Contents

7	Rar	dom Processes - Temporal Characteristics	148
	7.1	Intorduction	148
	7.2	The random process concept	151
	7.3 Stationarity and Independence		
		7.3.1 Prerequisites	157
		7.3.2 First order stationary random process	158
		7.3.3 Second order and wide sense stationarity	160
		7.3.4 N-th order & strict sense stationarity : Generalization	165
		7.3.5 Time averages and ergodicity	166
	7.4	elation functions $\ldots \ldots 1'$	
		7.4.1 Autocorrelation function & properties	173
		7.4.2 Cross-correlation function & properties	176
		7.4.3 Covariance functions	181
	7.5	Measurement of correlation functions	183
	7.6	.6 Gaussian random processes	

Chapter 7

Random Processes - Temporal Characteristics

7.1 Intorduction

There \exists two kinds of signals(or processes) we deal with in engineering problems:

- (1) Detrministic processes
- (2) Random (Stochastic) processes

(1) Deterministic processes:

- A deterministic process is a signal whose characteristics are completely known!!!
- \implies It can be expressed in an exact mathematical way.
- \implies The history and the future behavior (or trajectory) is transparent, i.e. completely known and can be exactly predicted.

Example 7.1

The output signal of a waveform generator: (e.g.) sine wave, saw-tooth wave etc..

 $x(t) = \sin(t)$

Figure 7.1: Generation of a sinusoidal wave.

(cf.) $x(t_1)$ at any time t_1 is exactly known!!!

(2) Random (or Stochastic) processes:

A random process is a signal whose behavior (or value) cannot *exactly* predicted from past values!

 \implies Thus, only can be described in a **probabilistic (statistical)** sense.

Example 7.2

(i) The bit stream of a binary communication system.

(e.g.) $P\left[x(t)|_{t=t_1} = 0\right] = p$ $P\left[x(t)|_{t=t_1} = 1\right] = 1 - p$

(ii) Noises in a communication channel.

(e.g.)

 $E[n(t_1)] = m_N$

 $\operatorname{Var}[n(t_1)] = \sigma_N^2$

$$P\left(n_1 < n(t) < n_2\right) \le 1 - \alpha$$

where the *confidence level* α is given, and we want to find the corresponding ranges n_1 and n_2 of n(t).

QUESTION:

How do we represent the random processes in a systematic mathematical way?

Figure 7.2: The concept of random process evolved from random variable.

Characteristics:

(1) Random variable $X(\omega)$:

A random variable (r.v.) is a function of elements (ω : outcome of an experiment) in sample space S

(2) Random process $X(\omega, t)$:

A random process (r.p.) is a function of both ω and t, i.e. it represents the family or ensemble of time functions.

Notational representation:

- (i) Random variable: $X(\omega) \xrightarrow{\text{abbr.}} X \xrightarrow{\text{fix } \omega} x$ (specific value of X)
- (ii) Random process: $X(\omega, t) \xrightarrow{\text{abbr.}} X(t) \xrightarrow{\text{fix } \omega} x(t)$ (specific time function)

(cf.) Experimental outcome:

- (i) A r.v.: a value (number)
- (ii) A r.p.: a function of time

¹The specific time function x(t) is called the "sample function".

Example 7.3

Output signals of random noise generator:

Figure 7.3: Sample functions from a random noise generator.

Special cases of r.p. $X(\omega, t)$:

- (a) ω is fixed (i.e. specific experiment): $X(\omega, t)$ is a specific time function: "sample function"
- (b) time t is fixed, i.e. $t = t_1$: $X(\omega, t)$ is a "random variable"
- (c) both t and ω are fixed:

 $X(\omega, t)$ is merely a "number"

Definition of Random Process:

A random process is a "family of random variables", $\{X_1, X_2, X_3, \ldots, \}$.

Classification of random process:

Criteria:

- 1. characteristics of t: parameter
 - (i) continuous
 - (ii) discrete
- 2. characteristics of X(t) for a fixed t (i.e. X): random variable
 - (i) continuous
 - (ii) discrete

(1) Continuous process w/ continuous parameter(t):

: Both X and t are continuous

Figure 7.4: A sample function of a continuous random process.

(cf.)

- (i) It is called a "continuous random process"
- (ii) It is in the form of continuous signal.
- (iii) A typical example is the random noise \ni : communication channel noise.

(2) Continuous process w/ discrete parameter(t):

: X is continuous, but t is discrete

Figure 7.5: A sample function of a continuous random sequence.

(cf.)

- (i) It is called a "continuous random sequence"
- (ii) It is in the form of discrete signal.
- (iii) Usually it comes from sampling the continuous random process.

(3) Discrete process w/ continuous parameter(t):

: X is discrete, but t is continuous

Figure 7.6: A sample function of a discrete random process.

(cf.)

- (i) It is called a "discrete random process"
- (ii) A typical example is the Poisson process.

(4) Discrete process w/ discrete parameter(t):

: Both X and t are discrete

Figure 7.7: A sample function of a discrete random sequence.

(cf.)

- (i) It is called a "discrete random sequence"
- (ii) It is in the form of digital signal.
- (iii) Usually it comes from sampling the discrete random process.

Note:

Mostly, we deal with processes of type (1) and (3), i.e. the continuous random process and the discrete random process !!!

Example 7.4

A typical representation of a random process:

$$X(t) = A\cos\left(\omega t + \Theta\right)$$

where A, ω , and Θ could be random variables.

7.3 Stationarity and Independence

Idea (Bachground or intuition):

Figure 7.8: The sample functions of a random process $X(\omega, t)$.

If each one and/or combinations of random variables X_i (i = 1, 2, 3, ..., M, ...) possess the same statistical characteristics, the random process X(t) is called a stationary process !!!

- (i) $\{X_i\}_{i=1,\dots}$, $\{X_i, X_j\}_{i,j=1,\dots}$ etc..
- (ii) Mean, variance, joint moments etc. : statistical characteristics

 \implies Depending on the degree (or order) of statistical characteristics, we categorize stationarity \ni : first order stationarity, second order stationarity (e.g. WSS: wide sense stationarity), upto the strict sense stationarity (SSS) with the highest order possible.

7.3.1 Prerequisites

(1) Distrubution and density functions (of a r.p. X(t))

Definition 7.1 The (fist order) distribution function of a random process X(t) at time $t = t_1$ (i.e. random variable X_1) is defined as: ²

 $F_X(x_1; t_1) \stackrel{\Delta}{=} P[X(t_1) \le x_1]$: 1st order distribution

where x_1 is a real number.

Definition 7.2 Similarly, the N-th order joint distribution function of a random process X(t) at times t_1, t_2, \ldots, t_N is defined as:

$$F_X(x_1, x_2, \dots, x_N; t_1, t_2, \dots, t_N) \triangleq P[\{X(t_1) \le x_1\} \cap \dots \cap \{X(t_N) \le x_N\}]$$

: N-th order distribution

where x_1, x_2, \ldots, x_N are real numbers.

Definition 7.3 Corresponding probability density functions are defined as derivatives of the distribution functions:

$$f_X(x_1;t_1) \stackrel{\Delta}{=} \frac{dF_X(x_1;t_1)}{dx_1}$$

$$\vdots$$

$$f_X(x_1,x_2,\ldots,x_N;t_1,t_2,\ldots,t_N) \stackrel{\Delta}{=} \frac{\partial^N F_X(x_1,x_2,\ldots,x_N;t_1,t_2,\ldots,t_N)}{\partial x_1 \partial x_2 \cdots \partial x_N}$$

²Note that $X(t_1) = X_1$ is a random variable, and the definition of the 1st order distribution function of a r.p. comes from the definition of the probability distribution function of a r.v..

(2) Statistical independence (of random processes)

Definition 7.4 Two random processes X(t) and Y(t) are called statistically independent if random vectors $\{X(t_1), X(t_2), \dots, X(t_N)\}$ and $\{Y(t'_1), Y(t'_2), \dots, Y(t'_N)\}$ are independent, i.e. **if:**

$$f_{XY}\left(x_{1}, \dots, x_{N}, y_{1}, \dots, y_{M}; t_{1}, \dots, t_{N}, t_{1}^{'}, \dots, t_{M}^{'}\right)$$

= $f_{X}\left(x_{1}, \dots, x_{N}; t_{1}, \dots, t_{N}\right) \cdot f_{Y}\left(y_{1}, \dots, y_{M}; t_{1}^{'}, \dots, t_{M}^{'}\right)$

7.3.2 First order stationary random process

Definition 7.5 A random process X(t) is called to be 1st order stationary if for any t_1 and Δ ;

$$f_X(x;t_1) = f_X(x;t_1 + \Delta)$$

i.e. the probability density function (p.d.f.) is invariant under time shift!!!

FACT:

If a r.p. X(t) is 1st order stationay, the *mean* is constant, i.e. independent of time: ³

$$E[X(t)] = \text{constant} \stackrel{\Delta}{=} \overline{X}$$

proof:

Choose any two arbitrary times t_1 and t_2 along the r.p. X(t), and let:

$$t_2 = t_1 + \Delta$$

Then, we have:

$$E[X(t_2)] = E[X(t_1 + \Delta)]$$

= $\int_{-\infty}^{\infty} x f_X(x; t_1 + \Delta) dx$
= $\int_{-\infty}^{\infty} x f_X(x; t_1) dx$
= $E[X(t_1)]$

i.e. we have

$$E[X(t_1 + \Delta)] = E[X(t_1)] = \text{constant}$$

since t_1 and Δ are assumed to be arbitrary.

(cf.) In the above proof, we have used the following definition of the expectation of a r.p. at time t_1 , which is the expectation of a random variable $X(t_1) = X_1$:

$$E[X(t_1)] = \int_{-\infty}^{\infty} x f_X(x;t_1) dx$$

³Note that the reverse does not hold, i.e. if the *mean* of a r.p. is constant, that does not necessarily mean that the r.p. is 1st order stationary.

7.3.3 Second order and wide sense stationarity

Definition 7.6 A random process X(t) is called to be *second order stationary* if for any t_1 , t_2 and Δ ;

 $f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_1 + \Delta, t_2 + \Delta)$

Figure 7.9: A sample function of the 2nd order stationary r.p..

NOTE:

The joint distribution function of X(t) at two time points t_1 and t_2 depends only on the time difference $\tau \triangleq t_2 - t_1$, i.e.

$$f_X(x_1, x_2; t_1, t_2) = f_X(x_1, x_2; t_1 + \Delta, t_2 + \Delta)$$
$$\xrightarrow{\Delta = -t_1} f_X(x_1, x_2; 0, \tau)$$
$$= f_X(x_1, x_2; \tau)$$

Definition 7.7 The autocorrelation function of a random process X(t) at time t_1 and t_2 is defined as follows; ⁴

$$R_{XX}(t_1, t_2) \stackrel{\Delta}{=} E\left[X(t_1)X(t_2)\right]$$

(cf.) Note that this is the correlation of two random variables $X(t_1)$ and $X(t_2)$.

Fact:

The autocorrelation function of a second order stationary random process X(t) is a function of only $\tau = t_2 - t_1 \parallel \parallel$

proof:

$$R_{XX}(t_1, t_2) \stackrel{\Delta}{=} E[X(t_1)X(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_X(x_1, x_2; t_1, t_2) dx_1 dx_2$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_X(x_1, x_2; \tau) dx_1 dx_2$$
$$= R_{XX}(\tau)$$

: function of τ only

More relaxed form of the second order stationarity: \longrightarrow wide sense stationarity (WSS)

Definition 7.8 A random process X(t) is called a WSS process if:

- (i) E[X(t)] = constant
- (ii) $E[X(t_1)X(t_2)] = R_{XX}(\tau)$ where $\tau = t_2 t_1$.

Remark:

Notice that the conditions on WSS are only in terms of the expected values, NOT on the distribution or density functions of X(t) !!!

 $^{^4\}mathrm{This}$ will form the base concept for the definition of the WSS (wide sense stationary) random process!

Figure 7.10: Relationship among stationarities.

Example 7.5

Determine whether the following r.p. X(t) is WSS or not, for each given case:

$$X(t) = A\cos(\omega_0 t + \Theta)$$

- (1) $A \sim U[0, 1]$ and $\omega_0 \& \Theta$ are contants.
- (2) $\omega_0 \sim U[0, W]$ and $A \& \Theta$ are contants.
- (3) $\Theta \sim U[0, 2\pi]$ and $A \& \omega_0$ are contants.

Solution:

- (1) $A \sim U[0, 1]$ and $\omega_0 \& \Theta$ are contants.
 - (i) Mean:

$$E[X(t)] = \int_0^1 a \cos(\omega_0 t + \theta) f_A(a) da$$
$$= \left[\frac{a^2}{2}\right]_0^1 \cos(\omega_0 t + \theta)$$
$$= \frac{1}{2} \cos(\omega_0 t + \theta)$$

: depends on \boldsymbol{t}

(ii) Autocorrelation:

$$R_{XX}(t_1, t_2) = \int_0^1 a^2 \cos(\omega_0 t_1 + \theta) \cos(\omega_0 t_2 + \theta) f_A(a) da$$

= $\frac{1}{3} \cos(\omega_0 t_1 + \theta) \cos(\omega_0 t_2 + \theta)$
= $\frac{1}{6} \{ \cos [\omega_0 (t_1 + t_2) + 2\theta] + \cos [\omega_0 (t_1 - t_2)] \}$

: depends on t_1 and t_2

 $\implies X(t)$ is NOT WSS!

- (2) $\omega_0 \sim U[0, W]$ and $A \& \Theta$ are contants.
 - (i) Mean:

$$E[X(t)] = \frac{1}{W} \int_0^W A \cos(\omega_0 t + \theta) d\omega_0$$
$$= \frac{A}{W} \left[\frac{\sin(\omega_0 t + \theta)}{t} \right]_0^W$$
$$= \frac{A}{Wt} \left\{ sin(Wt + \theta) - sin(\theta) \right\}$$

: depends on t

(ii) Autocorrelation:

$$R_{XX}(t_1, t_2) = \frac{1}{W} \int_0^W A^2 \cos(\omega_0 t_1 + \theta) \cos(\omega_0 t_2 + \theta) d\omega_0$$

= $\frac{A^2}{2W} \int_0^W \{ \cos [\omega_0 (t_1 + t_2) + 2\theta] + \cos [\omega_0 (t_1 - t_2)] \} d\omega_0$
= $\frac{A^2}{2W} \frac{\sin[\omega_0 (t_1 + t_2) + 2\theta]}{t_1 + t_2} \Big|_0^W + \frac{\sin[\omega_0 (t_1 - t_2)]}{t_1 - t_2} \Big|_0^W$
= $\frac{A^2}{2W} \left\{ \frac{\sin[W(t_1 + t_2) + 2\theta] - \sin(2\theta)}{t_1 + t_2} + \frac{\sin[W(t_1 - t_2)]}{t_1 - t_2} \right\}$

: depends on $t_1 \mbox{ and } t_2$

 $\implies X(t)$ is NOT WSS!

- (3) $\Theta \sim U[0, 2\pi]$ and $A \& \omega_0$ are contants.
 - (i) Mean:

$$E[X(t)] = \int_0^{2\pi} A \cos(\omega_0 t + \theta) \frac{1}{2\pi} d\theta$$
$$= \frac{A}{2\pi} \sin(\omega_0 t + \theta) |_0^{2\pi}$$
$$= 0$$

: independent of t

(ii) Autocorrelation:

$$R_{XX}(t_1, t_2) = \int_0^{2\pi} A^2 \cos(\omega_0 t_1 + \theta) \cos(\omega_0 t_2 + \theta) \frac{1}{2\pi} d\theta$$

= $\frac{A^2}{2\pi} \cdot \frac{1}{2} \int_0^{2\pi} \{ \cos[\omega_0 (t_1 + t_2) + 2\theta] + \cos[\omega_0 (t_1 - t_2)] \} d\theta$
= $\frac{A^2}{4\pi} \cdot 2\pi \cos[\omega_0 (t_1 - t_2)]$
= $\frac{A^2}{2} \cos(\omega_0 \tau)$

: depends only on $\tau \stackrel{\Delta}{=} t_1 - t_2$

 $\implies X(t)$ is wide sense stationary (WSS)!

Definition 7.9 Two random processes X(t) and Y(t) are called *jointly WSS* (JWSS) if: ⁵

- (i) X(t) and Y(t) are WSS individually.
- (ii) $R_{XY}(t_1, t_2) \stackrel{\Delta}{=} E[X(t_1)Y(t_2)] = R_{XY}(\tau)$ i.e. function of the time difference τ only, where $\tau = t_2 - t_1$.

 $^{{}^{5}}R_{XY}(t_1, t_2)$ in this definition is the cross-correlation between X(t) and Y(t), which will be defined at later section along with its properties.

7.3.4 N-th order & strict sense stationarity : Generalization

Definition 7.10 A random process X(t) is called *N*-th order stationary if its N-th order probability density function is independent of the absolute time, i.e.

$$f_X(x_1, x_2, \dots, x_N; t_1, t_2, \dots, t_N) = f_X(x_1, x_2, \dots, x_N; t_1 + \Delta, t_2 + \Delta, \dots, t_N + \Delta)$$
$$\forall t_i \text{ and } \Delta \quad i = 1, 2, \dots, N$$

Note:

N-th order stationarity \xrightarrow{O} k-th order stationarity $\forall k \leq N$

Definition 7.11 A random process X(t) is called strict sense stationary (SSS) if it is stationary for all orders, $N = 1, 2, \ldots$

7.3.5 Time averages and ergodicity

Definition 7.12 The time average of a function f(t) is denoted and defined as follows:

$$A\left[f(t)\right] \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t) dt$$

Note:

The notation of operator A comes as the counterpart of the mathematical expectation E:

- (i) $A[\cdot]$: Time average
- (ii) $E[\cdot]$: Statistical (or ensemble) average

Definition 7.13 The *mean* and the *autocorrelation function* of a random process X(t), as time averages are defined as follows;

(1) Time mean: (1)

$$\overline{x} \stackrel{\Delta}{=} A\left[X(t)\right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) dt$$

(2) Time autocorrelation function:

$$\mathcal{R}_{XX}(\tau) \stackrel{\Delta}{=} A\left[X(t)X(t+\tau)\right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)X(t+\tau)dt$$

(cf.) Notice that \overline{x} and $\mathcal{R}_{XX}(\tau)$ varies depending on the sample function x(t) of the r.p. X(t).

FACT:

 \overline{x} and $\mathcal{R}_{XX}(\tau)$ for a fixed τ are:

- (i) constants for a specific sample function x(t).⁶
- (ii) random variables for the random process X(t).⁷

By taking expectations of the time mean and the time autocorrelation function, we have for a stationary (or at least WSS: 2nd order) random process X(t):

$$E\left[\mathcal{R}_{XX}(\tau)\right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left[X(t)X(t+\tau)\right] dt = \lim_{T \to \infty} \frac{2T}{2T} \cdot \overline{X} = \overline{X}$$
$$E\left[\overline{x}\right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left[X(t)\right] dt = \lim_{T \to \infty} \frac{2T}{2T} \cdot R_{XX}(\tau) = R_{XX}(\tau)$$

: from which we can conclude that for a *stationary* random process X(t):

E[time average] = statistical average

Ergodic Theorem:

If random variables \overline{x} and $\mathcal{R}_{XX}(\tau)$ have zero variances (i.e. they are constants)⁸, we have:

$$E\left[\overline{x}\right] = \overline{x} \equiv \overline{X} \tag{7.1}$$

$$E\left[\mathcal{R}_{XX}(\tau)\right] = \mathcal{R}_{XX}(\tau) \equiv R_{XX}(\tau) \tag{7.2}$$

 \implies Time averages and statistical averages of a r.p. X(t) become equal.

 \implies Then, X(t) is called an *ergodic process* !!!

⁶In the same token, \overline{x} and $\mathcal{R}_{XX}(\tau)$ for a fixed τ are *constants* for deterministic signals.

⁷Be reminded that X(t) implies many possible sample function x(t)'s.

⁸For X(t) to be an ergodic r.p., the time average of every sample function should be the same, i.e. independent of ω in the sample space S.

Why ergodicity?

In real world, we cannot deal with entire ensemble of X(t), i.e. we only deal with one or a few sample functions of it !

- \longrightarrow we cannot compute statistical (i.e. ensemble) averages of X(t).
- \longrightarrow we have to replace it by the time averages of x(t).
- \longrightarrow we need the concept of *ergodicity* !!!

Figure 7.11: Concept of ergodocity.

Note: ⁹

(i) If only (7.1) is satisfied	: Mean ergodic(1st order)
--------------------------------	---------------------------

(ii) If both (7.1) and (7.2) are satisfied : Variance ergodic(2nd order)

Fact:

 $ergodic \ process \quad \longrightarrow \quad stationary \ process$

 $^{^{9}}$ Most of the cases, we deal w/ the variance ergodic (i.e. 2nd order) processes.

(e.g.) If a r.p. X(t) is ergodic, then (i) $E[X(t)] = A[X(t)] \equiv \text{constant}$ (zero variance r.v.): $E[X(t)] = \overline{X} = \text{constatnt} \quad \forall t$ (ii) $E[X(t)X(t+\tau)] = A[X(t)X(t+\tau)] \equiv \mathcal{R}_{XX}(\tau)$: $R_{XX}(t,t+\tau) = \mathcal{R}_{XX}(\tau)$: function of τ only

Therefore, from (i) and (ii), X(t) must be stationary.

Definition 7.14 Two random processes X(t) and Y(t) are called *jointly ergodic* if:

- (i) X(t) and Y(t) are ergodic individually
- (ii) Time cross-correlation is equal to the statistical cross-correlation, i.e.

$$\mathcal{R}_{XY}(\tau) \equiv R_{XY}(\tau)$$

where

$$\mathcal{R}_{XY}(\tau) \stackrel{\Delta}{=} A\left[X(t)Y(t+\tau)\right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)Y(t+\tau)dt$$

 $R_{XY}(\tau) \stackrel{\Delta}{=} E\left[X(t)Y(t+\tau)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} X(t)Y(t+\tau)f_{XY}(x,y;t,t+\tau)dxdy$

Example 7.6

Given two random processes X(t) and Y(t) as follows:

$$X(t) = A\cos(\omega_0 t + \Theta)$$
$$Y(t) = B\sin(\omega_0 t + \Theta)$$

where A, B and ω_0 are constant whereas Θ is uniformly distributed random variable between 1 and 2π , i.e. $\Theta \sim [0, 2\pi]$.

Determine whether X(t) and Y(t) are jointly ergodic or not.

Solution:

We must prove:

- (a) X(t) is ergodic.
- (b) Y(t) is ergodic.
- (c) $\mathcal{R}_{XY}(\tau) = R_{XY}(\tau).$
- (a) Ergodicity of X(t):
 - (1) Mean:
 - (i) Statistical mean:

$$E[X(t)] = \int_0^{2\pi} A\cos(\omega_0 t + \theta) \cdot \frac{1}{2\pi} d\theta = 0$$

(ii) Time mean:

$$A[X(t)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A \cos(\omega_0 t + \theta) dt$$

$$= \lim_{T \to \infty} \frac{A}{2T} \left[\frac{\sin(\omega_0 t + \theta)}{\omega_0} \right]_{-T}^{T}$$

$$= \lim_{T \to \infty} \frac{A}{2T\omega_0} \left[\sin(\omega_0 T + \theta) - \sin(-\omega_0 T + \theta) \right]$$

$$= 0$$

$$\therefore E[X(t) = A[X(t)]$$

- (2) Autocorrelation:
 - (i) Statistical autocorrelation:

$$R_{XX}(\tau) = E[X(t)X(t+\tau)]$$

(derived before)

$$= \frac{A^2}{2}\cos(\omega_0\tau)$$

÷

(ii) Time autocorrelation:

$$\mathcal{R}_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t) X(t+\tau) dt$$

$$= \lim_{T \to \infty} \frac{A^2}{2T} \int_{-T}^{T} \cos(\omega_0 t + \theta) \cos(\omega_0 t + \omega_0 \tau + \theta) dt$$

$$= \lim_{T \to \infty} \frac{A^2}{4T} \int_{-T}^{T} \left\{ \cos(2\omega_0 t + \omega_0 \tau + 2\theta) + \cos(\omega_0 \tau) \right\} dt$$

$$= \lim_{T \to \infty} \frac{A^2}{4T} \left\{ constant + 2T \cos(\omega_0 \tau) \right\}$$

$$= \frac{A^2}{2} \cos(\omega_0 \tau)$$

$$\therefore R_{XX}(\tau) = \mathcal{R}_{XX}(\tau)$$

Therefore, X(t) is an ergodic random process.

(b) Ergodicity of Y(t):

Similarly, we can show that Y(t) is also an ergodic random process, i.e.:

- (1) Mean: E[Y(t)] = A[Y(t)].
- (2) Autocorrelation: $R_{YY}(\tau) = \mathcal{R}_{YY}(\tau)$.

- (c) Cross-correlation between X(t) and Y(t):
 - (1) Statistical cross-correlation:

$$R_{XY}(\tau) = E[X(t)Y(t_{\tau})]$$

$$= \int_{0}^{2\pi} AB \cos(\omega_{0}t + \theta) \sin(\omega_{0}t + \omega_{0}\tau + \theta) \cdot \frac{1}{2\pi} d\theta$$

$$= \frac{AB}{4\pi} \int_{0}^{2\pi} \left\{ \sin(2\omega_{0}t + \omega_{0}\tau + 2\tau) + \sin(\omega_{0}\tau) \right\} d\theta$$

$$= \frac{AB}{4\pi} \cdot 2\pi \sin(\omega_{0}\tau)$$

$$= \frac{AB}{2} \sin(\omega_{0}\tau)$$

(2) Time cross-correlation:

$$\mathcal{R}_{XY}(\tau) = \lim_{T \to \infty} \frac{AB}{2T} \int_{-T}^{T} \cos(\omega_0 t + \theta) \sin(\omega_0 t + \omega_0 \tau + \theta) dt$$

$$= \lim_{T \to \infty} \frac{AB}{4T} \int_{-T}^{T} \left\{ \sin(2\omega_0 t + \omega_0 \tau + 2\theta) + \sin(\omega_0 \tau) \right\} dt$$

$$= \lim_{T \to \infty} \frac{AB}{4T} \left\{ constant + 2T \sin(\omega_0 \tau) \right\}$$

$$= \frac{AB}{2} \sin(\omega_0 \tau)$$

$$\therefore R_{XY}(\tau) = \mathcal{R}_{XY}(\tau)$$

Therefore, we can conclude that X(t) and Y(t) are **jointly ergodic** random processes !!!

7.4 Correlation functions

7.4.1 Autocorrelation function & properties

Recall that the autocorrelation function $R_{XX}(t_1, t_2)$ of a r.p. X(t) at times t_1 and t_2 has been defined as:

$$R_{XX}(t_1, t_2) \stackrel{\Delta}{=} E\left[X(t_1)X(t_2)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_1 x_2 f_X(x_1, x_2; t_1, t_2) dx_1 dx_2$$

Figure 7.12: Concept of the autocorrelation of a r.p. X(t).

Suppose X(t) is a WSS random process, and let $t_1 = t$, $t_2 = t + \tau$, then:

$$R_{XX}(t_1, t_2) = R_{XX}(t, t + \tau)$$
$$= E [X(t)X(t + \tau)]$$
$$= R_{XX}(\tau)$$

i.e. the autocorrelation function of a WSS r.p. X(t) at two time instants t_1, t_2 depends only on the time difference $t_2 - t_1 \stackrel{\Delta}{=} \tau$: function of τ only!!!. **Properties:** (of $R_{XX}(\tau)$ for a WSS r.p. X(t)) ¹⁰

(1) $|R_{XX}(\tau)| \leq R_{XX}(0)$ (i.e. $R_{XX}(0)$ is the maximum.) (2) $R_{XX}(-\tau) = R_{XX}(\tau)$ (i.e. $R_{XX}(\tau)$ is symmetric.) (3) $R_{XX}(0) = E[X^2(t)] \geq 0$ (i.e. $R_{XX}(0)$ is the power of X(t).)

proof:

(1)
$$|R_{XX}(\tau)| \le R_{XX}(0)$$

Let $Y(t) = X(t) \pm X(t+\tau)$, then we have:

$$E[Y^{2}(t)] = E\left[X^{2}(t) \pm 2X(t)X(t+\tau) + X^{2}(t+\tau)\right]$$

= $R_{XX}(0) \pm 2R_{XX}(\tau) + R_{XX}(0)$
 ≥ 0 (should be !)

Therefore,

$$-R_{XX}(0) \le R_{XX}(\tau) \le R_{XX}(0)$$

$$\implies |R_{XX}(\tau)| \le R_{XX}(0)$$

(2) assignment

(3) assignment

 $^{^{10}{\}rm Notice}$ that these properties are same as those for the deterministic signals discussed in Signals and Systems class!

Other properties:

- (4) If $\overline{X} \neq 0$ and X(t) is not periodic, then $\lim_{|\tau|\to\infty} R_{XX}(\tau) = \overline{X}^2$.¹¹
- (5) If X(t) is periodic (T), then $R_{XX}(\tau)$ is also periodic (T).
- (6) If X(t) is zero mean, ergodic r.p., and has no periodic components, then $\lim_{|\tau|\to\infty} R_{XX}(\tau) = 0.$

Figure 7.13: A periodic r.p. X(t) such as $X(t) = A\cos(\omega_0 t + \Theta)$.

Example 7.7

Assume that a WSS r.p. X(t) has the autocorrelation function as follows:

$$R_{XX}(\tau) = 25 + \frac{4}{1+6\tau^2}$$

Then, find the mean and the variance of X(t).

Solution:

(i) Mean:

iFrom the property (4), we have:

$$\lim_{\tau \to \infty} R_{XX}(\tau) = \overline{X}^2 = 25 + \lim_{\tau \to \infty} \frac{4}{1 + 6\tau^2} = 25$$

Therefore, the mean is:

$$\therefore \overline{X} = 5$$

 $[\]overline{ IIAs \ \tau \to \infty, \ X(t) \ and \ X(t+\tau) \ become independent}$ (or uncorrelated), and thus $R_{XX}(\tau) = E[X(t)X(t+\tau)] = E[X(t)]E[X(t+\tau)]$. If X(t) is periodic, they cannot be independent (or uncorrelated).

(ii) Variance:

$$\sigma_X^2(t) \stackrel{\Delta}{=} E\left[X^2(t)\right] - \overline{X}^2$$

$$= R_{XX}(0) - 25$$

$$= 29 - 25$$

$$= 4$$

$$= \sigma_X^2 : \text{independent of time}$$

7.4.2 Cross-correlation function & properties

Recall that the cross-correlation function $R_{XY}(t_1, t_2)$ of r.p. X(t) and Y(t) at times t_1 and t_2 has been defined as:

$$R_{XY}(t_1, t_2) \stackrel{\Delta}{=} E\left[X(t_1)Y(t_2)\right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{XY}(x, y; t_1, t_2) dx dy$$

Let $t_1 - t$ and $t_2 = t_1 + \tau$, then we have:

$$R_{XY}(t_1, t_2) = R_{XY}(t, t+\tau) \stackrel{\Delta}{=} E\left[X(t)Y(t+\tau)\right]$$

.

(1) Jointly WSS: 12

$$R_{XY}(t, t + \tau) = R_{XY}(\tau)$$
 : function of τ only

(2) Orthogonal:

$$R_{XY}(t, t+\tau) = 0 \quad \forall t \text{ and } \tau$$

¹²Also X(t) and Y(t) should be WSS individually.

(3) Statistical independence:

If x(t) and Y(t) are statistically independent, then

$$R_{XY}(t, t + \tau) = E[X(t)Y(t + \tau)] = E[X(t)]E[Y(t + \tau)]$$

(cf.) Combining (1) and (3), i.e. if X(t) and Y(t) are jointly WSS and statistically independent,

$$R_{XY}(\tau) = \overline{X} \cdot \overline{Y} = \text{constant}$$

Properties: (of $R_{XY}(\tau)$ for WSS r.p. X(t) and Y(t))

(1) $|R_{XY}(-\tau)| = R_{XY}(\tau)$ (i.e. $R_{XY}(\tau)$ is anti-symmetric.) (2) $|R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)}$ (i.e. bounded by geometric mean.) (3) $|R_{XY}(\tau)| \le \frac{1}{2} [R_{XX}(0) + R_{YY}(0)]$ (i.e. bounded by algebraic mean.)

proof: assignment

Note:

Notice that the geometric mean of $R_{XX}(0)$ and $_{YY}(0)$ in (2) provides tighter upper bound of $R_{XY}(\tau)$ than the algebraic mean in (3), since:

$$\sqrt{R_{XX}(0)R_{YY}(0)} \le \frac{1}{2} \left[R_{XX}(0) + R_{YY}(0) \right]$$

Example 7.8

Given two r.p.'s X(t) and Y(t) as follows:

$$X(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$Y(t) = B\cos(\omega_0 t) - A\sin(\omega_0 t)$$

where ω_0 is a constant, and A, B are *uncorrelated* zero mean random variables with the same variance σ^2 .

Determine whether X(t) and Y(t) are JWSS or not.

Solution:

.

We must prove:

- (a) X(t) and Y(t) are WSS individually.
- (b) $R_{XY}(t, t + \tau) = R_{XY}(\tau)$: function of τ only !

¿From the given conditions, we have the following facts:

(i) Since A, B are uncorrelated and have zero means:

$$E[AB] = E[A] \cdot E[B] = 0$$

(ii) Since they have the same variance, and zero means:

$$E[A^2] = E[B^2] = \sigma^2$$

Also, recall the following triginometric relationships:

- (iii) $\cos(\alpha \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)$.
- (iv) $\sin(\alpha \beta) = \sin(\alpha)\cos(\beta)\cos(\alpha)\sin(\beta)$.

(1) X(t) is WSS:

(i) Mean:

Since E[A] = E[B] = 0, we have

$$E[X(t)] = E[A\cos(\omega_0 t) + B\sin(\omega_0 t)]$$
$$= E[A]\cos(\omega_0 t) + E[B]\sin(\omega_0 t)$$
$$= 0 : \text{ constant}$$

(ii) Autocorrelation function:

 $R_{XX}(t, t + \tau)$ $= E[X(t)X(t + \tau)]$ $= E[\{A\cos(\omega_0 t) + B\sin(\omega_0 t)\} \{A\cos(\omega_0 t + \omega_0 \tau) + B\sin(\omega_0 t + \omega_0 \tau)\}]$ $= E[A^2]\cos(\omega_0 t)\cos(\omega_0 t + \omega_0 \tau)$ $+ E[AB] \{\cos(\omega_0 t)\sin(\omega_0 t + \omega_0 \tau) + \sin(\omega_0 t)\cos(\omega_0 t + \omega_0 \tau)\}$ $+ E[B^2]\sin(\omega_0 t)\sin(\omega_0 t + \omega_0 \tau)$ $= \sigma^2\cos(\omega_0 t + \omega_0 \tau - \omega_0 t)$ $= \sigma^2\cos(\omega_0 \tau) \quad : \text{ function of } \tau \text{ only}$ Therefore, X(t) is WSS.

(2) Y(t) is WSS:

(i) Mean:

E

$$[Y(t)] = E[B\cos(\omega_0 t) - A\sin(\omega_0 t)]$$
$$= E[B]\cos(\omega_0 t) - E[A]\sin(\omega_0 t)$$
$$= 0 : \text{ constant}$$
$$179$$

$$R_{YY}(t, t + \tau)$$

$$= E[Y(t)Y(t + \tau)]$$

$$= E[\{B\cos(\omega_0 t) - A\sin(\omega_0 t)\} \{B\cos(\omega_0 t + \omega_0 \tau) - A\sin(\omega_0 t + \omega_0 \tau)\}]$$

$$= E[B^2]\cos(\omega_0 t)\cos(\omega_0 t + \omega_0 \tau) + E[A^2]\sin(\omega_0 t)\sin(\omega_0 t + \omega_0 \tau)$$

$$= \sigma^2\cos(\omega_0 t + \omega_0 \tau - \omega_0 t)$$

$$= \sigma^2\cos(\omega_0 \tau) \quad : \text{function of } \tau \text{ only}$$

Therefore, Y(t) is WSS.

(3) Cross-correlation between X(t) and Y(t) :

$$R_{XY}(t, t + \tau)$$

$$= E[X(t)Y(t + \tau)]$$

$$= E[\{A\cos(\omega_0 t) + B\sin(\omega_0 t)\} \{B\cos(\omega_0 t + \omega_0 \tau) - A\sin(\omega_0 t + \omega_0 \tau)\}]$$

$$= E[B^2]\sin(\omega_0 t)\cos(\omega_0 t + \omega_0 \tau) - E[A^2]\cos(\omega_0 t)\sin(\omega_0 t + \omega_0 \tau)$$

$$= \sigma^2\cos(\omega_0 t - \omega_0 t - \omega_0 \tau)$$

$$= -\sigma^2\sin(\omega_0 \tau) \quad : \text{ function of } \tau \text{ only}$$

Therefore, X(t) and Y(t) are jointly WSS (JWSS) !!!

7.4.3 Covariance functions

Definition 7.15 The auto-covariance function of a r.p. X(t) is defined as:

$$C_{XX}(t,t+\tau) \stackrel{\Delta}{=} E\left[(X(t) - E[X(t)]) \left(X(t+\tau) - E[X(t+\tau)] \right) \right]$$

another form:

$$C_{XX}(t, t+\tau) = E[X(t)X(t+\tau)] - E[X(t)]E[X(t+\tau)]$$

= $R_{XX}(t, t+\tau) - E[X(t)]E[X(t+\tau)]$ (7.3)

Definition 7.16 The cross-covariance function of r.p.'s X(t) and Y(t) is defined as:

$$C_{XY}(t,t+\tau) \stackrel{\Delta}{=} E\left[\left(X(t) - E[X(t)]\right)\left(Y(t+\tau) - E[Y(t+\tau)]\right)\right]$$

or

$$C_{XY}(t, t+\tau) = R_{XY}(t, t+\tau) - E[X(t)]E[Y(t+\tau)]$$
(7.4)

Note:

If X(t) and Y(t) are JWSS, then (7.3) and (7.4) become:

$$C_{XX}(\tau) = R_{XX}(\tau) - \overline{X}^2$$

and

$$X_{XY}(\tau) = R_{XY}(\tau) - \overline{X} \cdot \overline{Y}$$

Note:

The variance of a WSS r.p. X(t) is the value of $C_{XX}(\tau)$ at $\tau = 0$, i.e.:

$$\sigma_X^2 \stackrel{\Delta}{=} E\left[X^2(t)\right] - E\left[X(t)\right]^2$$
$$= R_{XX}(0) - \overline{X}^2$$
$$\stackrel{\Delta}{=} C_{XX}(0)$$

Definition 7.17 Two random processes X(t) and Y(t) are called *uncorrelated* if: ¹³

$$C_{XY}(t,t+\tau) = 0$$

or, equivalently

$$R_{XY}(t, t+\tau) = E\left[X(t)\right] \cdot E\left[X(t+\tau)\right]$$

Remark:

For two random processes X(t) and Y(t),

statistically independent $\stackrel{\bigodot}{\overleftarrow{X}}$ uncorrelated

(cf.) The reverse is ONLY valid when X(t) and Y(t) are jointly Gaussian random processes ! ¹⁴

¹³Caution: "uncorrelatedness" means $C_{XY}(t, t + \tau) = 0$, NOT $R_{XY}(t, t + \tau) = 0$. ¹⁴To be discussed later.

7.5 Measurement of correlation functions

In real world, we cannot measure correlations in statistical sense, since we cannot have all of the ensemble of X(t).

- \implies We have to resort to time averages of a specific sample function x(t).
- \implies The process X(t) must be assumed to *ergodic* like it or not.
- \implies Moreover, the observation time must be limited!
 - : approximation needed !!!

Figure 7.14: A specific sample function x(t) with limited observation time.

Block diagram:

Figure 7.15: A block diagram of measuring correlation of random processes.

Analysis:

The output of the system at time $t = t_1 + 2T$, where t_1 is arbitrary, is:

$$R_0(t_1 + 2T) = \frac{1}{2T} \int_{t_1}^{t_1 + 2T} x(t - T)y(t - T + \tau)dt$$
(7.5)

Let t' = t - T, then:

$$R_0(t_1 + 2T) = \frac{1}{2T} \int_{t_1 - T}^{t_1 + T} x(t') y(t' + \tau) dt'$$

Choose $t_1 = 0$, ¹⁶ then: ¹⁷

$$R_{0}(2T) = \frac{1}{2T} \int_{-T}^{T} x(t) y(t+\tau) dt$$

$$\approx \mathcal{R}_{XY}(\tau) \quad : \text{ time correlation function (approximation)}$$

$$= R_{XY}(\tau) \quad (\text{since } X(t) \text{ and } Y(t) \text{ are jointly ergodic})$$

 \implies "Repeat with different τ until all of the desired range of τ is covered !" (e.g. $0 \le \tau \le T$) ¹⁸

 18 Refer (7.5).

¹⁵This assumption is for replacing statistical averages of r.p. X(t) with time averages of a sample function x(t).

¹⁶Since jointly ergodic means the JWSS, and $\int_{t_1-T}^{t_1+T}$ should be independent of t_1 for large T. ¹⁷Recall $\mathcal{R}_{XY}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) y(t+\tau) dt$.

7.6 Gaussian random processes

Among various random processes, one of the most important and frequently used r.p. is the Gaussian random process.

Definition 7.18 A random process X(t) is called *Gaussian* if for any N = 1, 2, ...and given times $t_1, t_2, ..., t_N$, the random vector $\underline{X} \stackrel{\Delta}{=} (X_1, X_2, ..., X_N)^T$ are jointly Gaussian, where $X_i = X(t_1)$,

i.e., the joint probability density function must be in the following form: 19 20

$$f_X(x_1,\ldots,x_N;t_1,\ldots,t_N) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{C}_X|}} \exp\left\{-\frac{1}{2}(\underline{x}-\overline{\underline{X}})^T \mathbf{C}_X^{-1}(\underline{x}-\overline{\underline{X}})\right\}$$

where

(1) \underline{x} is a specific vector of \underline{X} :

$$\underline{x} = (x_1, x_2, \dots, x_N)^T$$

(2) \overline{X} is the mean vector:

$$\underline{\overline{X}} = \left(\overline{X_1}, \overline{X_2}, \dots, \overline{X_N}\right)^T$$

(3) \mathbf{C}_X is the $N \times N$ covariance matrix:

$$\mathbf{C}_{X} = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1N} \\ C_{21} & C_{22} & \cdots & C_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ C_{N1} & C_{N2} & \cdots & C_{NN} \end{bmatrix}$$

where

$$C_{ik} \stackrel{\Delta}{=} C_{X_i X_k} = E\left[(X_i - \overline{X_i})(X_k - \overline{X_k})\right]$$

= $C_{XX}(t_i, t_k)$
: autocovariance of $X(t)$ at $t = t_1$ and $t = t_k$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\overline{x})^2}{2\sigma^2}}$$

¹⁹Notice that the only two quantities we need to completely define a Gaussian r.p. are the mean vector \overline{X} and the covariance matrix \mathbf{C}_X .

 $^{^{20}}$ Recall that the p.d.f. of a Gaussian r.v. is:

NOTE:

We only need the *mean* and *autocovariance functions* (or autocorrelation) of X(t) to *completely* specify a Gaussian random process !!! ²¹

Remark:

If X(t) is a WSS Gaussian random process, then: ²²

- (i) $\overline{X_i} = E[X(t_i)] = \overline{X}, \quad \forall i = 1, 2, \dots, N$: constant
- (ii) $C_{XX}(t_i, t_k) = C_{XX}(t_k t_i)$: function of time difference only
 - \implies The covariance matrix will be a symmetric matrix !. (\because since $R_{XX}(\tau)$ is symmetric.)

Example 7.9

A WSS Gaussian r.p. X(t) has the following characteristics:

- (i) $\overline{X} = 4$.
- (ii) $R_{XX}(\tau) = 25e^{-3|\tau|}$.

Then, what is the p.d.f. of a random vector $(X(t_1), X(t_2), X(t_3))^T$, where $t_i = t_0 + \frac{1}{2}(i-1)$, i = 1, 2, 3 for an arbitrary t_0 ?

Solution:

.

We only need to find the mean vector and the covariance matrix !

(1) $\overline{X} = (4, 4, 4)^T$, since X(t) is WSS. (2) $C_{XX}(t_i, t_k) = 25e^{-3|t_i - t_k|} - 16$, where $t_i - t_k = \frac{1}{2}(i - k)$ for i, k = 1, 2, 3. $\mathbf{C}_X = \begin{bmatrix} 9 & 25e^{-\frac{3}{2}} - 16 & 25e^{-3} - 16 \\ 25e^{-\frac{3}{2}} - 16 & 9 & 25e^{-\frac{3}{2}} - 16 \\ 25e^{-3} - 16 & 25e^{-\frac{3}{2}} - 16 & 9 \end{bmatrix}$:symmetric

 ${}^{21}C_{XX}(t_i, t_k) = R_{XX}(t_i, t_k) - E[X_i]E[X_k].$ 22 If X(t) is WSS, then

 $C_{XX}(t_i, t_k) = R_{XX}(t_i, t_k) - E[X_i]E[X_k] = R_{XX}(t_i - t_k) - \overline{X}^2$: function of time difference only

Definition 7.19 Two random processes X(t) and Y(t) are called *jointly Gaussian* if rnadom variables $X(t_1), X(t_2), \ldots, X(t_N), Y(t'_1), Y(t'_2), \ldots, Y(t'_M)$ are jointly Gaussian for any $N, t_1, t_2, \ldots t_N$, and $M, t'_1, t'_2, \ldots, t'_M$.

FACT:

If two r.p.'s X(t) and Y(t) are jointly Gaussian, then:

statistical independence \equiv uncorrelatedness

Proof: assignment ²³

 $^{^{23}}$ You only need to prove that *uncorrelatedness* implies the *statistical independence*, since the other direction is always true.