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Chapter 8

Random Processes - Spectral
Characteristics

So far, we have considered the characteristics of random processes in time domain,
i.e.





autocorrelation function
cross-correlation function
covariance function
atationarity & ergodicity

...

Objective:

Now, we study the spectral characteristics of random processes via “Fourier trans-
form”.

Recall: Wiener-Khinchin theorem

Auto power spectral density
F←→ Autocorrelation

Cross power spectral density
F←→ Cross-correlation
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8.1 Power spectral density (PSD) and its prop-
erties

8.1.1 Fourier transform: review

The Fourier transform pair for a non-periodic signal x(t) is as follows:

X(ω) = F [x(t)]
∆
=

∫ ∞

−∞
x(t)e−jωtdt

x(t) = F−1 [X(ω)]
∆
=

1

2π

∫ ∞

−∞
X(ω)ejωtdω

(cf) X(ω) represents the distribution of frequency components contained in the signal
x(t) !

Note: Condition(s) for the existence of F.T.:

(a) x(t) must be absolutely integrable, i.e.

∫ ∞

−∞
|x(t)|dt < ∞

(b) x(t) must satisfy the Dirichlet conditions given below:

(i) x(t) must have finite number of finite discontinuities within any finite time
interval.

(ii) x(t) must have finite number of finite maxima and minima within any time
interval.

=⇒ Often many sample functions (x(t)) from a random process X(t) do not satisfy
the above condition(s), i.e. the Fourier transform of X(t) does not exist. 1

=⇒ Instead of direct F.T., we search for the distribution of power 2 along the fre-
quency domain in order to guarantee the existence of frequency domain representation
of a random process as T →∞.

=⇒ Concept of Power Spectral Density (PSD) !!!

1Especially the condition (a), and note that
∫∞
−∞ |x(t)|dt < ∞ cannot be checked in practice!

2This implies that we will consider X(t) within finite duration time interval.
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8.1.2 Derivation of power spectral density
3

Define xT (t) as a portion of a sample function x(t) from a r.p. X(t):

xT (t) =





x(t) −T < t < T

0 elsewhere

Then, since xT (t) is absolutely integrable 4, i.e.

∫ ∞

−∞
|xT (t)|dt =

∫ T

−T
|x(t)|dy < ∞,

there ∃ the Fourier transform XT (ω) of xT (t).

XT (ω) =
∫ ∞

−∞
xT (t)e−jωtdt =

∫ T

−T
x(t)e−jωtdt

Since xT (t) has its F.T., the Parseval’s theorem holds, i.e: the energy(power) in
time domain equals to the energy(power) in frequency domain, from which it follows:

E =
(∫ ∞

−∞
x2

T (t)dt
)

=
∫ T

−T
x2(t)dt ≡ 1

2π

∫ ∞

−∞
|XT (ω)|2 dω (8.1)

Expressing (8.1) in terms of average power in (−T, T ), we get: 5

P =
1

2T

∫ T

−T
x2(t)dt =

1

2π

∫ ∞

−∞
|XT (ω)|2

2T
dω (8.2)

Notes on (8.2):

1. The intgrand of RHS is in the form of power spectral density, i.e. it represents
the distribution of power in xT (t) along frequency.

2. But, only for −T < t < T in x(t), i.e it does not represent the entire sample
function x(t) from X(t), and therefore we must let T →∞.

3. Also, it is only for a specific sample function x(t), i.e. it is a random variable
for the r.p. X(t), and therefore we must take the expectation of it!

3Sometimes it called also as the power denisty spectrum.
4Assuming x(t) satisfies the Dirichlet conditions.
5This corresponds to the power of x(t), or the energy of xT (t).
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Therefore: by taking the mathematical expectation of (8.2) and letting T → ∞, we
obtain the average power PXX of the random process X(t).

PXX = lim
T→∞

1

2T

∫ T

−T
E

[
x2(t)

]
dt ≡ 1

2π

∫ ∞

−∞
lim

T→∞
E [|XT (ω)|2]

2T
dω (8.3)

Remarks:

(i) Notice that the LHS of (8.3) is the time average of the 2nd moment, i.e.
A {E [X2(t)]}.

(ii) If x(t) is WSS, then PXX = X2 = constant 6 .

From (8.3), we have the following definition of the power spectral density for a random
process X(t):

SXX(ω)
∆
= lim

T→∞
E [|XT (ω)|2]

2T

Corresponding average power comtained in X(t) can be calculated by:

PXX =
1

2π

∫ ∞

−∞
SXX(ω)dω

6If X(t) is wss, E[X2(t)] = RXX(0) = X2.
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Example 8.1

Calculate the average power of the following random process X(t) both in time
and frequency domains.

X(t) = A cos(ω0t + Θ)

where A, ω0 are constants, and Θ ∼ U [0, π
2
].

Solution:

(1) Average power in time domain:

PXX = A
{
E

[
X2(t)

]}
= lim

T→∞
1

2T

∫ T

−T
E

[
X2(t)

]
dt

Here, the second mement of X(t) is as follows:

E
[
X2(t)

]
= E

[
A2 cos2(ω0t + Θ)

]

= E

[
A2

2
+

A2

2
cos(2ω0t + 2Θ)

]

=
A2

2
+

A2

2

∫ π
2

0
cos(2ω0t + 2θ) · 2

π
dθ

=
A2

2
+

A2

2

1

2
{sin(2ω0t + π)− sin(2ω0t)} · 2

π

=
A2

2
+

A2

2

1

2
{− sin(2ω0t)− sin(2ω0t)} · 2

π

=
A2

2
− A2

π
sin(2ω0t)

(cf) Note that E [X2(t)] 6= constant, which means X(t) is NOT WSS !

The average power of X(t) is then: 7

PXX = lim
T→∞

1

2T

∫ T

−T

{
A2

2
− A2

π
sin(2ω0t)

}
dt =

A2

2
(watts)

7Note that
∫ T

−T
sin(2ω0t)dt = 0, since cosine function is an even function.

192



(2) Average power in frequency domain (using PSD):

From the definition of the power spectral density, we have:

SXX(ω)
∆
= lim

T→∞
E

[
|XT (ω)|2

]
· 1

2T

where the Fourier transform of xT (t) can be derived as: 8

XT (ω) =
∫ T

−T
A cos(ω0t + Θ)s−jωtdt

... (assignment)

= AT
{
Sa [(ω − ω0)T ] ejΘ + Sa [(ω + ω0)T ] e−jΘ

}

where Sa(x)
∆
= sin(x)

x
.

Now,

|XT (ω)|2 = XT (ω) ·X∗
T (ω)

= A2T 2
{
Sa2 [(ω − ω0)T ] + Sa [(ω − ω0)T ] Sa [(ω + ω0)T ] ej2Θ

+ Sa [(ω − ω0)T ] Sa [(ω + ω0)T ] e−j2Θ + Sa2 [(ω + ω0)T ]
}

= A2T 2
{
Sa2 [(ω − ω0)T ] + Sa2 [(ω + ω0)T ]

+ 2Sa [(ω − ω0)T ] Sa [(ω + ω0)T ] cos(2Θ)}

Therefore, we have: 9

E
[
|XT (ω)|2

]
= A2T 2

{
Sa2 [(ω − ω0)T ] + Sa2 [(ω + ω0)T ]

}

The power spectral density SXX(ω) now becomes:

SXX(ω) = lim
T→∞

A2T

2

{
Sa2 [(ω − ω0)T ] + Sa2 [(ω + ω0)T ]

}

8In the process of derivation, you may have to use the Euler’s formula to get the final expression.
9Here, notice the fact: E [cos(2Θ)] =

∫ π
2

0
cos(2θ) · 2

π dθ = 2
π

1
2 [sin(2θ)]

π
2
0 = 1

π [sin(π)− sin(0)] = 0.
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Fact: From Introduction to Random Signals and Communication Theory
by Lathi.

lim
k→∞

k

π
Sa(kt) = δ(t)

or

lim
k→∞

k

π
Sa2(kt) = δ(t)

Figure 8.1: Convergence of the sampling function Sa(·).

Therefore, the power spectral density SXX(ω) of X(t) can be expressed as
follows:

SXX(ω) = lim
T→∞

A2T

2

{
Sa2 [(ω − ω0)T ] + Sa2 [(ω + ω0)T ]

}

=
A2π

2
{δ(ω − ω0) + δ(ω + ω0)}

Corresponding average power of X(t) is then:

PXX =
1

2π

∫ ∞

−∞
SXX(ω)dω

=
1

2π

{
A2π

2
+

A2π

2

}

=
A2

2
(watts)
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8.1.3 Properties of PSD

1. SXX(ω) is real.

2. SXX(ω) ≥ 0

3. If X(t) is real, then SXX(ω) = SXX(−ω), i.e. even function of ω.

4. The average power of X(t) can be evaluated as:

PXX = A
{
E

[
X2(t)

]} or
=

1

2π

∫ ∞

−∞
SXX(ω)dω

5. The PSD of the derivative of X(t) is as follows:

SẊẊ(ω) = ω2SXX(ω) where Ẋ(t) =
d

dt
X(t)

6. If X(t) is real, then the PSD and the time average of correlation function ate
Fourier transform pair:

SXX(ω) =
∫ ∞

−∞
A [RXX(t, t + τ)] e−jωτdτ = F {A [RXX(t, t + τ)]}

or

A [RXX(t, t + τ)] =
1

2π

∫ ∞

−∞
SXX(ω)ejωτdω = F−1 {SXX(ω)}

7. If X(t) is at least WSS, then above relation in 6 becomes as follows:

SXX(ω) =
∫ ∞

−∞
RXX(τ)e−jωτdτ = F {RXX(τ)}

or

RXX(τ) =
1

2π

∫ ∞

−∞
SXX(ω)ejωτdω = F−1 {SXX(ω)}

: called Wiener Khinchine Theorem
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Proof:

1. SXX(ω)
∆
= limT→∞

E[|XT (ω)|2]
2T

= real, since |XT (ω)| is real.

2. SXX(ω)
∆
= limT→∞

E[|XT (ω)|2]
2T

≥ 0, since |XT (ω)|2 ≥ 0.

3. Notice that

XT (−ω) =
∫ T

−T
X(t)ejωtdt

=

(∫ T

−T
X∗(t)e−jωtdt

)∗

=

(∫ T

−T
X(t)e−jωtdt

)∗
: since X(t) is real

= X∗
T (ω)

Therefore, we have:

SXX(−ω) = lim
T→∞

1

2T
E

[
|XT (−ω)|2

]

= lim
T→∞

1

2T
E

[
|XT (ω)|2

]

= SXX(ω)

4. Previously shown.

5. Note that: F [ẋT (t)] = jωF [xT (t)] jωXT (ω)
∆
= ẊT (ω), and thus we have:

SẊẊ(ω) = lim
T→∞

1

2T
E

[∣∣∣ẊT (−ω)
∣∣∣
2
]

= lim
T→∞

1

2T
ω2E

[
|XT (−ω)|2

]

∆
= ω2 SXX(ω)

6. Will be shown in the next section...
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8.1.4 RMS bandwidth of the PSD

Suppose (i) X(t) is real, 10 and (ii) X(t) is a lowpass process whose power spectral
density is as follows:

Figure 8.2: The PSD of a lowpass random process X(t).

=⇒ Normalize SXX(ω) with its area to get ŜXX(ω), i.e.

ŜXX(ω) =
SXX(ω)∫ ∞

−∞
SXX(ω)dω

=⇒ Note that ŜXX(ω) is similar to a p.d.f. with its mean=0.

=⇒ We define the RMS bandwidth Wrms of X(t) as follows:

W 2
rms

∆
=

∫ ∞

−∞
ω2ŜXX(ω)dω

(cf) This corresponds to the amount of dispersion (i.e variance) in power from the
viewpoint of frequency, and notice tha similarity between W 2

rms and σ2(variance w/
its mean zero).

Likewise, for a real, bandpass process X(t), the RMS bandwidth is defined as:

W 2
rms

∆
= 4 ·

∫ ∞

0
(ω − ω)2ŜXX(ω)dω

where

ŜXX(ω)
∆
=

SXX(ω)∫∞
0 SXX(ω)dω

, ω > 0 and ω
∆
=

∫ ∞

0
ω ŜXX(ω)dω

10This means SXX(ω) is a even function of ω.
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Remark: Why the factor of 4? (
. .· BWBP = 2 BWLP)

(1) Lowpass process;

Figure 8.3: The PSD of a lowpass random process X(t).

W 2
rms

∆
=

∫ ∞

−∞
ω2ŜXX(ω)dω

(2) Bandpass process:

Figure 8.4: The PSD of a bandpass random process X(t).

Considering only for ω > 0,

W 2 =
∫ ∞

0
(ω − ω)2ŜXX(ω)dω where ŜXX(ω) =

SXX(ω)∫∞
0 SXX(ω)dω

Therefore, the RMS bandwidth of a bandpass random process Wrms is then:

W 2
rms = (2W )2 = 4W 2 = 4 ·

∫ ∞

0
(ω − ω)2ŜXX(ω)dω
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8.2 Relationship b/w PSD and autcorrelation func-
tion

: Proof of properties 6 and 7 in the previous section

Property 6: Time average of autocorrelation function and the PSD are
Fourier transform pair for a real r.p. X(t), i.e.

1

2π

∫ ∞

−∞
SXX(ω)ejωτdω = A [RXX(t, t + τ)] (8.4)

or

F {A [RXX(t, t + τ)]} = SXX(ω)

Proof:

SXX(ω)
∆
= lim

T→∞
1

2T
E

[
|XT (ω)|2

]

= lim
T→∞

1

2T
E [X∗

T (ω)XT (ω)]

= lim
T→∞

1

2T
E

[∫ T

−T
X(t1)e

jωt1dt1

∫ T

−T
X(t2)e

−jωt2dt2

]
: X(t) is real

= lim
T→∞

1

2T

∫ T

−T

∫ T

−T
E [X(t1)X(t2)] e

−jω(t2−t1)dt1dt2

= lim
T→∞

1

2T

∫ T

−T

∫ T

−T
RXX(t1, t2)e

−jω(t2−t1)dt1dt2

(Let t1 = t and t2 = t1 + τ = t + τ , then dt1 = dt and dt2 = dτ)

= lim
T→∞

1

2T

[∫ −t+T

−t−T

{∫ T

−T
RXX(t, t + τ)dt

}
e−jωτdτ

]

=
∫ ∞

−∞

[
lim

T→∞
1

2T

∫ T

−T
RXX(t, t + τ)dt

]
e−jωτdτ

=
∫ ∞

−∞
A [RXX(t, t + τ)] e−jωτdτ

∆
= F {A [RXX(t, t + τ)]}
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Note: If X(t) is a WSS random process, then:

A [RXX(t, t + τ)] = lim
T→∞

1

2T

∫ T

−T
RXX(t, t + τ)dt

= lim
T→∞

1

2T

∫ T

−T
RXX(τ)dt

= RXX(τ)

Therefore, (8.4) becomes:

SXX(ω) =
∫ ∞

−∞
RXX(τ)e−jωτdt

or

RXX(τ) =
1

2π

∫ ∞

−∞
SXX(ω)ejωτdω

i.e., we have the following relationship between the autocorrelation function and the
power spectral density, which is called Wiener-Khinchine Relation:

RXX(τ)
F←→ SXX(ω)

Note: Given tha PSD of a random process, we can recover:

(i) The autocorrelation function RXX(τ) if X(t) is at least WSS.

(ii) The time average of the autocorrelation function A [RXX(t, t + τ)], if X(t) is
non-stationay.

Self study: Example 7.2-1 of the textbook

200



8.3 Cross power spectral density and its proper-
ties

8.3.1 Cross power spectral density

Given two real random processes X(t) and Y (t), define xT (t) and yT (t) as portions
of sample functions x(t) and y(t) from the r.p.’s X(t) and Y (t), i.e.:

xT (t)
∆
=

{
x(t) −T < t < T
0 elsewhere

yT (t)
∆
=

{
y(t) −T < t < T
0 elsewhere

Then, since xT (t) and yT (t) are absolutely integrable, ∃ F.T. of them. (i.e., xT (t)
F↔

XT (ω), and yT (t)
F↔ YT (ω).)

=⇒ The cross power of x(t) and y(t) wothin [−T, T ] is:

PXY (T )
∆
=

1

2T

∫ T

−T
xT (t)yT (t)dt

=
1

2T

∫ T

−T
x(t)y(t)dt

≡ 1

2π

∫ ∞

−∞
1

2T
{X∗

T (ω)YT (ω)} dω : by Parseval’s theorem

: random variable: depending on particular sample functions

=⇒ The average cross power of x(t) and y(t) within [−T, T ] is then:

PXY (T )
∆
= E [PXY (T )] =

1

2T

∫ T

−T
E [X(t)Y (t)] dt

=
1

2T

∫ T

−T
RXY (t, t)dt

or≡ 1

2π

∫ ∞

−∞
1

2T
E [X∗

T (ω)YT (ω)] dω
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=⇒ The total(overall) average cross power is then, by T → ∞:

PXY = lim
T→∞

1

2T

∫ T

−T
RXY (t, t)dt

or≡ 1

2π

∫ ∞

−∞
lim

T→∞
1

2T
E [X∗

T (ω)YT (ω)] dω

(cf) Notice that the integrand in the second integral above is in the form of the cross
power spectral density between X(t) and Y (t), SXY (ω):

Definition of the cross PSD:

SXY (ω)
∆
= lim

T→∞
1

2T
E [X∗

T (ω)YT (ω)]

and corresponding cross power in X(t) and Y (t) is given by:

PXY =
1

2π

∫ ∞

−∞
SXY (ω)dω

Likewise, we can define the cross PSD b/w Y (t) and X(t) as:

SY X(ω)
∆
= lim

T→∞
1

2T
E [Y ∗

T (ω)XT (ω)]

and corresponding cross power in X(t) and Y (t) is given by:

PY X =
1

2π

∫ ∞

−∞
SY X(ω)dω
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8.3.2 Properties of cross PSD

Suppose X(t) and Y (t) are real random processes, then:

1. Cross PSD is conjugate symmetric: 11

SXY (ω = SY X(−ω) = S∗Y X(ω)

2. The real part of cross PSD is even function of ω:

Re [SXY (ω)] = Re [SXY (−ω)]

Re [SY X(ω)] = Re [SY X(−ω)]

3. The imaginary part of cross PSD is odd function of ω:

Im [SXY (ω)] = −Im [SXY (−ω)]

Im [SY X(ω)] = −Im [SY X(−ω)]

4. If X(t) and Y (t) are orthogonal, 12 then:

SXY (ω) = SY X(ω) = 0

5. If X(t) and Y (t) are uncorrelated, 13 and E[X(t)] = X and E[Y (t)] = Y , then:

SXY (ω) = SY X(ω) = 2πX Y δ(ω)

6. Cross PSD and the time average of cross correlation function are Fourier trans-
form pair, i.e.:

A [RXY (t, t + τ)]
F↔ SXY (ω)

A [RY X(t, t + τ)]
F↔ SY X(ω)

7. If X(t) and Y (t) are JWSS, then:

RXY (τ)
F↔ SXY (ω)

RY X(τ)
F↔ SY X(ω)

proof: Assignment 14

11Recall that the auto PSD SXX(ω) is always real, and even function of ω.
12This means that E[X(t)Y (t)] = 0.
13This means that E[X(t)Y (t)] = E[X(t)]E[Y (t)].
14Similar to those for auto PSD.
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Question:
If a real r.p. W (t) is defined as a sum of two real r.p.’s X(t) and Y (t), then what is
the PSD of W (t) in terms of the PSD’s related to X(t) and Y (t)?

Given:

W (t)
∆
= X(t) + Y (t)

The autocorrelation function of W (t) is:

RWW (t, t + τ)
∆
= E [W (t)W (t + τ)]

= E [{X(t) + Y (t)} {X(t + τ) + Y (t + τ)}]

= E [X(t)X(t + τ)] + E [X(t)Y (t + τ)]

+E [Y (t)X(t + τ)] + E [Y (t)Y (t + τ)]

≡ RXX(t, t + τ) + RXY (t, t + τ) + RY X(t, t + τ) + RY Y (t, t + τ)

Then, the auto PSD of W (t) is:

SWW (ω) = F {A [RWW (t, t + τ)]}

= F {A [RXX(t, t + τ)]}+ F {A [RXY (t, t + τ)]}

+F {A [RY X(t, t + τ)]}+ F {A [RY Y (t, t + τ)]}

= SXX(ω) + SXY (ω) + SY X(ω) + SY Y (ω)

Note:

(1) If X(t) and Y (t) are orthogonal, i.e. RXY (t, t + τ) = RY X(t, t + τ) = 0, then:

SWW (ω) = SXX(ω) + SY Y (ω)

(2) If X(t) and Y (t) are uncorrelated to each other and E[X(t)] = X, E[Y (t)] = Y ,

i.e. RXY (t, t + τ) = RY X(t, t + τ) = X Y , and thus F {A [RXY (t, t + τ)]} =

F {A [RY X(t, t + τ)]} = F
{
X Y

}
= 2πX Y δ(ω), then:

SWW (ω) = SXX(ω) + SY Y (ω) + 4πX Y δ(ω)
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8.4 Relationship between cross PSD and cross-
correlation function

Assignment (READ): The proof of properties 6 & 7 in previous section

Example 8.2

Given the cross-correlation function RXY (t, t + τ) as follows, 15 find the cross
power spectral density SXY (ω) between X(t) and Y (t).

RXY (t, t + τ) =
AB

2
{sin(ω0τ + cos (ω0(2t + τ))}

Solution:

SXY (ω)
∆
= F {A [RXY (t, t + τ)]}

A [RXY (t, t + τ)] = lim
T→∞

1

2T

∫ T

−T
RXY (t, t + τ)dt

=
AB

2
sin(ω0τ) +

AB

2
lim

T→∞
1

2T

∫ T

−T
cos (ω0(2t + τ)) dt

=
AB

2
sin(ω0τ) +

AB

2
lim

T→∞
1

2T

[
1

2ω0

sin (ω0(2t + τ))
]T

−T

=
AB

2
sin(ω0τ)

+
AB

2
lim

T→∞
1

2T

1

2ω0

{sin (ω0(2T + τ)) + sin (ω0(2T − τ))}

=
AB

2
sin(ω0τ)

Therefore, the cross PSD SXY (ω) becomes:

SXY (ω) = F
{

AB

2
sin(ω0τ)

}
=

AB

2
· jπ [δ(ω + ω0)− δ(ω − ω0)]

Corresponding average cross power between X(t) and Y (t) is then: 16

PXY =
1

2π

∫ ∞

−∞
SXY (ω)dω = 0

15Notice that X(t) and Y (t) are NOT JWSS.
16If the cross-correlation was RXY (t, t+τ) = AB

2 {cos(ω0τ + cos (ω0(2t + τ))}, then the cross PSD
is SXY (ω) = AB

2 · π [δ(ω + ω0) + δ(ω − ω0)] and thus the average cross power is PXY = AB
2 (watts).
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8.5 Some noise definitions and other topics

: Definitions of noise in terms of PSD

8.5.1 White and colored noise

(1) White noise 17

Definition 8.1 A sample function n(t) of a WSS noise random process N(t) is called
a white noise if:

SNN(ω) =
N0

2
: constant ∀ ω

Then, corresponding autocorrelation function of a white noise is in the form of the
Dirac delta function, i.e. 18

RNN(τ) = F−1 {SNN(ω)} =
N0

2
δ(τ)

Figure 8.5: Auto PSD and autocorrelation function of a white noise.

Note:

(i) White noise is physically unrealizable, since any signal cannot have an infinite
power:

PNN =
1

2π

∫ ∞

−∞
SNN(ω)dω = ∞

(ii) Close approximation to the white noise are: (a) lightening phenomenon (b)
thermal noise etc..

17Why white? : If you add up all of the light frequencies, you end up getting a white light.
18Note that RNN (·) is a function of τ only, since N(t) is WSS; and recall that δ(t) F↔ 1.
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(2) Colored noise 19

Definition 8.2 A noise which is NOT white is called a colored noise.

Example 8.3

Bandlimited white noise

SNN(ω) =





Pπ
W

−W < ω < W

0 elsewhere

power =
1

2π

∫ ∞

−∞
SNN(ω)dω =

1

2π
2W · Pπ

W
= P (watts)

Figure 8.6: Auto power spectral density of a colored noise.

Corresponding autocorrelation function is then:

RNN(τ) = F−1 {SNN(ω} = P · Sa (Wτ)

where Sa(x)
∆
= sin(x)

x
.

power = RNN(0) = P (watts)

Figure 8.7: Autocorrelation function of a colored noise.

19Why colored? : portions of visible light frequencies give a certain color.
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8.5.2 Product device response to a random signal

Figure 8.8: Block diagram of a product device.

Example 8.4

AMSC(amplitude modulation w/ suppressed carrier) 20

Figure 8.9: AMSC.

Question:

Suppose X(t) is a WSS r.p., then what is the PSD of the output Y (t) in terms of the
PSD of X(t)?

Steps:

(i) Y (t)

(ii) RY Y (t, t + τ)

(iii) A [RY Y (t, t + τ)]

(iv) SY Y (ω) = F {A [RY Y (t, t + τ)]}

20Note that the carrier c(t) = A cos(ωct) is a deterministic signal, i.e. A and ωc are constant.

208



(i) The output signal:

Y (t) = AX(t) cos(ωct)

(ii) The autocorrelation of the output:

RY Y (t, t + τ)
∆
= E [Y (t)Y (t + τ)]

= E [AX(t) cos(ωct)AX(t + τ) cos(ωct + ωcτ)]

= A2RXX(τ) cos(ωct) cos(ωct + ωcτ) (
. .· X(t) is WSS)

=
A2

2
RXX(τ) {cos(ωcτ) + cos(2ωct + ωcτ)}

NOTE: Notice that Y (t) is NOT WSS, 21 even if X(t) is WSS, and this is
because the product device is a non-linear system!!!

(iii) The time average of RY Y (t, t + τ):

A [RY Y (t, t + τ)] = lim
T→∞

1

2T

∫ T

−T

A2

2
RXX(τ) {cos(ωcτ) + cos(2ωct + ωcτ)} dt

=
A2

2
RXX(τ) cos(ωcτ) + lim

T→∞
1

2T
(constant)

21RY Y depends on t.
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(iv) The auto PSD of Y (t):

SY Y (ω) = F
{

A2

2
RXX(τ) cos(ωcτ)

}

=
A2

2
[F {RXX(τ)} ∗ F {cos(ωcτ)}] · 1

2π

=
A2

4π
[SXX(ω) ∗ {πδ(ω − ωc) + πδ(ω + ωc)}]

=
A2

4
[SXX(ω − ωc) + SXX(ω + ωc)]

Figure 8.10: The auto PSD’s of the input X(t) and the output Y (t).

Example: Demodulation of AMSC:

Z(t) = Y (t)A cos(ωct)

Express SZZ(ω) in terms of SXX(ω).

: Assignment
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