (t + τ)] =

∫ ∞

−∞

∫ ∞

−∞
X(t)Y (t + τ)fXY (x, y; t, t + τ)dxdy
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Example 7.6

Given two random processes X(t) and Y (t) as follows:

X(t) = A cos (ω0t + Θ)

Y (t) = B sin (ω0t + Θ)

where A,B and ω0 are constant whereas Θ is uniformly distributed random
variable between 1 and 2π, i.e. Θ ∼ [0, 2π].

Determine whether X(t) and Y (t) are jointly ergodic or not.

Solution:

We must prove:

(a) X(t) is ergodic.

(b) Y (t) is ergodic.

(c) RXY (τ) = RXY (τ).

(a) Ergodicity of X(t):

(1) Mean:

(i) Statistical mean:

E[X(t)] =
∫ 2π

0
A cos(ω0t + θ) · 1

2π
dθ = 0

(ii) Time mean:

A[X(t)] = lim
T→∞

1

2T

∫ T

−T
A cos(ω0t + θ)dt

= lim
T→∞

A

2T

[
sin(ω0t + θ)

ω0

]T

−T

= lim
T→∞

A

2Tω0

[sin(ω0T + θ)− sin(−ω0T + θ)]

= 0

·.. E[X(t) = A[X(t)]

170



(2) Autocorrelation:

(i) Statistical autocorrelation:

RXX(τ) = E [X(t)X(t + τ)]

... (derived before)

=
A2

2
cos(ω0τ)

(ii) Time autocorrelation:

RXX(τ) = lim
T→∞

1

2T

∫ T

−T
X(t)X(t + τ)dt

= lim
T→∞

A2

2T

∫ T

−T
cos(ω0t + θ) cos(ω0t + ω0τ + θ)dt

= lim
T→∞

A2

4T

∫ T

−T
{cos(2ω0t + ω0τ + 2θ) + cos(ω0τ)} dt

= lim
T→∞

A2

4T
{constant + 2T cos(ω0τ)}

=
A2

2
cos(ω0τ)

·.. RXX(τ) = RXX(τ)

Therefore, X(t) is an ergodic random process.

(b) Ergodicity of Y (t):

Similary, we can show that Y (t) is also an ergodic random process, i.e.:

(1) Mean: E[Y (t)] = A[Y (t)].

(2) Autocorrelation: RY Y (τ) = RY Y (τ).
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(c) Cross-correlation between X(t) and Y (t):

(1) Statistical cross-correlation:

RXY (τ) = E [X(t)Y (tτ )]

=
∫ 2π

0
AB cos(ω0t + θ) sin(ω0t + ω0τ + θ) · 1

2π
dθ

=
AB

4π

∫ 2π

0
{sin(2ω0t + ω0τ + 2τ) + sin(ω0τ)} dθ

=
AB

4π
· 2π sin(ω0τ)

=
AB

2
sin(ω0τ)

(2) Time cross-correlation:

RXY (τ) = lim
T→∞

AB

2T

∫ T

−T
cos(ω0t + θ) sin(ω0t + ω0τ + θ)dt

= lim
T→∞

AB

4T

∫ T

−T
{sin(2ω0t + ω0τ + 2θ) + sin(ω0τ)} dt

= lim
T→∞

AB

4T
{constant + 2T sin(ω0τ)}

=
AB

2
sin(ω0τ)

·.. RXY (τ) = RXY (τ)

Therefore, we can conclude that X(t) and Y (t) are jointly ergodic random
processes !!!

172



7.4 Correlation functions

7.4.1 Autocorrelation function & properties

Recall that the autocorrelation function RXX(t1, t2) of a r.p. X(t) at times t1 and t2
has been defined as:

RXX(t1, t2)
∆
= E [X(t1)X(t2)] =

∫ ∞

−∞

∫ ∞

−∞
x1x2fX(x1, x2; t1, t2)dx1dx2

Figure 7.12: Concept of the autocorrelation of a r.p. X(t).

Suppose X(t) is a WSS random process, and let t1 = t , t2 = t + τ , then:

RXX(t1, t2) = RXX(t, t + τ)

= E [X(t)X(t + τ)]

= RXX(τ)

i.e. the autocorrelation function of a WSS r.p. X(t) at two time instants t1, t2 depends

only on the time difference t2 − t1
∆
= τ : function of τ only!!!.
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Properties: (of RXX(τ) for a WSS r.p. X(t)) 10

(1) |RXX(τ)| ≤ RXX(0) (i.e. RXX(0) is the maximum.)

(2) RXX(−τ) = RXX(τ) (i.e. RXX(τ) is symmetric.)

(3) RXX(0) = E[X2(t)] ≥ 0 (i.e. RXX(0) is the power of X(t).)

proof:

(1) |RXX(τ)| ≤ RXX(0)

Let Y (t) = X(t)±X(t + τ), then we have:

E[Y 2(t)] = E
[
X2(t)± 2X(t)X(t + τ) + X2(t + τ)

]

= RXX(0)± 2RXX(τ) + RXX(0)

≥ 0 (should be !)

Therefore,

−RXX(0) ≤ RXX(τ) ≤ RXX(0)

=⇒ |RXX(τ)| ≤ RXX(0)

(2) assignment

(3) assignment

10Notice that these properties are same as those for the deterministic signals discussed in Signals
and Systems class!
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Other properties:

(4) If X 6= 0 and X(t) is not periodic, then lim|τ |→∞ RXX(τ) = X
2
. 11

(5) If X(t) is periodic (T ), then RXX(τ) is also periodic (T ).

(6) If X(t) is zero mean, ergodic r.p., and has no periodic components, then

lim|τ |→∞ RXX(τ) = 0.

Figure 7.13: A periodic r.p. X(t) such as X(t) = A cos(ω0t + Θ).

Example 7.7

Assume that a WSS r.p. X(t) has the autocorrelation function as follows:

RXX(τ) = 25 +
4

1 + 6τ 2

Then, find the mean and the variance of X(t).

Solution:

(i) Mean:

¿From the property (4), we have:

lim
τ→∞RXX(τ) = X

2
= 25 + lim

τ→∞
4

1 + 6τ 2
= 25

Therefore, the mean is:

·.. X = 5

11As τ → ∞, X(t) and X(t + τ) become independent (or uncorrelated), and thus RXX(τ) =
E[X(t)X(t + τ)] = E[X(t)]E[X(t + τ)]. If X(t) is periodic, they cannot be independent (or
uncorrelated).
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(ii) Variance:

σ2
X(t)

∆
= E

[
X2(t)

]
−X

2

= RXX(0)− 25

= 29− 25

= 4

= σ2
X : independent of time

7.4.2 Cross-correlation function & properties

Recall that the cross-correlation function RXY (t1, t2) of r.p. X(t) and Y (t) at times
t1 and t2 has been defined as:

RXY (t1, t2)
∆
= E [X(t1)Y (t2)] =

∫ ∞

−∞

∫ ∞

−∞
xyfXY (x, y; t1, t2)dxdy

Let t1 − t and t2 = t1 + τ , then we have:

RXY (t1, t2) = RXY (t, t + τ)
∆
= E [X(t)Y (t + τ)]

(1) Jointly WSS: 12

RXY (t, t + τ) = RXY (τ) : function of τ only

(2) Orthogonal:

RXY (t, t + τ) = 0 ∀ t and τ

12Also X(t) and Y (t) should be WSS individually.
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(3) Statistical independence:

If x(t) and Y (t) are statistically independent, then

RXY (t, t + τ) = E [X(t)Y (t + τ)] = E [X(t)] E [Y (t + τ)]

(cf.) Combining (1) and (3), i.e. if X(t) and Y (t) are jointly WSS and statistically
independent,

RXY (τ) = X · Y = constant

Properties: (of RXY (τ) for WSS r.p. X(t) and Y (t))

(1) |RXY (−τ)| = RXY (τ) (i.e. RXY (τ) is anti-symmetric.)

(2) |RXY (τ)| ≤
√

RXX(0)RY Y (0) (i.e. bounded by geometric mean.)

(3) |RXY (τ)| ≤ 1
2
[RXX(0) + RY Y (0)] (i.e. bounded by algebraic mean.)

proof: assignment

Note:
Notice that the geometric mean of RXX(0) and Y Y (0) in (2) provides tighter upper
bound of RXY (τ) than the algebraic mean in (3), since:

√
RXX(0)RY Y (0) ≤ 1

2
[RXX(0) + RY Y (0)]
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Example 7.8

Given two r.p.’s X(t) and Y (t) as follows:

X(t) = A cos(ω0t) + B sin(ω0t)

Y (t) = B cos(ω0t)− A sin(ω0t)

where ω0 is a constant, and A,B are uncorrelated zero mean random variables
with the same variance σ2.

Determine whether X(t) and Y (t) are JWSS or not.

Solution:

We must prove:

(a) X(t) and Y (t) are WSS individually.

(b) RXY (t, t + τ) = RXY (τ) : function of τ only !

¿From the given conditions, we have the followng facts:

(i) Since A,B are uncorrelated and have zero means:

E[AB] = E[A] · E[B] = 0

.

(ii) Since they have the same variance, and zero means:

E[A2] = E[B2] = σ2

.

Also, recall the following triginometric relationships:

(iii) cos(α− β) = cos(α) cos(β) + sin(α) sin(β).

(iv) sin(α− β) = sin(α) cos(β) cos(α) sin(β).
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(1) X(t) is WSS:

(i) Mean:

Since E[A] = E[B] = 0, we have

E [X(t)] = E [A cos(ω0t) + B sin(ω0t)]

= E[A] cos(ω0t) + E[B] sin(ω0t)

= 0 : constant

(ii) Autocorrelation function:

RXX(t, t + τ)

= E [X(t)X(t + τ)]

= E [{A cos(ω0t) + B sin(ω0t)} {A cos(ω0t + ω0τ) + B sin(ω0t + ω0τ)}]

= E[A2] cos(ω0t) cos(ω0t + ω0τ)

+E[AB] {cos(ω0t) sin(ω0t + ω0τ) + sin(ω0t) cos(ω0t + ω0τ)}

+E[B2] sin(ω0t) sin(ω0t + ω0τ)

= σ2 cos(ω0t + ω0τ − ω0t)

= σ2 cos(ω0τ) : function of τ only

Therefore, X(t) is WSS.

(2) Y (t) is WSS:

(i) Mean:

E [Y (t)] = E [B cos(ω0t)− A sin(ω0t)]

= E[B] cos(ω0t)− E[A] sin(ω0t)

= 0 : constant
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(ii) Autocorrelation function:

RY Y (t, t + τ)

= E [Y (t)Y (t + τ)]

= E [{B cos(ω0t)− A sin(ω0t)} {B cos(ω0t + ω0τ)− A sin(ω0t + ω0τ)}]

= E[B2] cos(ω0t) cos(ω0t + ω0τ) + E[A2] sin(ω0t) sin(ω0t + ω0τ)

= σ2 cos(ω0t + ω0τ − ω0t)

= σ2 cos(ω0τ) : function of τ only

Therefore, Y (t) is WSS.

(3) Cross-correlation between X(t) and Y (t) :

RXY (t, t + τ)

= E [X(t)Y (t + τ)]

= E [{A cos(ω0t) + B sin(ω0t)} {B cos(ω0t + ω0τ)− A sin(ω0t + ω0τ)}]

= E[B2] sin(ω0t) cos(ω0t + ω0τ)− E[A2] cos(ω0t) sin(ω0t + ω0τ)

= σ2 cos(ω0t− ω0t− ω0τ)

= −σ2 sin(ω0τ) : function of τ only

Therefore, X(t) and Y (t) are jointly WSS (JWSS) !!!
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7.4.3 Covariance functions

Definition 7.15 The auto-covariance function of a r.p. X(t) is defined as:

CXX(t, t + τ)
∆
= E [(X(t)− E[X(t)]) (X(t + τ)− E[X(t + τ)])]

another form:

CXX(t, t + τ) = E [X(t)X(t + τ)]− E [X(t)] E [X(t + τ)]

= RXX(t, t + τ)− E [X(t)] E [X(t + τ)] (7.3)

Definition 7.16 The cross-covariance function of r.p.’s X(t) and Y (t) is defined as:

CXY (t, t + τ)
∆
= E [(X(t)− E[X(t)]) (Y (t + τ)− E[Y (t + τ)])]

or

CXY (t, t + τ) = RXY (t, t + τ)− E [X(t)] E [Y (t + τ)] (7.4)

Note:
If X(t) and Y (t) are JWSS, then (7.3) and (7.4) become:

CXX(τ) = RXX(τ)−X
2

and

XXY (τ) = RXY (τ)−X · Y

Note:
The variance of a WSS r.p. X(t) is the value of CXX(τ) at τ = 0, i.e.:

σ2
X

∆
= E

[
X2(t)

]
− E [X(t)]2

= RXX(0)−X
2

∆
= CXX(0)
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Definition 7.17 Two random processes X(t) and Y (t) are called uncorrelated if: 13

CXY (t, t + τ) = 0

or, equivalently

RXY (t, t + τ) = E [X(t)] · E [X(t + τ)]

Remark:

For two random processes X(t) and Y (t),

statistically independent

O−→←−
X uncorrelated

(cf.) The reverse is ONLY valid when X(t) and Y (t) are jointly Gaussian random
processes ! 14

13Caution: “uncorrelatedness” means CXY (t, t + τ) = 0, NOT RXY (t, t + τ) = 0.
14To be discussed later.
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7.5 Measurement of correlation functions

In real world, we cannot measure correlations in statistical sense, since we cannot
have all of the ensemble of X(t).

=⇒ We have to resort to time averages of a specific sample function x(t).

=⇒ The process X(t) must be assumed to ergodic like it or not.

=⇒ Moreover, the observation time must be limited!

: approximation needed !!!

Figure 7.14: A specific sample function x(t) with limited observation time.

Block diagram:

Figure 7.15: A block diagram of measuring correlation of random processes.
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Assumption: X(t) and Y (t) are jointly ergodic!!! 15

Analysis:

The output of the system at time t = t1 + 2T , where t1 is arbitrary, is:

R0(t1 + 2T ) =
1

2T

∫ t1+2T

t1
x(t− T )y(t− T + τ)dt (7.5)

Let t
′
= t− T , then:

R0(t1 + 2T ) =
1

2T

∫ t1+T

t1−T
x(t

′
)y(t

′
+ τ)dt

′

Choose t1 = 0, 16 then: 17

R0(2T ) =
1

2T

∫ T

−T
x(t)y(t + τ)dt

≈ RXY (τ) : time correlation function (approximation)

= RXY (τ) (since X(t) and Y (t) are jointly ergodic)

=⇒ “ Repeat with different τ until all of the desired range of τ is covered ! ”
(e.g. 0 ≤ τ ≤ T ) 18

15This assumption is for replacing statistical averages of r.p. X(t) with time averages of a sample
function x(t).

16Since jointly ergodic means the JWSS, and
∫ t1+T

t1−T
should be independent of t1 for large T .

17Recall RXY (τ) = limT→∞ 1
2T

∫ T

−T
x(t)y(t + τ)dt.

18Refer (7.5).

184



7.6 Gaussian random processes

Among various randomprocesses, one of the most important aand frequently used r.p.
is the Gaussian random process.

Definition 7.18 A random process X(t) is called Gaussian if for any N = 1, 2, . . .

and given times t1, t2, . . . , tN , the random vector X
∆
= (X1, X2, . . . , XN)T are jointly

Gaussian, where Xi = X(t1),
i.e., the joint probability density function must be in the following form: 19 20

fX(x1, . . . , xN ; t1, . . . , tN) =
1√

(2π)N |CX |
exp

{
−1

2
(x−X)TC−1

X (x−X)
}

where

(1) x is a specific vector of X:

x = (x1, x2, . . . , xN)T

(2) X is the mean vector:

X =
(
X1, X2, . . . , XN

)T

(3) CX is the N ×N covariance matrix:

CX =




C11 C12 · · · C1N

C21 C22 · · · C2N
...

...
...

...
CN1 CN2 · · · CNN




where

Cik
∆
= CXiXk

= E
[
(Xi −Xi)(Xk −Xk)

]

= CXX(ti, tk)

: autocovariance of X(t) at t = t1 and t = tk

19Notice that the only two quantities we need to completely define a Gaussian r.p. are the mean
vector X and the covariance matrix CX .

20Recall that the p.d.f. of a Gaussian r.v. is:

fX(x) =
1

σ
√

2π
e−

(x−x)2

2σ2
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NOTE:
We only need the mean and autocovariance functions (or autocorrelation) of X(t) to
completely specify a Gaussian random process !!! 21

Remark:

If X(t) is a WSS Gaussian random process, then: 22

(i) Xi = E [X(ti)] = X, ∀ i = 1, 2, . . . , N : constant

(ii) CXX(ti, tk) = CXX(tk− ti) : function of time difference only

=⇒ The covariance matrix will be a symmetric matrix !.
(

. .· since RXX(τ) is symmetric. )

Example 7.9

A WSS Gaussian r.p. X(t) has the following characteristics:

(i) X = 4.

(ii) RXX(τ) = 25e−3|τ |.

Then, what is the p.d.f. of a random vector (X(t1), X(t2), X(t3))
T , where ti =

t0 + 1
2
(i− 1), i = 1, 2, 3 for an arbitrary t0?

Solution:

We only need to find the mean vector and the covariance matrix !

(1) X = (4, 4, 4)T , since X(t) is WSS.

(2) CXX(ti, tk) = 25e−3|ti−tk| − 16, where ti − tk = 1
2
(i− k) for i, k = 1, 2, 3.

CX =




9 25e−
3
2 − 16 25e−3 − 16

25e−
3
2 − 16 9 25e−

3
2 − 16

25e−3 − 16 25e−
3
2 − 16 9




:symmetric

21CXX(ti, tk) = RXX(ti, tk)− E[Xi]E[Xk].
22If X(t) is WSS, then

CXX(ti, tk) = RXX(ti, tk)− E[Xi]E[Xk] = RXX(ti − tk)−X
2

: function of time difference only

.
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Definition 7.19 Two random processes X(t) and Y (t) are called jointly Gaussian if
rnadom variables X(t1), X(t2), . . . , X(tN), Y (t

′
1), Y (t

′
2), . . . , Y (t

′
M) are jointly Gaus-

sian for any N , t1, t2, . . . tN , and M , t
′
1, t

′
2, . . . , t

′
M .

FACT:

If two r.p.’s X(t) and Y (t) are jointly Gaussian, then:

statistical independence ≡ uncorrelatedness

Proof: assignment 23

23You only need to prove that uncorrelatedness implies the statistical independence, since the other
direction is always true.
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