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Chapter 8

Random Processes - Spectral
Characteristics

So far, we have considered the characteristics of random processes in time domain,
ie.

autocorrelation function
cross-correlation function
covariance function
atationarity & ergodicity

Objective:

Now, we study the spectral characteristics of random processes via “Fourier trans-
form”.

Recall: Wiener-Khinchin theorem

Auto power spectral density 2 Autocorrelation

Cross power spectral density L Cross-correlation
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8.1 Power spectral density (PSD) and its prop-
erties

8.1.1 Fourier transform: review

The Fourier transform pair for a non-periodic signal z(t) is as follows:

X(w) = Flz(t)] & / z(t)eIetdt

—00

o) = F X (w)] 2 2 |7 Xtw)e i,

271 J oo

(cf) X (w) represents the distribution of frequency components contained in the signal
x(t) !

Note: Condition(s) for the existence of F.T.:

(a) x(t) must be absolutely integrable, i.e.
/ 2 (t)]dt < oo

(b) x(t) must satisfy the Dirichlet conditions given below:
(i) 2(t) must have finite number of finite discontinuities within any finite time
interval.

(ii) 2(t) must have finite number of finite maxima and minima within any time
interval.

= Often many sample functions (x(¢)) from a random process X (¢) do not satisfy
the above condition(s), i.e. the Fourier transform of X (¢) does not exist. !

— Instead of direct F.T., we search for the distribution of power ? along the fre-
quency domain in order to guarantee the existence of frequency domain representation

of a random process as T' — oo.

— Concept of Power Spectral Density (PSD) !!!

!Especially the condition (a), and note that [*_|z(t)|dt < co cannot be checked in practice!
2This implies that we will consider X (¢) within finite duration time interval.
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8.1.2 Derivation of power spectral density

3

Define x7(t) as a portion of a sample function z(t) from a r.p. X (#):

x(t) -T<t<T

vr(t) =
0 elsewhere

Then, since xp(t) is absolutely integrable 4, i.e.

/_O:O |z (8)|dt = /i |2(t)|dy < oo,

there 3 the Fourier transform Xr(w) of z7(t).

Xr(w) = /Oo rp(t)e ¥t dt = /T x(t)e I dt

—00 =T

Since zr(t) has its F.T., the Parseval’s theorem holds, i.e: the energy(power) in
time domain equals to the energy(power) in frequency domain, from which it follows:

E-— (/_O; xQT(t)dt) - /T 22 ()dt = ;/O; | X ()] d (8.1)

-T T J—

Expressing (8.1) in terms of average power in (—T,T), we get: °

LT 1= | Xp(w))?
P:—/ Qtdt:—/ AT 8.2
o7 |t Wt = oo | o e (8:2)

Notes on (8.2):

1. The intgrand of RHS is in the form of power spectral density, i.e. it represents
the distribution of power in x7(t) along frequency.

2. But, only for =T <t < T in z(t), i.e it does not represent the entire sample
function z(t) from X (¢), and therefore we must let ' — oo.

3. Also, it is only for a specific sample function x(t), i.e. it is a random variable
for the r.p. X (t), and therefore we must take the expectation of it!

3Sometimes it called also as the power denisty spectrum.
4Assuming z(t) satisfies the Dirichlet conditions.
>This corresponds to the power of x(t), or the energy of x7(t).
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Therefore: by taking the mathematical expectation of (8.2) and letting T" — oo, we
obtain the average power Pxy of the random process X (¢).

Pyx = lim ;T/ZE ()] dt = 1/00 i 2@, g

T—o0 27T —00 T—o0 2T

Remarks:

(i) Notice that the LHS of (8.3) is the time average of the 2nd moment, i.e.
A{E[X*(1)]}-

(i) If z(¢) is WSS, then Pxx = X2 = constant ¢ .

From (8.3), we have the following definition of the power spectral density for a random
process X (t):

B[ Xp(w)]?
Sixle) 2 i DAL

Corresponding average power comtained in X (¢) can be calculated by:

1 00
PXX = %/_OO Sxx(w)du)

OTf X (t) is wss, E[X?(t)] = Rxx(0) = X2.
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Example 8.1

Calculate the average power of the following random process X () both in time
and frequency domains.

X(t) = Acos(wot + O)

where A, wy are constants, and © ~ U[0, 7].

Solution:

(1) Average power in time domain:

T—o0 2

— 2 —
Pyx = A{E[x*(1)]} 11m7/
Here, the second mement of X (¢) is as follows:
E [XQ(t)] = F [A2 cos® (wot + @)}

A2 A2
= F [ + — cos(2wot + 2@)]

2 2
A2 A2 % 2
= 55 ; cos(2wot + 26) - ;d&
A2 A2 2
_ 4 Al 2wunt — 2wt —
: + 55 {sm( wot + ) — sin(2wot) } - T
A? A%
= S +53 — sin(2wot) — sin(2wpt)} - =
A? A2
= 5 sin(2wot)
T

(cf) Note that E [X?(t)] # constant, which means X (¢) is NOT WSS !

The average power of X (t) is then: 7

2

A
Pxx = lim T/ { - Sln(Zth)} dt = > (watts)

—>002

"Note that [ TT sin(2wot)dt = 0, since cosine function is an even function.
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(2) Average power in frequency domain (using PSD):

From the definition of the power spectral density, we have:

) 1
Sxx(w) £ lim B || Xr(@)] - 5=

where the Fourier transform of z7(t) can be derived as:

T :
Xr(w) = /_TAcos(wot + O)s™dt
(assignment)

= AT {Sa [(w — wo)T] €’® + Sa[(w + wo)T) e_je}

where Sa(z) £ Sinm(x).

(XrW)I* = Xrw) Xiw)

= A’T? {Sa2 [(w— wo)T] + Sa[(w — wo)T] Sa[(w + wy)T] e/
+ Sa [(w — wo)T] Sa [(w + wo)T] e 72 + Sa? [(w + wo) T }
= AT? {88’ [(w — wo)T] + Sa’ [(w + wo)T]
+ 25a [(w — wo)T] Sa [(w + wp)T] cos(20)}

Therefore, we have: ?

E || Xr()’] = A*T* {8 [(w — wo)T] + Sa® [(w + wo) T}

The power spectral density Sxx(w) now becomes:

Sxx(w) = lim AQT {Sa2 [(w — wo)T] + Sa? [(w + wO)T]}

T—o0

8In the process of derivation, you may have to use the Euler’s formula to get the final expression.
Here, notice the fact: E [cos(20)] = [i7 cos(20) - 2d = 21 [sin(20)]¢ = < [sin(7) — sin(0)] = 0.

o
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Fact: From Introduction to Random Signals and Communication Theory
by Lathi.

lim k Sa(kt) = d(t)
k—oo 77

or

lim k Sa?(kt) = 6(t)

k—oo T

Figure 8.1: Convergence of the sampling function Sa(-).

Therefore, the power spectral density Sxx(w) of X(¢) can be expressed as
follows:

2

Sext) = fim

T {Sa2 [(w— wo)T] + Sa? [(w + wO)T]}

= A27r {6(w — wp) + 6w + wp) }

Corresponding average power of X (t) is then:

1 o)
PXX = %/—ooSXX(w)dw

I
L ) 2

2
= T (watt
5 (watts)
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8.1.3 Properties of PSD

1. Sxx(w) is real.
2. SX)(<W) Z 0
3. If X(¢) is real, then Sxx(w) = Sxx(—w), i.e. even function of w.

4. The average power of X (¢) can be evaluated as:

Pex = A{E[CO]} 2L o [T Scx)de

5. The PSD of the derivative of X (¢) is as follows:

Six(w) =w?Sxx(w) where X(t)= th(t)

6. If X(¢) is real, then the PSD and the time average of correlation function ate
Fourier transform pair:

Sxx(w) = /OO A[Rxx(t,t+ 7)) e ?*dr = F{A[Rxx(t,t +7)]}

—00

or

AlRyx (bt +7)] = ;ﬂ | Sxxt@emdo = F {Sxx(w)}

7. If X (t) is at least WSS, then above relation in 6 becomes as follows:

SX)((W) == /_O:O Rxx(7>€_jWTdT == JT{RX)((T)}

or

1 oo .
RX)((T) = %[ Sxx(w)GJWwa = :F_l {SX)(((U)}
: called Wiener Khinchine Theorem

195



Proof:

B[ X7 @)?]

57— = real, since | X7 (w)| is real.

1. SX)(<W) é liIIlT_,OO

B[|X7(w)?]

: 2
s7—— > 0, since [ Xp(w)|” > 0.

2. SX)((M) é llmT_,oo

3. Notice that

Xr(~w) = /T X (t)e'dt

-
T ) *
- ( / X*(t)e”‘”%lt)
-7
T ) *
= (/ X(t)e‘”%lt) : since X (¢) is real
-
= Xp(w)
Therefore, we have:
Sxx(—w) = lim B [ Xp(—w)l]
XX = pm oo T

~ lim 21TE [1Xr(w)?]

T—o0

- SX)(<W)

4. Previously shown.

5. Note that: Flir(t)] = jwF|zr(t)] jwXp(w) £ Xr(w), and thus we have:
) 1 . 2
Sxxlw) = Jim oo F|[Xr(-w)

. 1 2 2
= lim B [1Xr(~w)[’]

w2 Sxx(w)

6. Will be shown in the next section...
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8.1.4 RMS bandwidth of the PSD

Suppose (i) X (¢) is real, '* and (ii) X (¢) is a lowpass process whose power spectral
density is as follows:

Figure 8.2: The PSD of a lowpass random process X (t).

— Normalize Sy x(w) with its area to get Sxx(w), i.e.

S
Sxx(w xx(w )
/ Sxx (W

— Note that Sxx(w) is similar to a p.d.f. with its mean=0.

—> We define the RMS bandwidth Wrms of X (t) as follows:
2 A [T 25
Wims = /_ w*Sxx(w)dw

(cf) This corresponds to the amount of dispersion (i.e variance) in power from the
viewpoint of frequency, and notice tha similarity between Wy,q and o?(variance w/
its mean zero).

Likewise, for a real, bandpass process X (t), the RMS bandwidth is defined as:
Weps 24 / (w — ©)28x x(w)dw
0

where

SX)(<W)

a A
Sxx(w) = Io? Sxx(w)dw’

w>0 and wé/oongx(w)dw
0

19This means Sy x (w) is a even function of w.
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Remark: Why the factor of 47 (- BWgp =2BWp)

1) Lowpass process;
(

Figure 8.3: The PSD of a lowpass random process X ().

Wims = /_Oow2§XX(w)dw

(2) Bandpass process:

Figure 8.4: The PSD of a bandpass random process X (t).

Considering only for w > 0,

SXX(LU)

2 [ 28 a _
W _/0 (w—w)"Sxx(w)dw where Sxx(w) T Sx (@)

Therefore, the RMS bandwidth of a bandpass random process Wymg is then:

~

W2 o= (2W)? =4W? =4 /0 T (w = 0)28xx (w)dw
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8.2 Relationship b/w PSD and autcorrelation func-
tion

: Proof of properties 6 and 7 in the previous section

Property 6: Time average of autocorrelation function and the PSD are
Fourier transform pair for a real r.p. X(t), i.e.

1 foo ,
o / Sxx (W) dw = A [Ryx(t,t +7)] (8.4)
or
f{A [Rxx(t,t +T>]} = Sxx(w)
Proof:
1 5
Sxx(w) = Th_f};o ﬁE “XT(W)”
= i ! E X} (w)X
= i B X)X ()
= lim iE / 1)etdty / Je Idty | X (t) is real
T—oo 27T 2
a Cllggoﬁ/ / X (t2)] e 72" dtydt
= 712101027 / RXX tl,tg)e jw(tz—t) dt dtz

(Let t; =t and ty = t; +7 =t + 7, then dt; = dt and dt; = dr)

. 1 s JwT
= 711_{20271[/ {/ Rxxtt+7)dt}6 dT‘|

— /OO [hm —/ Rxx(t t—l—T)dt] e T dr

—oo | T—00 2T

= /Oo A[Rxx(t,t + 7)) e ¥ dr

—00

2 F{A[Rxx(t,t+7)}
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Note: If X (t) is a WSS random process, then:

1 T
A[Rxx(t,t+1)] = jli_rf)loﬁ/_TRXX(t,t-l-T)dt

1T
= Ylgroloﬁ/fTRXX(’]ﬁdt

= RX)((T)

Therefore, (8.4) becomes:

SX)((UJ) = ‘/_ Rxx(T)e_ijdt

or

1y :
RXX(T) = % [ SXX(w)eJ‘”dw

i.e., we have the following relationship between the autocorrelation function and the
power spectral density, which is called Wiener-Khinchine Relation:

RX)((T) <i> SX)(<LU)

Note: Given tha PSD of a random process, we can recover:

(i) The autocorrelation function Rxx(7) if X (t) is at least WSS.

(ii) The time average of the autocorrelation function A [Rxx (¢, ¢+ 7)], if X (¢) is
non-stationay.

Self study: Example 7.2-1 of the textbook
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8.3 Cross power spectral density and its proper-
ties

8.3.1 Cross power spectral density

Given two real random processes X (t) and Y (t), define zp(t) and yr(t) as portions
of sample functions x(t) and y(¢) from the r.p.’s X (¢) and Y (¢), i.e.:

A alt) T<t<T
zr(t) = { 0 elsewhere

y(t) -T'<t<T
0 elsewhere

Then, since zr(t) and yr(t) are absolutely integrable, 3 F.T. of them. (i.e., zp(t) 4
Xr(w), and yr(t) & Yr(w))

= The cross power of z(t) and y(¢) wothin [T, 7] is:

1>

Per(T) 2 [ o0ty

_ ;T / TTx(t)y(t)dt

1
2T

o 1
/ o {X7(w)Yr(w)}dw : by Parseval’s theorem

: random variable: depending on particular sample functions

= The average cross power of x(t) and y(¢) within [-7', 7] is then:

P2 BPo (D) = o [ B (@) d

1 T
7 /_T Ry (1, t)dt

e

T X)) do
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— The total(overall) average cross power is then, by ' — oo:

1 T
PXY lim 7/ ny(t,t)dt
=T

T—oo0 2T

ne

[ m ;E[X;(M)YT(M)] d

% —o00 T'—o0 2

(cf) Notice that the integrand in the second integral above is in the form of the cross
power spectral density between X (t) and Y (t), Sxy (w):

Definition of the cross PSD:

A . 1 .
Sxy(w) = lim o B [Xp(w)Yr(w)]
and corresponding cross power in X (¢) and Y'(¢) is given by:

1 o)
PXY = %/_oo Sxy(u))dw

Likewise, we can define the cross PSD b/w Y(¢) and X(¢) as:

Syx() 2 Jim B [Vi(w) X ()]

1
T—o0

and corresponding cross power in X (¢) and Y'(¢) is given by:

1 e
Pyx = 2*/ Sy x (w)dw
T J—0
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8.3.2 Properties of cross PSD

Suppose X (t) and Y (¢) are real random processes, then:

—_

proof: Assignmen

Cross PSD is conjugate symmetric: 11

Sxy(w = Syx(-w) = 5y x(w)
The real part of cross PSD is even function of w:
Re [Sxy (w)] = Re [Sxy (—w)]
Re [Syx (w)] = Re [Syx (—w)]
The imaginary part of cross PSD is odd function of w:
Im [Sxy(w)] = —Im [Sxy (—w)]
Im [Syx ()] = —Im [Sy x (—w)]
If X(t) and Y (t) are orthogonal, ** then:
Sxy(w) = Syx((x)) =0
If X(t) and Y (¢) are uncorrelated, ' and E[X (t)] = X and E[Y(t)] =Y , then:
Sxy(w) = Syx(w) = 27X Yi(w)

Cross PSD and the time average of cross correlation function are Fourier trans-
form pair, i.e.:

A[ny(t,t—f—T)] £ Sxy(u}>
A[Ryx(t,t+7’)] <£> Syx(W)

If X(t) and Y () are JWSS, then:

ny(T) Sxy(w)

L
Ryx(T) <£> Syx(W)

t14

HIRecall that the auto PSD Sx x (w) is always real, and even function of w.
12This means that E[X ()Y (¢)] = 0.

13This means that E[X (t)Y (t)] = E[X (¢)|E[Y (t)].

14GQimilar to those for auto PSD.
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Question:
If a real r.p. W(t) is defined as a sum of two real r.p.’s X (¢) and Y (¢), then what is
the PSD of W(t) in terms of the PSD’s related to X (¢) and Y (¢)?

Given:

W(t) 2 X(t)+Y(t)

The autocorrelation function of W (t) is:
Ryw(t,t+71) 2 E[W@EW(t+7)]
= E{XO)+Y@OHX(E+7)+Y(t+7)}]
= EXOX({E+7)]+EX®Y(t+7)
FE[YM)X(t+7)]+E[Y@)Y(t+7)]
= Rxx(t,t+7)+ Rxy(t,t +7)+ Ryx(t,t +7) + Ryy(t,t +7)
Then, the auto PSD of W () is:
Sww(w) = F{A[Rww(t, t+7)]}
= F{A[Rxx(t,t +7)]} + F{A[Rxy(t,t +7)]}
+F{A[Ryx(t,t+ 1)} + F{A[Ryy(t.t + )]}

= Sxx(w> -+ Sxy(u}) -+ Syx(bd) -+ Syy(u))

Note:
(1) If X(¢) and Y (t) are orthogonal, i.e. Rxy(t,t+7)= Ryx(t,t+7) =0, then:
Sww<w) = SX)(<W) + Syy(w)

(2) If X(t) and Y (t) are uncorrelated to each other and F[X (t)] = X, E[Y (t)] =Y,
ie. Rxy(t,t+7) = Ryx(t,t+7) = XY, and thus F{A[Rxy(t,t+7)]} =
F{A[Ryx(t,t+71)]} = f{Y?} = 27X Yé(w), then:

Sww(w) = SXX(LU) + Syy(&)) + 47TYY5(L¢J)
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8.4 Relationship between cross PSD and cross-
correlation function

Assignment (READ): The proof of properties 6 & 7 in previous section

Example 8.2

Given the cross-correlation function Rxy (¢, + 7) as follows, ¥ find the cross
power spectral density Sxy (w) between X (f) and Y'(¢).

AB
Rxy(t,t+ 1) = E3 {sin(woT + cos (wo (2t + 7))}
Solution:

Sxy (W) 2 F{A[Rxy(t,t +7)]}

AlRxy(t,t+7)] = Tlgﬂoﬁ/ Ry (t,t+ 7)dt

AB | AB
= 781n(w07')+ 5 ll_rgo QT/ cos (wo(2t + 7)) dt

AB AB 171 T
= 7sin(cuor) + — 5 Thjgoﬁ [QWO sin (wo(2t 4+ 7)) P

AB

= 5 sin(woT)

AB 1 :
+— 711—>oo 5T 2w0 {sin (wo (2T + 7)) + sin (wo (27" — 7))}

AB

= 5 sin(woT)

Therefore, the cross PSD Syy(w) becomes:
AB AB
Sv(w) = F {7 sintunr) p = 57 - 5 + wo) — 30 = wo)]

Corresponding average cross power between X (¢) and Y (¢) is then:

1 00
PXY = %/_oo Sxy(u)>dw =0

5 Notice that X (¢) and Y (¢) are NOT JWSS.
161f the cross-correlation was Rxy (t,t+7) = 42 {cos(woT + cos (wo(2t + 7))}, then the cross PSD

is Sxyy(w) = 48 - 7 [§(w + wo) + 6(w — wo)] and thus the average cross power is Pxy = 48 (watts).

2
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8.5 Some noise definitions and other topics
. Definitions of noise in terms of PSD

8.5.1 White and colored noise

(1) White noise !*

Definition 8.1 A sample function n(t) of a WSS noise random process N () is called
a white noise if:

N,
Syn(w) = ?0 : constant V w

Then, corresponding autocorrelation function of a white noise is in the form of the
Dirac delta function, i.e.

Ry (7) = F~ {Sxnle)} = S240(7)

Figure 8.5: Auto PSD and autocorrelation function of a white noise.

Note:

(i) White noise is physically unrealizable, since any signal cannot have an infinite
power:

1 e}
Pyy = Py /_OO Syn(w)dw = oo

(ii) Close approximation to the white noise are: (a) lightening phenomenon (b)
thermal noise etc..

"Why white? : If you add up all of the light frequencies, you end up getting a white light.
18Note that Ryn(+) is a function of 7 only, since N(t) is WSS; and recall that &(¢) Lo
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(2) Colored noise *

Definition 8.2 A noise which is NOT white is called a colored noise.

Example 8.3

Bandlimited white noise

Pr _We<w<W

W
SNN(W) =
0  elsewhere
1 oo 1 P
power = - [m Syn(w)dw = %2W : WW = P (watts)

Figure 8.6: Auto power spectral density of a colored noise.

Corresponding autocorrelation function is then:

RNN<T) = .,Fil {SNN((.U} =P. Sa (WT)

A sin(x
)£ (@)

where Sa(x -

power = Ryy(0) = P (watts)

Figure 8.7: Autocorrelation function of a colored noise.

19Why colored? : portions of visible light frequencies give a certain color.
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8.5.2 Product device response to a random signal

Figure 8.8: Block diagram of a product device.

Example 8.4

AMSC(amplitude modulation w/ suppressed carrier)

Figure 8.9: AMSC.

Question:

Suppose X (t) is a WSS r.p., then what is the PSD of the output Y (¢) in terms of the
PSD of X (t)?

Steps:
(i) Y(t)
(11) Ryy(t, t + T)
(111) A [Ryy (t, t + 7')]
(IV) Syy(a)) =F {A [Ryy(t, t+ 7')]}

2ONote that the carrier c(t) = Acos(w.t) is a deterministic signal, i.e. A and w, are constant.
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(i) The output signal:

Y (t) = AX(t) cos(w,t)

(ii) The autocorrelation of the output:

>

Ry (t,t+7) EY®)Y(t+1)]

= E[AX(t)cos(w.t)AX(t 4 7) cos(wet + w.T)]

= A’Ryx(7)cos(wet) cos(wet +w.r) (+ X(t) is WSS)

AQ
= ?RXX (1) {cos(weT) + cos(2w.t + w.T)}

NOTE: Notice that Y (¢) is NOT WSS, 2! even if X (¢) is WSS, and this is
because the product device is a non-linear system!!!

(iii) The time average of Ryy (t,t+ 7):

1 (T A2
A[Ryy(t,t+71)] = Tlgrolo o | » ?RXX(T) {cos(w.T) + cos(2w.t + w,T)} dt

A? 1
- ?RXX(T) cos(w.T) +11££10 ﬁ(constant)

21Ryy depends on t.
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(iv) The auto PSD of Y (¢):

Syy(w) = F {éRxx(T) cos(wcT)}
A? 1
= o [F{Rxx(T)} * F {cos(w.T)}] - o
- f?r [Sxx (W) * {m(w — we) + 70(w + we)}]
— i[SXX(w—wc)+SXX(w+%>]

Figure 8.10: The auto PSD’s of the input X (¢) and the output Y'(¢).

Example: Demodulation of AMSC:
Z(t) =Y (t)Acos(w.t)

Express Szz(w) in terms of Sxx(w).

. Assignment
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