Contents

8	Rar	ndom Processes - Spectral Characteristics	188	
	8.1 Power spectral density (PSD) and its properties			
		8.1.1 Fourier transform: review	189	
		8.1.2 Derivation of power spectral density	190	
		8.1.3 Properties of PSD	195	
		8.1.4 RMS bandwidth of the PSD	197	
	8.2 Relationship b/w PSD and autcorrelation function			
	8.3	3.3 Cross power spectral density and its properties		
		8.3.1 Cross power spectral density	201	
		8.3.2 Properties of cross PSD	203	
	8.4 Relationship between cross PSD and cross-correlation function		205	
	8.5 Some noise definitions and other topics			
		8.5.1 White and colored noise	206	
		8.5.2 Product device response to a random signal	208	

Chapter 8

Random Processes - Spectral Characteristics

So far, we have considered the characteristics of random processes in time domain, i.e.

Objective:

Now, we study the spectral characteristics of random processes via "Fourier transform".

Recall: Wiener-Khinchin theorem

Auto power spectral density	$\overset{\mathcal{F}}{\longleftrightarrow}$	Autocorrelation

Cross power spectral density $\stackrel{\mathcal{F}}{\longleftrightarrow}$ Cross-correlation

8.1 Power spectral density (PSD) and its properties

8.1.1 Fourier transform: review

The Fourier transform pair for a non-periodic signal x(t) is as follows:

$$X(\omega) = \mathcal{F}[x(t)] \stackrel{\Delta}{=} \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \mathcal{F}^{-1}[X(\omega)] \triangleq \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

(cf) $X(\omega)$ represents the distribution of frequency components contained in the signal x(t) !

Note: Condition(s) for the existence of F.T.:

(a) x(t) must be absolutely integrable, i.e.

$$\int_{-\infty}^{\infty} |x(t)| dt < \infty$$

(b) x(t) must satisfy the Dirichlet conditions given below:

- (i) x(t) must have finite number of finite discontinuities within any finite time interval.
- (ii) x(t) must have finite number of finite maxima and minima within any time interval.

 \implies Often many sample functions (x(t)) from a random process X(t) do not satisfy the above condition(s), i.e. the Fourier transform of X(t) does not exist.¹

 \implies Instead of direct F.T., we search for the distribution of **power**² along the frequency domain in order to guarantee the existence of frequency domain representation of a random process as $T \to \infty$.

\implies Concept of Power Spectral Density (PSD) !!!

¹Especially the condition (a), and note that $\int_{-\infty}^{\infty} |x(t)| dt < \infty$ cannot be checked in practice! ²This implies that we will consider X(t) within *finite duration* time interval.

8.1.2 Derivation of power spectral density

Define $x_T(t)$ as a portion of a sample function x(t) from a r.p. X(t):

$$x_T(t) = \begin{cases} x(t) & -T < t < T \\ 0 & \text{elsewhere} \end{cases}$$

Then, since $x_T(t)$ is absolutely integrable ⁴, i.e.

$$\int_{-\infty}^{\infty} |x_T(t)| dt = \int_{-T}^{T} |x(t)| dy < \infty,$$

there \exists the Fourier transform $X_T(\omega)$ of $x_T(t)$.

$$X_T(\omega) = \int_{-\infty}^{\infty} x_T(t) e^{-j\omega t} dt = \int_{-T}^{T} x(t) e^{-j\omega t} dt$$

Since $x_T(t)$ has its F.T., the Parseval's theorem holds, i.e. the energy(power) in time domain equals to the energy(power) in frequency domain, from which it follows:

$$E = \left(\int_{-\infty}^{\infty} x_T^2(t)dt\right) = \int_{-T}^{T} x^2(t)dt \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} \left|X_T(\omega)\right|^2 d\omega$$
(8.1)

Expressing (8.1) in terms of average power in (-T, T), we get: ⁵

$$P = \frac{1}{2T} \int_{-T}^{T} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|X_T(\omega)|^2}{2T} d\omega$$
(8.2)

Notes on (8.2):

3

- 1. The integrand of RHS is in the form of power spectral density, i.e. it represents the distribution of power in $x_T(t)$ along frequency.
- 2. But, only for -T < t < T in x(t), i.e it does not represent the entire sample function x(t) from X(t), and therefore we must let $T \to \infty$.
- 3. Also, it is only for a specific sample function x(t), i.e. it is a random variable for the r.p. X(t), and therefore we must take the expectation of it!

³Sometimes it called also as the power denisty spectrum.

⁴Assuming x(t) satisfies the Dirichlet conditions.

⁵This corresponds to the power of x(t), or the energy of $x_T(t)$.

Therefore: by taking the mathematical expectation of (8.2) and letting $T \to \infty$, we obtain the average power P_{XX} of the random process X(t).

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left[x^{2}(t)\right] dt \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{E\left[|X_{T}(\omega)|^{2}\right]}{2T} d\omega$$
(8.3)

Remarks:

- (i) Notice that the LHS of (8.3) is the time average of the 2nd moment, i.e. $A \{ E [X^2(t)] \}.$
- (ii) If x(t) is WSS, then $P_{XX} = \overline{X^2} = \text{constant}^6$.

From (8.3), we have the following definition of the power spectral density for a random process X(t):

$$S_{XX}(\omega) \triangleq \lim_{T \to \infty} \frac{E\left[|X_T(\omega)|^2\right]}{2T}$$

Corresponding average power comtained in X(t) can be calculated by:

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega$$

⁶If X(t) is wss, $E[X^2(t)] = R_{XX}(0) = \overline{X^2}$.

Example 8.1

Calculate the average power of the following random process X(t) both in time and frequency domains.

$$X(t) = A\cos(\omega_0 t + \Theta)$$

where A, ω_0 are constants, and $\Theta \sim U[0, \frac{\pi}{2}]$.

Solution:

(1) Average power in time domain:

$$P_{XX} = A\left\{E\left[X^2(t)\right]\right\} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E\left[X^2(t)\right] dt$$

Here, the second mement of X(t) is as follows:

$$E\left[X^{2}(t)\right] = E\left[A^{2}\cos^{2}(\omega_{0}t+\Theta)\right]$$

$$= E\left[\frac{A^{2}}{2} + \frac{A^{2}}{2}\cos(2\omega_{0}t+2\Theta)\right]$$

$$= \frac{A^{2}}{2} + \frac{A^{2}}{2}\int_{0}^{\frac{\pi}{2}}\cos(2\omega_{0}t+2\theta)\cdot\frac{2}{\pi}d\theta$$

$$= \frac{A^{2}}{2} + \frac{A^{2}}{2}\frac{1}{2}\left\{\sin(2\omega_{0}t+\pi) - \sin(2\omega_{0}t)\right\}\cdot\frac{2}{\pi}$$

$$= \frac{A^{2}}{2} + \frac{A^{2}}{2}\frac{1}{2}\left\{-\sin(2\omega_{0}t) - \sin(2\omega_{0}t)\right\}\cdot\frac{2}{\pi}$$

$$= \frac{A^{2}}{2} - \frac{A^{2}}{\pi}\sin(2\omega_{0}t)$$

(cf) Note that $E[X^2(t)] \neq \text{constant}$, which means X(t) is NOT WSS !

The average power of X(t) is then: ⁷

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left\{ \frac{A^2}{2} - \frac{A^2}{\pi} \sin(2\omega_0 t) \right\} dt = \frac{A^2}{2} \text{ (watts)}$$

⁷Note that $\int_{-T}^{T} \sin(2\omega_0 t) dt = 0$, since cosine function is an even function.

(2) Average power in frequency domain (using PSD):

From the definition of the power spectral density, we have:

$$S_{XX}(\omega) \triangleq \lim_{T \to \infty} E\left[|X_T(\omega)|^2\right] \cdot \frac{1}{2T}$$

where the Fourier transform of $x_T(t)$ can be derived as: ⁸

$$X_T(\omega) = \int_{-T}^{T} A\cos(\omega_0 t + \Theta) s^{-j\omega t} dt$$

: (assignment)

$$= AT \left\{ \operatorname{Sa}\left[(\omega - \omega_0)T \right] e^{j\Theta} + \operatorname{Sa}\left[(\omega + \omega_0)T \right] e^{-j\Theta} \right\}$$

where $\operatorname{Sa}(x) \stackrel{\Delta}{=} \frac{\sin(x)}{x}$.

Now,

$$\begin{aligned} |X_T(\omega)|^2 &= X_T(\omega) \cdot X_T^*(\omega) \\ &= A^2 T^2 \left\{ \operatorname{Sa}^2 \left[(\omega - \omega_0) T \right] + \operatorname{Sa} \left[(\omega - \omega_0) T \right] \operatorname{Sa} \left[(\omega + \omega_0) T \right] e^{j2\Theta} \right. \\ &+ \operatorname{Sa} \left[(\omega - \omega_0) T \right] \operatorname{Sa} \left[(\omega + \omega_0) T \right] e^{-j2\Theta} + \operatorname{Sa}^2 \left[(\omega + \omega_0) T \right] \right\} \\ &= A^2 T^2 \left\{ \operatorname{Sa}^2 \left[(\omega - \omega_0) T \right] + \operatorname{Sa}^2 \left[(\omega + \omega_0) T \right] \right. \\ &+ 2 \operatorname{Sa} \left[(\omega - \omega_0) T \right] \operatorname{Sa} \left[(\omega + \omega_0) T \right] \cos(2\Theta) \right\} \end{aligned}$$

Therefore, we have: 9

$$E\left[\left|X_{T}(\omega)\right|^{2}\right] = A^{2}T^{2}\left\{\operatorname{Sa}^{2}\left[(\omega - \omega_{0})T\right] + \operatorname{Sa}^{2}\left[(\omega + \omega_{0})T\right]\right\}$$

The power spectral density $S_{XX}(\omega)$ now becomes:

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{A^2 T}{2} \left\{ \operatorname{Sa}^2 \left[(\omega - \omega_0) T \right] + \operatorname{Sa}^2 \left[(\omega + \omega_0) T \right] \right\}$$

⁸In the process of derivation, you may have to use the Euler's formula to get the final expression. ⁹Here, notice the fact: $E\left[\cos(2\Theta)\right] = \int_0^{\frac{\pi}{2}} \cos(2\theta) \cdot \frac{2}{\pi} d\theta = \frac{2}{\pi} \frac{1}{2} \left[\sin(2\theta)\right]_0^{\frac{\pi}{2}} = \frac{1}{\pi} \left[\sin(\pi) - \sin(0)\right] = 0.$ **Fact:** From Introduction to Random Signals and Communication Theory by Lathi.

$$\lim_{k \to \infty} \frac{k}{\pi} \operatorname{Sa}(kt) = \delta(t)$$

or

$$\lim_{k \to \infty} \frac{k}{\pi} \operatorname{Sa}^2(kt) = \delta(t)$$

Figure 8.1: Convergence of the sampling function $Sa(\cdot)$.

Therefore, the power spectral density $S_{XX}(\omega)$ of X(t) can be expressed as follows:

$$S_{XX}(\omega) = \lim_{T \to \infty} \frac{A^2 T}{2} \left\{ \operatorname{Sa}^2 \left[(\omega - \omega_0) T \right] + \operatorname{Sa}^2 \left[(\omega + \omega_0) T \right] \right\}$$
$$= \frac{A^2 \pi}{2} \left\{ \delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right\}$$

Corresponding average power of X(t) is then:

$$P_{XX} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega$$
$$= \frac{1}{2\pi} \left\{ \frac{A^2 \pi}{2} + \frac{A^2 \pi}{2} \right\}$$
$$= \frac{A^2}{2} \text{ (watts)}$$

8.1.3 Properties of PSD

- 1. $S_{XX}(\omega)$ is real.
- 2. $S_{XX}(\omega) \ge 0$
- 3. If X(t) is real, then $S_{XX}(\omega) = S_{XX}(-\omega)$, i.e. even function of ω .
- 4. The average power of X(t) can be evaluated as:

$$P_{XX} = A\left\{E\left[X^2(t)\right]\right\} \stackrel{\text{or}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega$$

5. The PSD of the derivative of X(t) is as follows:

$$S_{\dot{X}\dot{X}}(\omega) = \omega^2 S_{XX}(\omega)$$
 where $\dot{X}(t) = \frac{d}{dt}X(t)$

6. If X(t) is real, then the *PSD* and the *time average of correlation function* ate Fourier transform pair:

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} A\left[R_{XX}(t,t+\tau)\right] e^{-j\omega\tau} d\tau = \mathcal{F}\left\{A\left[R_{XX}(t,t+\tau)\right]\right\}$$

or

$$A\left[R_{XX}(t,t+\tau)\right] = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega = \mathcal{F}^{-1}\left\{S_{XX}(\omega)\right\}$$

7. If X(t) is at least WSS, then above relation in 6 becomes as follows:

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau = \mathcal{F} \{ R_{XX}(\tau) \}$$

or

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega = \mathcal{F}^{-1} \{ S_{XX}(\omega) \}$$

: called Wiener Khinchine Theorem

Proof:

- 1. $S_{XX}(\omega) \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{E[|X_T(\omega)|^2]}{2T}$ = real, since $|X_T(\omega)|$ is real.
- 2. $S_{XX}(\omega) \triangleq \lim_{T \to \infty} \frac{E[|X_T(\omega)|^2]}{2T} \ge 0$, since $|X_T(\omega)|^2 \ge 0$.
- 3. Notice that

$$X_{T}(-\omega) = \int_{-T}^{T} X(t)e^{j\omega t}dt$$
$$= \left(\int_{-T}^{T} X^{*}(t)e^{-j\omega t}dt\right)^{*}$$
$$= \left(\int_{-T}^{T} X(t)e^{-j\omega t}dt\right)^{*} : \text{ since } X(t) \text{ is real}$$
$$= X_{T}^{*}(\omega)$$

Therefore, we have:

$$S_{XX}(-\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(-\omega)|^2 \right]$$
$$= \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega)|^2 \right]$$
$$= S_{XX}(\omega)$$

- 4. Previously shown.
- 5. Note that: $\mathcal{F}[\dot{x}_T(t)] = j\omega \mathcal{F}[x_T(t)] \ j\omega X_T(\omega) \stackrel{\Delta}{=} \dot{X}_T(\omega)$, and thus we have:

$$S_{\dot{X}\dot{X}}(\omega) = \lim_{T \to \infty} \frac{1}{2T} E\left[\left| \dot{X}_T(-\omega) \right|^2 \right]$$
$$= \lim_{T \to \infty} \frac{1}{2T} \omega^2 E\left[\left| X_T(-\omega) \right|^2 \right]$$
$$\triangleq \omega^2 S_{XX}(\omega)$$

6. Will be shown in the next section...

8.1.4 RMS bandwidth of the PSD

Suppose (i) X(t) is real, ¹⁰ and (ii) X(t) is a lowpass process whose power spectral density is as follows:

Figure 8.2: The PSD of a lowpass random process X(t).

 \implies Normalize $S_{XX}(\omega)$ with its area to get $\hat{S}_{XX}(\omega)$, i.e.

$$\widehat{S}_{XX}(\omega) = \frac{S_{XX}(\omega)}{\int_{-\infty}^{\infty} S_{XX}(\omega) d\omega}$$

 \implies Note that $\widehat{S}_{XX}(\omega)$ is similar to a p.d.f. with its mean=0.

 \implies We define the RMS bandwidth $W_{\rm rms}$ of X(t) as follows:

$$W_{\rm rms}^2 \stackrel{\Delta}{=} \int_{-\infty}^{\infty} \omega^2 \widehat{S}_{XX}(\omega) d\omega$$

(cf) This corresponds to the amount of dispersion (i.e variance) in power from the viewpoint of frequency, and notice tha similarity between $W_{\rm rms}^2$ and σ^2 (variance w/ its mean zero).

Likewise, for a real, bandpass process X(t), the RMS bandwidth is defined as:

$$W_{\rm rms}^2 \triangleq 4 \cdot \int_0^\infty (\omega - \overline{\omega})^2 \widehat{S}_{XX}(\omega) d\omega$$

where

$$\widehat{S}_{XX}(\omega) \triangleq \frac{S_{XX}(\omega)}{\int_0^\infty S_{XX}(\omega)d\omega}, \ \omega > 0 \quad \text{and} \quad \overline{\omega} \triangleq \int_0^\infty \omega \, \widehat{S}_{XX}(\omega)d\omega$$

¹⁰This means $S_{XX}(\omega)$ is a even function of ω .

$$(BW_{BP} = 2 BW_{LP})$$

(1) Lowpass process;

Figure 8.3: The PSD of a lowpass random process X(t).

$$W_{\rm rms}^2 \stackrel{\Delta}{=} \int_{-\infty}^{\infty} \omega^2 \widehat{S}_{XX}(\omega) d\omega$$

(2) Bandpass process:

Figure 8.4: The PSD of a bandpass random process X(t).

Considering only for $\omega > 0$,

$$W^{2} = \int_{0}^{\infty} (\omega - \overline{\omega})^{2} \widehat{S}_{XX}(\omega) d\omega \quad \text{where} \quad \widehat{S}_{XX}(\omega) = \frac{S_{XX}(\omega)}{\int_{0}^{\infty} S_{XX}(\omega) d\omega}$$

Therefore, the RMS bandwidth of a bandpass random process $W_{\rm rms}$ is then:

$$W_{\rm rms}^2 = (2W)^2 = 4W^2 = 4 \cdot \int_0^\infty (\omega - \overline{\omega})^2 \widehat{S}_{XX}(\omega) d\omega$$

8.2 Relationship b/w PSD and autcorrelation function

: Proof of properties 6 and 7 in the previous section

Property 6: Time average of autocorrelation function and the PSD are Fourier transform pair for a real r.p. X(t), i.e.

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega = A \left[R_{XX}(t, t+\tau) \right]$$
(8.4)

or

$$\mathcal{F}\left\{A\left[R_{XX}(t,t+\tau)\right]\right\} = S_{XX}(\omega)$$

Proof:

$$S_{XX}(\omega) \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{1}{2T} E\left[|X_T(\omega)|^2 \right]$$

= $\lim_{T \to \infty} \frac{1}{2T} E\left[X_T^*(\omega) X_T(\omega) \right]$
= $\lim_{T \to \infty} \frac{1}{2T} E\left[\int_{-T}^T X(t_1) e^{j\omega t_1} dt_1 \int_{-T}^T X(t_2) e^{-j\omega t_2} dt_2 \right]$: $X(t)$ is real
= $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \int_{-T}^T E\left[X(t_1) X(t_2) \right] e^{-j\omega (t_2 - t_1)} dt_1 dt_2$
= $\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T \int_{-T}^T R_{XX}(t_1, t_2) e^{-j\omega (t_2 - t_1)} dt_1 dt_2$
(Let $t_1 = t$ and $t_2 = t_1 + \tau = t + \tau$, then $dt_1 = dt$ and $dt_2 = d\tau$)

$$= \lim_{T \to \infty} \frac{1}{2T} \left[\int_{-t-T}^{-t+T} \left\{ \int_{-T}^{T} R_{XX}(t,t+\tau) dt \right\} e^{-j\omega\tau} d\tau \right]$$
$$= \int_{-\infty}^{\infty} \left[\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{XX}(t,t+\tau) dt \right] e^{-j\omega\tau} d\tau$$
$$= \int_{-\infty}^{\infty} A \left[R_{XX}(t,t+\tau) \right] e^{-j\omega\tau} d\tau$$
$$\triangleq \mathcal{F} \left\{ A \left[R_{XX}(t,t+\tau) \right] \right\}$$

Note: If X(t) is a WSS random process, then:

$$A[R_{XX}(t,t+\tau)] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{XX}(t,t+\tau) dt$$
$$= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{XX}(\tau) dt$$
$$= R_{XX}(\tau)$$

Therefore, (8.4) becomes:

$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} dt$$

or

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega$$

i.e., we have the following relationship between the autocorrelation function and the power spectral density, which is called **Wiener-Khinchine Relation**:

$$R_{XX}(\tau) \stackrel{\mathcal{F}}{\longleftrightarrow} S_{XX}(\omega)$$

Note: Given the PSD of a random process, we can recover:

- (i) The autocorrelation function $R_{XX}(\tau)$ if X(t) is at least WSS.
- (ii) The time average of the autocorrelation function $A[R_{XX}(t, t + \tau)]$, if X(t) is non-stationay.

Self study: Example 7.2-1 of the textbook

8.3 Cross power spectral density and its properties

8.3.1 Cross power spectral density

Given two real random processes X(t) and Y(t), define $x_T(t)$ and $y_T(t)$ as portions of sample functions x(t) and y(t) from the r.p.'s X(t) and Y(t), i.e.:

$$x_T(t) \triangleq \begin{cases} x(t) & -T < t < T \\ 0 & \text{elsewhere} \end{cases}$$
$$y_T(t) \triangleq \begin{cases} y(t) & -T < t < T \\ 0 & \text{elsewhere} \end{cases}$$

Then, since $x_T(t)$ and $y_T(t)$ are absolutely integrable, \exists F.T. of them. (i.e., $x_T(t) \stackrel{\mathcal{F}}{\leftrightarrow} X_T(\omega)$, and $y_T(t) \stackrel{\mathcal{F}}{\leftrightarrow} Y_T(\omega)$.)

 \implies The cross power of x(t) and y(t) wothin [-T, T] is:

$$P_{XY}(T) \stackrel{\Delta}{=} \frac{1}{2T} \int_{-T}^{T} x_T(t) y_T(t) dt$$

= $\frac{1}{2T} \int_{-T}^{T} x(t) y(t) dt$
= $\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2T} \{X_T^*(\omega) Y_T(\omega)\} d\omega$: by Parseval's theorem

: random variable: depending on particular sample functions

 \implies The average cross power of x(t) and y(t) within [-T, T] is then:

$$\begin{split} \overline{P}_{XY}(T) &\stackrel{\Delta}{=} E\left[P_{XY}(T)\right] &= \frac{1}{2T} \int_{-T}^{T} E\left[X(t)Y(t)\right] dt \\ &= \frac{1}{2T} \int_{-T}^{T} R_{XY}(t,t) dt \\ &\stackrel{\text{Or}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{2T} E\left[X_{T}^{*}(\omega)Y_{T}(\omega)\right] d\omega \end{split}$$

 \implies The total(overall) average cross power is then, by $T \rightarrow \infty$:

$$P_{XY} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{XY}(t, t) dt$$

$$\stackrel{\text{or}}{\equiv} \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{1}{2T} E\left[X_T^*(\omega) Y_T(\omega)\right] d\omega$$

(cf) Notice that the integrand in the second integral above is in the form of the cross power spectral density between X(t) and Y(t), $S_{XY}(\omega)$:

Definition of the cross PSD:

$$S_{XY}(\omega) \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{1}{2T} E\left[X_T^*(\omega)Y_T(\omega)\right]$$

and corresponding cross power in X(t) and Y(t) is given by:

$$P_{XY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) d\omega$$

Likewise, we can define the cross PSD b/w Y(t) and X(t) as:

$$S_{YX}(\omega) \stackrel{\Delta}{=} \lim_{T \to \infty} \frac{1}{2T} E\left[Y_T^*(\omega) X_T(\omega)\right]$$

and corresponding cross power in X(t) and Y(t) is given by:

$$P_{YX} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{YX}(\omega) d\omega$$

8.3.2 Properties of cross PSD

Suppose X(t) and Y(t) are *real* random processes, then:

1. Cross PSD is conjugate symmetric: ¹¹

$$S_{XY}(\omega = S_{YX}(-\omega) = S_{YX}^*(\omega)$$

2. The real part of cross PSD is even function of ω :

$$\operatorname{Re}\left[S_{XY}(\omega)\right] = \operatorname{Re}\left[S_{XY}(-\omega)\right]$$
$$\operatorname{Re}\left[S_{YX}(\omega)\right] = \operatorname{Re}\left[S_{YX}(-\omega)\right]$$

3. The imaginary part of cross PSD is odd function of ω :

$$\operatorname{Im} \left[S_{XY}(\omega) \right] = -\operatorname{Im} \left[S_{XY}(-\omega) \right]$$
$$\operatorname{Im} \left[S_{YX}(\omega) \right] = -\operatorname{Im} \left[S_{YX}(-\omega) \right]$$

4. If X(t) and Y(t) are orthogonal, ¹² then:

$$S_{XY}(\omega) = S_{YX}(\omega) = 0$$

5. If X(t) and Y(t) are uncorrelated, ¹³ and $E[X(t)] = \overline{X}$ and $E[Y(t)] = \overline{Y}$, then:

$$S_{XY}(\omega) = S_{YX}(\omega) = 2\pi \overline{X} \, \overline{Y} \delta(\omega)$$

6. Cross PSD and the time average of cross correlation function are Fourier transform pair, i.e.:

$$A[R_{XY}(t,t+\tau)] \stackrel{\mathcal{F}}{\leftrightarrow} S_{XY}(\omega)$$
$$A[R_{YX}(t,t+\tau)] \stackrel{\mathcal{F}}{\leftrightarrow} S_{YX}(\omega)$$

7. If X(t) and Y(t) are JWSS, then:

$$R_{XY}(\tau) \stackrel{\mathcal{F}}{\leftrightarrow} S_{XY}(\omega)$$
$$R_{YX}(\tau) \stackrel{\mathcal{F}}{\leftrightarrow} S_{YX}(\omega)$$

proof: Assignment ¹⁴

¹¹Recall that the auto PSD $S_{XX}(\omega)$ is always real, and even function of ω .

¹²This means that E[X(t)Y(t)] = 0.

¹³This means that E[X(t)Y(t)] = E[X(t)]E[Y(t)].

 $^{^{14}}$ Similar to those for auto PSD.

Question:

If a real r.p. W(t) is defined as a sum of two real r.p.'s X(t) and Y(t), then what is the PSD of W(t) in terms of the PSD's related to X(t) and Y(t)?

Given:

$$W(t) \stackrel{\Delta}{=} X(t) + Y(t)$$

The autocorrelation function of W(t) is:

$$R_{WW}(t, t + \tau) \triangleq E[W(t)W(t + \tau)]$$

= $E[\{X(t) + Y(t)\}\{X(t + \tau) + Y(t + \tau)\}]$
= $E[X(t)X(t + \tau)] + E[X(t)Y(t + \tau)]$
+ $E[Y(t)X(t + \tau)] + E[Y(t)Y(t + \tau)]$
= $R_{XX}(t, t + \tau) + R_{XY}(t, t + \tau) + R_{YX}(t, t + \tau) + R_{YY}(t, t + \tau)$

Then, the auto PSD of W(t) is:

$$S_{WW}(\omega) = \mathcal{F} \{ A [R_{WW}(t, t + \tau)] \}$$

= $\mathcal{F} \{ A [R_{XX}(t, t + \tau)] \} + \mathcal{F} \{ A [R_{XY}(t, t + \tau)] \}$
+ $\mathcal{F} \{ A [R_{YX}(t, t + \tau)] \} + \mathcal{F} \{ A [R_{YY}(t, t + \tau)] \}$
= $S_{XX}(\omega) + S_{XY}(\omega) + S_{YX}(\omega) + S_{YY}(\omega)$

Note:

(1) If X(t) and Y(t) are orthogonal, i.e. $R_{XY}(t, t + \tau) = R_{YX}(t, t + \tau) = 0$, then:

$$S_{WW}(\omega) = S_{XX}(\omega) + S_{YY}(\omega)$$

(2) If X(t) and Y(t) are uncorrelated to each other and $E[X(t)] = \overline{X}$, $E[Y(t)] = \overline{Y}$, i.e. $R_{XY}(t, t + \tau) = R_{YX}(t, t + \tau) = \overline{X} \overline{Y}$, and thus $\mathcal{F} \{A [R_{XY}(t, t + \tau)]\} = \mathcal{F} \{A [R_{YX}(t, t + \tau)]\} = \mathcal{F} \{\overline{X} \overline{Y}\} = 2\pi \overline{X} \overline{Y} \delta(\omega)$, then:

$$S_{WW}(\omega) = S_{XX}(\omega) + S_{YY}(\omega) + 4\pi \overline{X} \, \overline{Y} \delta(\omega)$$

Relationship between cross PSD and cross-8.4 correlation function

Assignment (READ): The proof of properties 6 & 7 in previous section

Example 8.2

Given the cross-correlation function $R_{XY}(t, t + \tau)$ as follows, ¹⁵ find the cross power spectral density $S_{XY}(\omega)$ between X(t) and Y(t).

$$R_{XY}(t,t+\tau) = \frac{AB}{2} \left\{ \sin(\omega_0 \tau + \cos(\omega_0(2t+\tau))) \right\}$$

Solution:

$$S_{XY}(\omega) \stackrel{\Delta}{=} \mathcal{F} \left\{ A \left[R_{XY}(t, t+\tau) \right] \right\}$$

$$A[R_{XY}(t,t+\tau)] = \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} R_{XY}(t,t+\tau) dt$$

$$= \frac{AB}{2} \sin(\omega_0 \tau) + \frac{AB}{2} \lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} \cos(\omega_0(2t+\tau)) dt$$

$$= \frac{AB}{2} \sin(\omega_0 \tau) + \frac{AB}{2} \lim_{T\to\infty} \frac{1}{2T} \left[\frac{1}{2\omega_0} \sin(\omega_0(2t+\tau)) \right]_{-T}^{T}$$

$$= \frac{AB}{2} \sin(\omega_0 \tau)$$

$$+ \frac{AB}{2} \lim_{T\to\infty} \frac{1}{2T} \frac{1}{2\omega_0} \left\{ \sin(\omega_0(2T+\tau)) + \sin(\omega_0(2T-\tau)) \right\}$$

$$= \frac{AB}{2} \sin(\omega_0 \tau)$$

Therefore, the cross PSD $S_{XY}(\omega)$ becomes:

$$S_{XY}(\omega) = \mathcal{F}\left\{\frac{AB}{2}\sin(\omega_0\tau)\right\} = \frac{AB}{2} \cdot j\pi \left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right]$$

Corresponding average cross power between X(t) and Y(t) is then: ¹⁶

$$P_{XY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) d\omega = 0$$

¹⁵Notice that X(t) and Y(t) are NOT JWSS. ¹⁶If the cross-correlation was $R_{XY}(t, t+\tau) = \frac{AB}{2} \{\cos(\omega_0 \tau + \cos(\omega_0(2t+\tau)))\}$, then the cross PSD is $S_{XY}(\omega) = \frac{AB}{2} \cdot \pi [\delta(\omega + \omega_0) + \delta(\omega - \omega_0)]$ and thus the average cross power is $P_{XY} = \frac{AB}{2}$ (watts).

8.5 Some noise definitions and other topics

: Definitions of noise in terms of PSD

8.5.1 White and colored noise

(1) White noise 17

Definition 8.1 A sample function n(t) of a WSS noise random process N(t) is called a *white noise* if:

$$S_{NN}(\omega) = \frac{N_0}{2}$$
 : constant $\forall \, \omega$

Then, corresponding autocorrelation function of a white noise is in the form of the Dirac delta function, i.e. 18

$$R_{NN}(\tau) = \mathcal{F}^{-1}\left\{S_{NN}(\omega)\right\} = \frac{N_0}{2}\delta(\tau)$$

Figure 8.5: Auto PSD and autocorrelation function of a white noise.

Note:

(i) White noise is physically unrealizable, since any signal cannot have an infinite power:

$$P_{NN} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) d\omega = \infty$$

(ii) Close approximation to the white noise are: (a) lightening phenomenon (b) thermal noise etc..

¹⁷Why white? : If you add up all of the light frequencies, you end up getting a white light. ¹⁸Note that $R_{NN}(\cdot)$ is a function of τ only, since N(t) is WSS; and recall that $\delta(t) \stackrel{\mathcal{F}}{\leftrightarrow} 1$.

(2) Colored noise ¹⁹

Definition 8.2 A noise which is NOT white is called a colored noise.

Example 8.3

Bandlimited white noise

$$S_{NN}(\omega) = \begin{cases} \frac{P\pi}{W} & -W < \omega < W\\ 0 & \text{elsewhere} \end{cases}$$

power =
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) d\omega = \frac{1}{2\pi} 2W \cdot \frac{P\pi}{W} = P$$
 (watts)

Figure 8.6: Auto power spectral density of a colored noise.

Corresponding autocorrelation function is then:

$$R_{NN}(\tau) = \mathcal{F}^{-1} \{ S_{NN}(\omega) \} = P \cdot \operatorname{Sa}(W\tau)$$

where $\operatorname{Sa}(x) \stackrel{\Delta}{=} \frac{\sin(x)}{x}$.

power =
$$R_{NN}(0) = P$$
 (watts)

Figure 8.7: Autocorrelation function of a colored noise.

¹⁹Why colored? : portions of visible light frequencies give a certain color.

8.5.2 Product device response to a random signal

Figure 8.8: Block diagram of a product device.

Example 8.4

 $AMSC(amplitude modulation w/ suppressed carrier)^{20}$

Figure 8.9: AMSC.

Question:

Suppose X(t) is a WSS r.p., then what is the PSD of the output Y(t) in terms of the PSD of X(t)?

Steps:

- (i) Y(t)
- (ii) $R_{YY}(t, t+\tau)$
- (iii) $A[R_{YY}(t,t+\tau)]$
- (iv) $S_{YY}(\omega) = \mathcal{F} \left\{ A \left[R_{YY}(t, t+\tau) \right] \right\}$

²⁰Note that the carrier $c(t) = A\cos(\omega_c t)$ is a deterministic signal, i.e. A and ω_c are constant.

(i) The output signal:

$$Y(t) = AX(t)\cos(\omega_c t)$$

(ii) The autocorrelation of the output:

$$R_{YY}(t, t+\tau) \stackrel{\Delta}{=} E[Y(t)Y(t+\tau)]$$

$$= E[AX(t)\cos(\omega_c t)AX(t+\tau)\cos(\omega_c t+\omega_c \tau)]$$

$$= A^2 R_{XX}(\tau)\cos(\omega_c t)\cos(\omega_c t+\omega_c \tau) \quad (\because X(t) \text{ is WSS})$$

$$= \frac{A^2}{2} R_{XX}(\tau) \{\cos(\omega_c \tau) + \cos(2\omega_c t+\omega_c \tau)\}$$

NOTE: Notice that Y(t) is NOT WSS, ²¹ even if X(t) is WSS, and this is because the product device is a non-linear system!!!

(iii) The time average of $R_{YY}(t, t + \tau)$:

$$A \left[R_{YY}(t,t+\tau) \right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \frac{A^2}{2} R_{XX}(\tau) \left\{ \cos(\omega_c \tau) + \cos(2\omega_c t + \omega_c \tau) \right\} dt$$
$$= \frac{A^2}{2} R_{XX}(\tau) \cos(\omega_c \tau) + \lim_{T \to \infty} \frac{1}{2T} (\text{constant})$$

 $^{^{21}}R_{YY}$ depends on t.

(iv) The auto PSD of Y(t):

$$S_{YY}(\omega) = \mathcal{F}\left\{\frac{A^2}{2}R_{XX}(\tau)\cos(\omega_c\tau)\right\}$$
$$= \frac{A^2}{2}\left[\mathcal{F}\left\{R_{XX}(\tau)\right\} * \mathcal{F}\left\{\cos(\omega_c\tau)\right\}\right] \cdot \frac{1}{2\pi}$$
$$= \frac{A^2}{4\pi}\left[S_{XX}(\omega) * \left\{\pi\delta(\omega-\omega_c) + \pi\delta(\omega+\omega_c)\right\}\right]$$
$$= \frac{A^2}{4}\left[S_{XX}(\omega-\omega_c) + S_{XX}(\omega+\omega_c)\right]$$

Figure 8.10: The auto PSD's of the input X(t) and the output Y(t).

Example: Demodulation of AMSC:

$$Z(t) = Y(t)A\cos(\omega_c t)$$

Express $S_{ZZ}(\omega)$ in terms of $S_{XX}(\omega)$.

: Assignment