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Chapter 7

Random Processes - Temporal
Characteristics

7.1 Intorduction

There 3 two kinds of signals( or processes) we deal with in engineering problems:

(1) Detrministic processes

(2) Random (Stochastic) processes

(1) Deterministic processes:
A deterministic process is a signal whose characteristics are completely known!!!
= [t can be expressed in an exact mathematical way.

—> The history and the future behavior (or trajectory) is transparent,
i.e. completely known and can be exactly predicted.
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Example 7.1

The output signal of a waveform generator: (e.g.) sine wave, saw-tooth wave
ete..

x(t) = sin(t)

Figure 7.1: Generation of a sinusoidal wave.

(cf.) x(t;) at any time ¢, is exactly known!!!

(2) Random (or Stochastic) processes:

A random process is a signal whose behavior (or value) cannot ezactly predicted
from past values!

= Thus, only can be described in a probabilistic (statistical) sense.
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Example 7.2

(i) The bit stream of a binary communication system.
(e:g.)

Pla(t)],, =0] =p

Pla(t)_, =1 =1-p

(ii) Noises in a communication channel.

(e.g.)

E[n(tl)] = mnN
Var[n(t,)] = o%
P(np<n(t)<ng) <1l—a

where the confidence level v is given, and we want to find the corrsponding
ranges 1y and ng of n(t).

QUESTION:

How do we represent the random processes in a systematic mathematical
way?
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7.2 The random process concept

Figure 7.2: The concept of random process evolved from random variable.

Characteristics:

(1) Random variable X (w):

A random variable (r.v.) is a function of elements (w: outcome of an experi-
ment) in sample space S

(2) Random process X (w,t):

A random process (r.p.) is a function of both w and t, i.e. it represents the
family or ensemble of time functions.

Notational representation:

(i) Random variable: X (w) abbr. y  fixw (specific value of X)

abbr. y () Xy

(ii) Random process: X (w,t) x(t) (specific time function)

1

(cf.) Experimental outcome:

(i) Arwv.: a value (number)

(ii)) A r.p. a function of time

IThe specific time function x(t) is called the “sample function”.
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Example 7.3

Output signals of random noise generator:

Figure 7.3: Sample functions from a random noise generator.

Special cases of r.p. X(w,?):
(a) w is fixed (i.e. specific experiment):
X(w,t) is a specific time function: “sample function”

(b) time t is fixed, i.e. t = t;:

X(w,t) is a “random variable”

(¢) both t and w are fixed:

X(w,t) is merely a “number”

Definition of Random Process:

A random process is a “family of random variables”, { X7, X5, X3,...... }.
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Classification of random process:

Criteria:
1. characteristics of t: parameter

(i) continuous

(i) discrete
2. characteristics of X () for a fixed t (i.e. X): random variable

(i) continuous

(i) discrete

(1) Continuous process w/ continuous parameter(t):

: Both X and ¢ are continuous

Figure 7.4: A sample function of a continuous random process.

(cf.)

(i) It is called a “continuous random process”
(ii) It is in the form of continuous signal.

(iii) A typical example is the random noise >: communication channel noise.
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(2) Continuous process w/ discrete parameter(t):

: X is continuous, but ¢ is discrete

Figure 7.5: A sample function of a continuous random sequence.

(cf.)

(i) It is called a “continuous random sequence”
(ii) It is in the form of discrete signal.

(iii) Usually it comes from sampling the continuous random process.

(3) Discrete process w/ continuous parameter(t):

: X is discrete, but t is continuous

Figure 7.6: A sample function of a discrete random process.

(cf.)

(i) It is called a “discrete random process”

(ii) A typical example is the Poisson process.
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(4) Discrete process w/ discrete parameter(¢):

: Both X and ¢t are discrete

Figure 7.7: A sample function of a discrete random sequence.

(cf.)

(i) It is called a “discrete random sequence”
(ii) It is in the form of digital signal.

(iii) Usually it comes from sampling the discrete random process.

Note:
Mostly, we deal with processes of type (1) and (3), i.e. the continuous random process
and the discrete random process !!!

Example 7.4

A typical representation of a random process:
X(t) = Acos (wt + ©)

where A, w, and © could be random variables.
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7.3 Stationarity and Independence

Idea (Bachground or intuition):

Figure 7.8: The sample functions of a random process X (w, t).

If each one and/or combinations of random variables X; (i = 1,2,3,..., M,...)
possess the same statistical characteristics, the random process X (¢) is called a
stationary process !!!

(i) {Xi}izl,...7 {XivXj}z‘,j:I,... etc..

(ii) Mean, variance, joint moments etc. : statistical characteristics

—> Depending on the degree (or order) of statistical characteristics, we categorize
stationarity >: first order stationarity, second order stationarity ( e.g. WSS: wide
sense stationarity), upto the strict sense stationarity (SSS) with the highest order
possible.
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7.3.1 Prerequisites

(1) Distrubution and density functions (of a r.p. X(t))

Definition 7.1 The (fist order) distribution function of a random process X (t) at
time ¢ = #; (i.e. random variable X;) is defined as: ?

Fyx(z1;t) 2 P[X(t) < 1] : 1st order distribution

where x; is a real number.

Definition 7.2 Similarly, the N-th order joint distribution function of a random
process X (t) at times t1,ts, ..., ty is defined as:

Fx(z1, 20, ..., aniti, tay .. ty) 2 PHX() <2}0--N{X(ty) < 2n}]

: N-th order distribution

where x1,xs,...,xy are real numbers.

Definition 7.3 Corresponding probability density functions are defined as deriva-
tives of the distribution functions:

é de(l’l;tl)

fx(x1;t) di,

A ONFx (w1, @2, ..., aN;t1, by .. EN)
0x10x9 - -+ 0TN

fx(ﬂjl,l'g, RN ,xN;tl,tQ, RN ,tN)

2Note that X(t;) = X is a random variable, and the definition of the 1st order distribution
function of a r.p. comes from the definition of the probability distribution function of a r.v..
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(2) Statistical independence (of random processes)

Definition 7.4 Two random processes X (t) and Y (t) are called statistically inde-
pendent if random vectors {X (¢1), X (t2), -+, X(ty)} and {Y(t/l), Y (ty), -, Y(t/N)}
are independent, i.e. if:

fxy (l’l,...,l’N,yl,...,yM;tl,...,tN,tll,...,t/]\/[)

I

= fx(z1,... 2Nty tN) - fy (yl,...,yM;tll,...,tM)

7.3.2 First order stationary random process

Definition 7.5 A random process X (t) is called to be 1st order stationary if for any
t; and A;

fx(@ity) = fx(z;t + A)

i.e. the probability density function (p.d.f.) is invariant under time shift!!!
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FACT:

If ar.p. X(t)is st order stationay, the mean is constant, i.e. independent of time: *

1>

E[X(t)] = constant = X

proof:
Choose any two arbitrary times ¢; and ¢, along the r.p. X(¢), and let:

to=1t1+A

Then, we have:

E[X(t2)] = E[X(t+A)]

= /oo rfx(z;ty + A)dr

= /oo xfx(z;ty)dz

= E[X(t)]
i.e. we have
E[X(t1 + A)] = E[X(t1)] = constant

since t; and A are assumed to be arbitrary.

(cf.) In the above proof, we have used the following definition of the expectation of
a r.p. at time ¢;, which is the expectation of a random variable X (¢;) = X;:

oo

E[X(t)] = / o fx (s t)de

—00

3Note that the reverse does not hold, i.e. if the mean of a r.p. is constant, that does not
necessarily mean that the r.p. is 1st order stationary.
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7.3.3 Second order and wide sense stationarity

Definition 7.6 A random process X (¢) is called to be second order stationary if for
any ty, to and A;

fx(xy, xoity, ta) = fx(xy, ety + Aty + A)

Figure 7.9: A sample function of the 2nd order stationary r.p..

NOTE:

The joint distribution function of X (¢) at two time points t; and ¢, depends only on
the time difference 7 2 ty — tq, i.e.

fx(z1,xe5t1,t0) = fx(x, ot + Aty + A)
A=—tq1

- fX($1>$2;077-)

= fX($1,I2;7')
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Definition 7.7 The autocorrelation function of a random process X (t) at time t;
and t, is defined as follows; *

Rxx(ti,t2) 2 E[X (1) X (t)]
(cf.) Note that this is the correlation of two random variables X (¢,) and X ().

Fact:

The autocorrelation function of a second order stationary random process X (t) is a
function of only 7 =ty — t; !!!

proof:
RXX(t1>t2)éE[X(t1)X(t2)] = /_ /_ 1% fx (@1, Ta; b1, to)darda,
= /_ /_ $1I2fX($17$2§T)d$1d$2
= RX)((T)

: function of 7 only

More relaxed form of the second order stationarity:
— wide sense stationarity (WSS)

Definition 7.8 A random process X (t) is called a WSS process if:
(i) E[X(t)] = constant
(ii) E[X(t1)X(t2)] = Rxx(7) where 7 = to — t;.

Remark:
Notice that the conditions on WSS are only in terms of the expected values, NOT on
the distribution or density functions of X (¢) !!!

4This will form the base concept for the definition of the WSS(wide sense stationary) random
process!
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Note: The relationship among 1st order, 2nd order, and wide sense stationarities:

Figure 7.10: Relationship among stationarities.

Example 7.5

Determine whether the following r.p. X (¢) is WSS or not, for each given case:

X (t) = Acos(wot + O)

(1) A~ UJ0,1] and wy & © are contants.
(2) wo ~ U[0,W] and A & © are contants.
(3) © ~U[0,27] and A & wy are contants.

Solution:
(1) A~ UJ[0,1] and wy & © are contants.

(i) Mean:

1

EX(t)] = /Oacos wot + 6) fa(a)da

= [a] cos(wot + )
2

1

5 cos(wot + 0)

: depends on t
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(ii) Autocorrelation:

1
Rxx(ti,ty) = /0 a? cos(woty + 0) cos(woty + 0) fa(a)da
1
= 3 cos(woty + 6) cos(woty + 0)

1
= 6 {cos [wo(t1 + t2) + 20] 4 cos [wo(t1 — t2)]}
: depends on t; and ts

— X(t) is NOT WSS!

(2) wo ~U[0,W] and A & © are contants.

(i) Mean:

EX(t)] = ! /OW A cos(wot + 0)dwy

w

SIESE]

lsin(w(;t + 0)1

0

A :
= W {sin(Wt+0) — sin(0)}

: depends on t

(ii) Autocorrelation:

1 W
Rxx(ti,ty) = W/o A? cos(woty + ) cos(woty + 0)dwy

— 21?/[/ /OW {cos [wo(t1 + t2) + 20] 4 cos [wo(t1 — t2)]} dwo

A% sinfw(ty 1) +26]|" sinfwo(t — )] ]
2w ty +ta 0 th—ty |,
A% [sin[W(t; +to) 4 26] — sin(20) N sin[W (t; — ta)]
2w t1 + o t1 —to

: depends on t; and ts

— X(t) is NOT WSS!
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(3) © ~ UJ0,27] and A & wy are contants.

(i) Mean:

2T 1
EX(t)] = ; Acos(wgt+9)%d9

A -
= 5 sin(wot + 0) |2

. independent of ¢

(ii) Autocorrelation:

27 1
Rxx(ti,ty) = A? cos(woty + 0) cos(wots + 9)2—d9

0 m
A? 1 g2

= — = {cos|wo(t1 + t2) + 260] + cos[wy(t1 — t2)]} db
2r 2 Jo
A2

= = 27 cos [wo(t1 — t2)]
AQ

= 5 cos(woT)

: depends only on 7 2 t1 — o

— X (¢) is wide sense stationary (WSS)!

Definition 7.9 Two random processes X (t) and Y (t) are called jointly WSS (JWSS)
if:

(i) X(t) and Y (t) are WSS individually.

(ii) Ryy(t1,t2) 2 E[X(t1)Y (t2)] = Rxy (1)

i.e. function of the time difference 7 only, where 7 = t5 — t;.

®Rxy (t1,t2) in this definition is the cross-correlation between X (t) and Y'(¢), which will be
defined at later section along with its properties.
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7.3.4 N-th order & strict sense stationarity : Generaliza-
tion

Definition 7.10 A random process X (t) is called N-th order stationary if its N-th
order probability density function is independent of the absolute time, i.e.

fx(@1, 2, .. xNst, ty .o ty) = fx(T, 2o, xn i F Ao+ AL+ A)

Vtiand A i=1,2,...,N

Note:

N-th order stationarity 2, k-th order stationarity V k< N

Definition 7.11 A random process X (t) is called strict sense stationary (SSS) if it
is stationary for all orders, N =1,2,..........
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7.3.5 Time averages and ergodicity

Definition 7.12 The time average of a function f(t) is denoted and defined as fol-
lows:

Alf(t)] = lim T/

T—o00 2

Note:
The notation of operator A comes as the counterpart of the mathematical expectation
E:

(i) A[-] : Time average

(ii) E[-] : Statistical (or ensemble) average

Definition 7.13 The mean and the autocorrelation function of a random process
X(t), as time averages are defined as follows;

(1) Time mean:

T2 A[X(t) = lim T/

T—o0 2

(2) Time autocorrelation function:

Rax(r) 2 A[X(H)X(t+ )] = lim T/ X(t+7)dt

T—o0 2

(cf.) Notice that T and Rxx(7) varies depending on the sample function z(t) of the
r.p. X(¢).
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FACT:
T and Rxx (1) for a fixed 7 are:

(i) constants for a specific sample function z(t). ©

(i) random variables for the random process X (¢). 7

By taking expectations of the time mean and the time autocorrelation function, we
have for a stationary (or at least WSS: 2nd order) random process X (¢):

o

E[Rxx(7) —15202T/ X(t+m)]dt = Jim —o- X =X
Ef] = lim — [ BX(@®)]dt - lim % . R ~ R

7] = Jim o | BIXOIdE = Jim o - Rxx(7) = Rxx(7)

: from which we can conclude that for a stationary random process X (¢):

E[time average| = statistical average

Ergodic Theorem:

If random variables T and R xx(7) have zero variances (i.e. they are constants) %, we

have:

= Time averages and statistical averages of a r.p. X (t) become equal.

= Then, X (t) is called an ergodic process !!!

In the same token, Z and Rx x (1) for a fixed T are constants for deterministic signals.

"Be reminded that X (t) implies many possible sample function x(t)’s.
8For X (t) to be an ergodic r.p., the time average of every sample function should be the same,

i.e. independent of w in the sample space S.
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Why ergodicity?

In real world, we cannot deal with entire ensemble of X (¢), i.e. we only deal with one
or a few sample functions of it !

— we cannot compute statistical (i.e. ensemble) averages of X(¢).
— we have to replace it by the time averages of x(t).

— we need the concept of ergodicity !

Figure 7.11: Concept of ergodocity.

Note: *

(i) If only (7.1) is satisfied : Mean ergodic(1st order)

(ii) If both (7.1) and (7.2) are satisfied : Variance ergodic(2nd order)

Fact:

ergodic process —— stationary process

9Most of the cases, we deal w/ the variance ergodic (i.e. 2nd order) processes.
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(e-g.)

If a r.p. X(t) is ergodic, then

(i) E[X(t)] = A[X(t)] = constant (zero variance r.v.):
E[X(t)] = X = constatnt V ¢
(i) EIXO)X({t+71)=AXH)X(t+71)] =Rxx(7):

Rxx(t,t +7) = Rxx(7) : function of 7 only

Therefore, from (i) and (ii), X (¢) must be stationary.

Definition 7.14 Two random processes X (t) and Y (t) are called jointly ergodic if:
(i) X(t) and Y (t) are ergodic individually

(ii) Time cross-correlation is equal to the statistical cross-correlation, i.e.

ny(T) = RXy(T)

where

Ray(r) & AX@Y (t47)] = lim — / Y (t+ 7)dt

~>oo2

Ryy (1) 2 E[X()Y(t + 7)) / / Y(t+7)fxy(x,y;t, t + 7)dxdy
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Example 7.6

Given two random processes X (t) and Y (¢) as follows:

X(t) = Acos (wot + ©)
Y (t) = Bsin (wot + ©)

where A, B and wy are constant whereas © is uniformly distributed random
variable between 1 and 27, i.e. © ~ [0, 27].

Determine whether X (¢) and Y (¢) are jointly ergodic or not.

Solution:

We must prove:

(a) X(t) is ergodic.
(b) Y(¢) is ergodic.
(C) ny(T) = ny(T).

(a) Ergodicity of X(t):

(1) Mean:

(i) Statistical mean:

27 1
E[X(t)] = Acos(wot +6) - —df =0
0 2m
(ii) Time mean:
AX(t)] = Thm ﬁ/ A cos(wot + 0)dt
. A [sin(wot + 60) g
= lim — |——
T—oo 2T wo 7
— Zlgrolo T [sin(woT" + 0) — sin(—weT" + 6)]
=0
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(2) Autocorrelation:

(i) Statistical autocorrelation:

Rxx(r) = EX@)X(t+7)]

(derived before)

A2

= 5 cos(woT)

(ii) Time autocorrelation:

1 T
Rxx(r) = Tli_rgoﬁ/_TX(t)X(H—T)dt

AQ
= 1 -
Tgrolo 27T

AQ
— Lm 2
o AT

2

= 711—1}20 1T {constant + 2T cos(woT)}

T
/ cos(wot + 0) cos(wot + woT + 0)dt
-7
T
/ {cos(2wot + woT + 26) + cos(wo) } dt
-7

2
= f; cos(woT)

RXx(T) = RX)((T)

Therefore, X (t) is an ergodic random process.

(b) Ergodicity of Y (¢):
Similary, we can show that Y (¢) is also an ergodic random process, i.e.:

(1) Mean: E[Y (t)] = A[Y(¢)].
(2) Autocorrelation: Ryy (7) = Ryvy (7).
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(c) Cross-correlation between X (¢) and Y (¢):

(1) Statistical cross-correlation:
Rxy(r) = E[X(8)Y(t)]

2T 1
= AB cos(wot + 0) sin(wot + we + 0) - Q—dﬁ
0 T

AB [ :
= I /0 {sin(2wot + woT + 27) + sin(weT) } db

AB 27 sin(wor)
= — 2wsin(wyT
47 0

AB

= 5 sin(woT)

(2) Time cross-correlation:

AB (T
Rxy(r) = Yll—{roloﬁ 7Tcos(w0t—|—0) sin(wot + woT + 0)dt
. AB/T{,(Z o 4 26) + sin(wor)} de
= Tgrgo AT |_r SN 2wo woT SIN(WoT

. AB :
= Tlgrolo T {constant 4 2T sin(woT)}

= 7 Sin(WOT)

ny(T) = ny(T)

Therefore, we can conclude that X (¢) and Y (¢) are jointly ergodic random
processes !!!
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7.4 Correlation functions

7.4.1 Autocorrelation function & properties

Recall that the autocorrelation function Rxx(f1,t2) of a r.p. X(¢) at times ¢; and ¢,
has been defined as:

Rxx(tit) 2 EX@)X()] = [ [~ simfular,anty to)deidey

—00 J —0O0

Figure 7.12: Concept of the autocorrelation of a r.p. X (¢).

Suppose X (t) is a WSS random process, and let t; =t , to =t + 7, then:

Rxx(tl,tg) = Rxx(t,t—f—T)
= FEXO)X(t+ )]

- RX)((T)

i.e. the autocorrelation function of a WSS r.p. X (¢) at two time instants ¢y, t5 depends

only on the time difference t5 — t; 25 function of T only!!!.
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Properties: (of Rxx(7) for a WSS r.p. X(¢)) 1

(1) |Rxx(7)| < Rxx(0) (i.e. Rxx(0) is the maximum.)

(2) Rxx(—7) = Rxx(7) (i.e. Rxx(7) is symmetric.)

(3) Rxx(0) = FE[X?(t)] >0 (i.e. Rxx(0) is the power of X (t).)
proof:

(1) [Rxx(7)] < Rxx(0)

Let Y(t) = X(t) £ X (¢t + 7), then we have:

EYX(t)) = E[X(t) £2X)X(t+7)+ X*(t+7)]
= Rxx(O):l:QRxx(T)+Rxx<O>

> 0 (should be!)

Therefore,

—Rxx(0) < Rxx(7) < Rxx/(0)

= |Rxx(7)| < Rxx(0)

(2) assignment

(3) assignment

0Notice that these properties are same as those for the deterministic signals discussed in Signals
and Systems class!
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Other properties:
(4) If X # 0 and X (¢) is not periodic, then lim|; .o Rxx(T) = X u
(5) If X (¢) is periodic (T'), then Ry x(7) is also periodic (7).

(6) If X (t) is zero mean, ergodic r.p., and has no periodic components, then

hm‘ﬂﬂoo RXX(’T) =0.

Figure 7.13: A periodic r.p. X(t) such as X (t) = A cos(wot + ©).

Example 7.7

Assume that a WSS r.p. X(¢) has the autocorrelation function as follows:

4

=254+ ——
RX)((T) o+ 1+6T2

Then, find the mean and the variance of X (t).

Solution:

(i) Mean:
¢ From the property (4), we have:

lim Rxx(7) = X~ =25+ lim

T—00 T—0o0 ] 4 672

25

Therefore, the mean is:

X =5

HAs 7 — oo, X(t) and X(¢t + 7) become independent (or uncorrelated), and thus Ry x(7) =
EX#t)X(t+ 1) = E[X@®)]E[X(t + 7)]. If X(t) is periodic, they cannot be independent (or
uncorrelated).
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(ii) Variance:

ok(t) £ E[X*t)|-X
— Rxx(0)—25
— 29-25
= 4

= 0% : independent of time

7.4.2 Cross-correlation function & properties

Recall that the cross-correlation function Rxy (t1,t2) of r.p. X(¢) and Y (¢) at times
t1 and t, has been defined as:

ny(tl,tg) é E [X(tl)Y(tg)] = /_O:o /_O:o nyxy(l’, Y3 tl,tg)dl‘dy

Let t; —t and t5 = t; + 7, then we have:

Ryy(t1,ts) = Rxy (t,t +7) 2 E[X()Y (t + 7)]

(1) Jointly WSS: 2

Rxy(t,t +7) = Rxy(r) : function of 7 only

(2) Orthogonal:

Rxy(t,t+7)=0 Vtandr

12Also X (t) and Y (t) should be WSS individually.
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(3) Statistical independence:
If z(t) and Y (t) are statistically independent, then

Rxy(t,t+7)=EX@O)Y({t+7)=E[X{@)|E[Y(t+T1)]
(cf.) Combining (1) and (3), i.e. if X(¢) and Y () are jointly WSS and statistically
independent,

Rxy (1) = X - Y = constant

Properties: (of Rxy(7) for WSS r.p. X(¢) and Y (¢))

(1) |Rxy(—7)| = Rxy(7) (i.e. Rxy(7) is anti-symmetric.)
(2) |Rxy(7)| < \/RXX(O)RYY(O) (i.e. bounded by geometric mean.)
(3) |[Rxy(7)] < 1 [Rxx(0) + Ryy(0)] (i.e. bounded by algebraic mean.)

proof: assignment

Note:
Notice that the geometric mean of Ryx(0) and yy(0) in (2) provides tighter upper
bound of Rxy(7) than the algebraic mean in (3), since:

[Rxx(0) + Ryy(0)]

N —

\/RXX(O)RYY(O) <
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Example 7.8

Given two r.p.’s X (t) and Y () as follows:
X(t) = Acos(wot) + B sin(wpt)

Y (t) = B cos(wot) — Asin(wyt)

where wy is a constant, and A, B are uncorrelated zero mean random variables
with the same variance o2.

Determine whether X (¢) and Y'(¢) are JWSS or not.

Solution:

We must prove:

(a) X(t) and Y (t) are WSS individually.
(b) Rxy(t,t+7) = Rxy(r) :function of 7 only !

. From the given conditions, we have the followng facts:

(i) Since A, B are uncorrelated and have zero means:

E[AB])=E[A]-E[B]=0
(ii) Since they have the same variance, and zero means:

E[A% = E[B?] = ¢*

Also, recall the following triginometric relationships:

(ili) cos(av — B) = cos(a) cos(B) + sin(a) sin(3).
(iv) sin(a — ) = sin(a) cos(3) cos(«) sin(3).
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(1) X(t)is WSS:
(i) Mean:
Since E[A] = E[B] = 0, we have

E[X(t)] = FE[Acos(wot)+ Bsin(wpt)]
= FE[A]cos(wot) + E[B] sin(wot)

= 0 : constant

(ii) Autocorrelation function:
Rxx(t,t +T)
= E[X@)X(t+71)]
= E[{Acos(wot) + Bsin(wpt)} { A cos(wot + woT) + B sin(wot + woT)}]
= E[A% cos(wpt) cos(wot + weT)
+E[AB] {cos(wpt) sin(wot + woT) + sin(wpt) cos(wot + woT) }
+E[B?] sin(wot) sin(wot + woT)
2

= o0° cos(wot + woT — wot)

= o”cos(wor) : function of 7 only

Therefore, X (t) is WSS.

(2) Y(t) is WSS:

(i) Mean:
E[Y(t)] = FE|[Bcos(wot) — Asin(wpt)]
= FE[B]cos(wot) — E[A] sin(wot)

= 0 : constant
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(ii) Autocorrelation function:

Ryy(t,t+7)
= E[YOY(t+7)]
= E[{Bcos(wot) — Asin(wot)} { B cos(wot + wor) — Asin(wot + wor)}]
= E[B?) cos(wot) cos(wot + woT) + E[A?] sin(wot) sin(wot + woT)
= 0% cos(wyt + woT — wot)

= o?cos(wer) : function of 7 only

Therefore, Y (t) is WSS.

(3) Cross-correlation between X (t) and Y'(¢) :

Rxy(t,t +7)
= E[X(t)Y(t+7)
—  E[{Acos(wot) + Bsin(wot)} { B cos(wot + wor) — Asin(wot + wor)}]
= E[B?sin(wot) cos(wot + wor) — E[A?] cos(wot) sin(wot + wor)
= o2 cos(wot — wot — woT)

= —o?sin(wpr) : function of 7 only

Therefore, X (t) and Y (¢) are jointly WSS (JWSS) !!!
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7.4.3 Covariance functions

Definition 7.15 The auto-covariance function of a r.p. X (¢) is defined as:

Cxx(t,t+7) 2 E[(X(t) — E[X(#)]) (X(t +7) — B[X(t +7)])]
another form:

Cxx(t,t+7) = EXO)Xt+71)]—-FE[X@)]E[X(t+71)]

= Rxx(t,t+7)—FE[XQ)]E[X(t+T)] (7.3)

Definition 7.16 The cross-covariance function of r.p.’s X (¢) and Y (¢) is defined as:

Cxy(t,t+7) 2 E[(X(t) = BIX(0)]) (Y (t+7) = E[Y (t +7)])]

or

Cxy(t,t +7) = Rxy(t,t +7) — E[X()]| E[Y(t+ 7)] (7.4)

Note:
If X(t) and Y () are JWSS, then (7.3) and (7.4) become:

2

CX)((T> == Rxx(T) —Y

and

XXy(T) :ny(T)—Y'?

Note:
The variance of a WSS r.p. X (t) is the value of Cxx(7) at 7 =0, i.e.:

1>

2
Ox

E[X*(t)] - E[X (1))

>l



Definition 7.17 Two random processes X (t) and Y (t) are called uncorrelated if:

ny(t,t+7) =0
or, equivalently

Rxy(t,t+7)=E[X ()] -E[X(t+T)]

Remark:

For two random processes X (t) and Y (),

0]

—

statistically independent X uncorrelated

(cf.) The reverse is ONLY valid when X (¢) and Y'(¢) are jointly Gaussian random
processes !

13Caution: “uncorrelatedness” means Cxy (t,t +7) = 0, NOT Rxy (t,t +7) = 0.
14To be discussed later.
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7.5 Measurement of correlation functions

In real world, we cannot measure correlations in statistical sense, since we cannot
have all of the ensemble of X (t).

= We have to resort to time averages of a specific sample function z(t).
= The process X (t) must be assumed to ergodic like it or not.
= Moreover, the observation time must be limited!

: approximation needed !!!

Figure 7.14: A specific sample function x(t) with limited observation time.

Block diagram:

Figure 7.15: A block diagram of measuring correlation of random processes.
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Assumption: X(t) and Y (¢) are jointly ergodic!!! *

Analysis:
The output of the system at time t = t; + 27", where t; is arbitrary, is:

1 t1+2T
Ro(t, +2T) = 7/ 2(t — T)y(t — T + 7)dt (7.5)
2T t1
Let t =t — T, then:
R T 1 t+T ’ ’ d ’
t 2T) = —/ t )yt t
o(t1 + 27 T Jyo_r z(t)y(t +7)

Choose t; = 0, '® then: 7

Ro(2T) — le /_ix(t)y(t%—T)dt

Q

Rxy(7) : time correlation function (approximation)

= Rxy(7) (since X(t) and Y (¢) are jointly ergodic)

= “ Repeat with different T until all of the desired range of T is covered ! ”
(eg. 0<T<T)

15This assumption is for replacing statistical averages of r.p. X (t) with time averages of a sample

function x(¢).

16Since jointly ergodic means the JWSS, and f:lljg

Recall Rxy (1) = limy oo o [ 2(t)y(t + 7)dt.
18Refer (7.5).

should be independent of ¢; for large T'.
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7.6 (Gaussian random processes

Among various randomprocesses, one of the most important aand frequently used r.p.
is the Gaussian random process.

Definition 7.18 A random process X () is called Gaussian if for any N = 1,2, ...
and given times tq,to,...,ty, the random vector X = (X1, X, ... ,XN)T are jointly
Gaussian, where X; = X (1),

i.e., the joint probability density function must be in the following form: ¥ 20
1 1 — _
fX('rla s 7xN;t17 cee JtN) = T CXp {_(x_X)TC)_(l(x_ X)}
(2m)V|Cx| 2
where
(1) z is a specific vector of X:
z = (x1,29,... ,$N)T

(2) X is the mean vector:
- —\T
X = <X17X27 s 7XN)
(3) Cx is the N x N covariance matrix:

011 012 C(1N
R R
Cxi Cyz -+ Oy
where

Cin £ Cxox, = E[(Xi— X)Xk~ Xy)]

= Cxx(ti, k)
: autocovariance of X (t) at t = t; and t = t;,

19NOLIC€ that the only two quantities we need to completely define a Gaussian r.p. are the mean
vector X and the covariance matrix Cx.
20Recall that the p.d.f. of a Gaussian r.v. is:
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NOTE:
We only need the mean and autocovariance functions (or autocorrelation) of X (t) to
completely specify a Gaussian random process !!! 21

Remark:
If X(t)is a WSS Gaussian random process, then: %
i) X;i=E[Xt)]=X, Vi=1,2,...,N : constant
(i) Cxx(t;,tx) = Oxx(tr—t;) : function of time difference only

= The covariance matrix will be a symmetric matrix !.
(" since Rxx(7) is symmetric. )

Example 7.9
A WSS Gaussian r.p. X(t) has the following characteristics:
(i) X =4.
(ii) Rxx(7) = 25e73I"l.

Then, what is the p.d.f. of a random vector (X (t1), X (), X (t3))", where ¢; =
to + %(2 —1), i=1,2,3 for an arbitrary ty?

Solution:

We only need to find the mean vector and the covariance matrix !

(1) X = (4,4,4)", since X (t) is WSS.
(2) Cxx(ti,ty) = 25e 31l — 16, where t; — t, = 2 (i — k) for i,k = 1,2,3.

9 25¢"2 — 16 25¢~3 — 16
Cx=| 25¢3 — 16 9 25¢~3 — 16 | :symmetric
25¢=3 — 16 25e2 — 16 9

ACOxx(ti, ty) = Rxx(tisty) — E[X;]E[ Xy
221f X (t) is WSS, then

Cxx(ti,tr) = Rxx(ti,tg) — E[X;)E[Xk] = Rxx(t; — tx) — X~ : function of time difference only
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Definition 7.19 Two random processes X (¥) and Y(t) are called jointly Gaussian if
rnadom variables X (1), X (t2), ..., X (tn), Y (t ) Y (ty),...,Y(t),) are jointly Gaus-
sian for any N, ty,ts,...ty, and M, tll, tlz, e ,tM.

FACT:
If two r.p.’s X (¢) and Y'(¢) are jointly Gaussian, then:
statistical independence = uncorrelatedness

Proof: assignment %

23You only need to prove that uncorrelatedness implies the statistical independence, since the other
direction is always true.
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