Contents

9	Line	ear Sy	stems with Random Inputs	211
	9.1	Linear	r system fundamentals	211
		9.1.1	General linear system:	
		9.1.2	Time invariant system:	
		9.1.3	Linear time invariant (LTI) system:	
		9.1.4	Transfer function:	
		9.1.5	Idealized systems:	
		9.1.6	Causal and stable systems:	
	9.2	Rando	om signal response of linear systems	
		9.2.1	System response	
		9.2.2	Mean and mean squared value of the response	
		9.2.3	Autocorrelation function of $Y(t)$	
		9.2.4	Cross-correlation between the input and the output	
	9.3	Syster	m evaluation using random white noise	
	9.4			
		9.4.1	The PSD of output $Y(t)$	
		9.4.2	Cross PSD of the input/output	
	9.5	Noise	bandwith of an LTI system	
	9.6 Bandpass, bandlimited, and narrowband processes			
		9.6.1	Typical narrowband random process	
		9.6.2		233

Chapter 9

Linear Systems with Random Inputs

So far, we have studied the "characteristics of random signal":

- (1) Time domain: correlation functions, mean, etc.
- (2) Frequency domain: power spectral density etc.

From now on, we will deal with the "interaction os random signals with linear systems"

9.1 Linear system fundamentals

9.1.1 General linear system:

where
$$y(t) = L[x(t)]$$

Figure 9.1: A general linear system $L[\cdot]$.

Definition 9.1 A system $L[\cdot]$ is called a *linear system* if:

$$y(t) = L\left[\sum_{i=1}^{N} a_i x_i(t)\right] = \sum_{i=1}^{N} a_i L\left[x_i(t)\right] = \sum_{i=1}^{N} a_i y_i(t)$$

where $y_i(t) \triangleq L[x_i(t)]$ for i = 1, 2, ..., N and a_i 's are constants.

Due to the sifting property of the Direc delta function, we have for an arbitrary signal x(t) in general:

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau$$

Therefore, for a linear system, the output signal y(t) can be expressed as:

$$y(t) = L\left[x(t)\right] = L\left[\int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau\right]$$

$$= \int_{-\infty}^{\infty} x(\tau)L\left[\delta(t-\tau)\right]d\tau : \text{due to linearity}$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t,\tau)d\tau$$

where $h(t,\tau) \stackrel{\Delta}{=} L\left[\delta(t-\tau)\right]$ is called the *impulse response* of the system $L[\cdot]$.

Remark:

The response of a linear system is completely determined by its impulse response $h(t,\tau)$!!!

9.1.2 Time invariant system:

Definition 9.2 A system $L[\cdot]$ is called a *time invariant* if:

$$L\left[x(t-t_0)\right] = y(t-t_0)$$

where $y(t) \stackrel{\Delta}{=} L[x(t)]$.

9.1.3 Linear time invariant (LTI) system:

Definition 9.3 A system $L[\cdot]$ is called an LTI system if it is both linear and time invariant:

Figure 9.2: An LTI system.

For an LTI system, let:

$$h(t) \stackrel{\Delta}{=} h(t,0) = L \left[\delta(t-0) \right] = L \left[\delta(t) \right]$$

Then,

$$h(t,\tau) = L[\delta(t-\tau)]$$

= $L[\delta(t)]_{t\to t-\tau}$ (: time invariant)
= $h(t-\tau)$

Therefore, the I/O realtionship of an LTI system becomes: $^{\rm 1}$

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \stackrel{\Delta}{=} x(t)*h(t)$$
: convolution integral

¹Note: x(t) * h(t) = h(t) * x(t).

9.1.4 Transfer function:

: system characteristic in frequency domain which is equivalent to the impulse response h(t) in time domain 2

Figure 9.3: An LTI system with h(t) and $H(\omega)$.

From the output signal y(t) expressed in the convolution integral:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Take the Fourier transform of both sides:

$$Y(\omega) \stackrel{\Delta}{=} \mathcal{F} \{ y(t) \} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau \right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} h(t-\tau) e^{-j\omega t} dt \right] d\tau$$

$$(\operatorname{let} t - \tau = t')$$

$$= \int_{-\infty}^{\infty} x(\tau) \left[\int_{-\infty}^{\infty} h(t') e^{-j\omega t'} dt' \right] e^{-j\omega \tau} d\tau$$

$$\stackrel{\Delta}{=} H(\omega) \cdot \int_{-\infty}^{\infty} x(\tau) e^{-j\omega \tau} d\tau$$

$$= H(\omega) X(\omega)$$

i.e.:

$$y(t) = h(t) * x(t) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad Y(\omega) = H(\omega)X(\omega)$$

Definition 9.4 The Fourier transform of the impulse response for an LTI system is called the *transfer function*:

$$H(\omega) \stackrel{\Delta}{=} \mathcal{F}\{h(t)\}$$

²Another way of definition: if $x(t) = e^{j\omega t}$, then $H(\omega) \stackrel{\Delta}{=} \frac{L[e^{j\omega t}]}{e^{j\omega t}} = \frac{y(t)}{x(t)}$.

9.1.5 Idealized systems:

The transfer function of an idealized system $in\ a\ practical\ sense$ is in the following form:

(i) Magnitude: flat with unit gain

(ii) Phase : linear phase

Figure 9.4: An example of an ideal LPF: (1) practical, (2) theoretical.

Note: The linear phase is needed for the "distortionless" output of the system:

Figure 9.5: An LTI system.

From the I/O relationship of:

$$Y(\omega) = H(\omega)X(\omega)$$

we have:

$$|Y(\omega)| e^{j\Phi_Y(\omega)} = |H(\omega)| e^{j\Phi_H(\omega)} \cdot |X(\omega)| e^{j\Phi_X(\omega)}$$
$$= |H(\omega)| |X(\omega)| e^{j[\Phi_H(\omega) + \Phi_X(\omega)]}$$

In words, the magnitude characteristic of the system works in a *multiplicative* way, whereas the phase characteristic of the system works in an *additive* way.

Example 9.1

Let the input of the system be as follows:

$$x(t) = \sin(\omega_0 t + \theta)$$

Then, the output will be:

$$y(t) = \sin(\omega_0 t + \theta + \Phi_H(\omega_0))$$

$$= \sin(\omega_0 t + \theta + (-\alpha \omega_0))$$

$$= \sin(\omega_0 (t - \alpha) + \theta)$$

$$= x(t - \alpha)$$

Notice that the output y(t) is just a shifted version of the input x(t) !!!

(cf) If $\Phi_H(\omega)$ were not linear, some distortions in y(t) would have occurred.

9.1.6 Causal and stable systems:

Definition 9.5 An LTI system is called *causal* if:

$$y(t_0) = f[x(t)], \text{ where } t \le t + 0$$

Fact: If the impulse response h(t) of an LTI system satisfies h(t) = 0, $\forall t < 0$, then the system is a causal system.

Definition 9.6 A bounded input/bounded output LTI system is called a *stable* system.

Fact: The impulse response h(t) of a stable LTI system should satisfy:

$$\int_{-\infty}^{\infty} |h(t)| \, dt < \infty$$

9.2 Random signal response of linear systems

: Response of a stable LTI system to a r.p. X(t)

Figure 9.6: A stable LTI system with random input.

Objective: Characteristics of the output Y(t)³

- (i) Time domain: mean, variance, correlation functions etc.
- (ii) Freq. domain: power spectral density etc.

Question: ⁴ If X(t) is WSS, then (1) is Y(t) WSS? (2) are X(t) and Y(t) JWSS?

9.2.1 System response

Since the output of an LTI system is the convolution integral between the impulse response and the input, we have:

$$\begin{array}{lcl} Y(t) & = & h(t) * X(t) \\ \\ & = & \int_{-\infty}^{\infty} h(\tau) X(t-\tau) d\tau \end{array}$$

or

$$Y(t) = X(t) * h(t)$$

= $\int_{-\infty}^{\infty} X(\tau)h(t-\tau)d\tau$

³Note that these are the criteria used for characterizing a random process.

⁴Recall that the output process of a non-linear system (e.g. product device) is not WSS, even though the input is WSS.

9.2.2 Mean and mean squared value of the response

Assuming X(t) is a WSS process, then:

(i) Mean:

$$E[Y(t)] = E\left[\int_{-\infty}^{\infty} h(\tau)X(t-\tau)d\tau\right]$$

$$= \int_{-\infty}^{\infty} h(\tau)E[X(t-\tau)]d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau) \cdot \overline{X}d\tau$$

$$= \overline{X}\int_{-\infty}^{\infty} h(\tau)d\tau : \text{independent of } t$$
(integral is constant, since the system is stable)
$$\stackrel{\triangle}{=} \overline{Y} : \text{constant}$$
 (9.1)

(ii) Mean squared value:

$$E\left[Y^{2}(t)\right] = E\left[\int_{-\infty}^{\infty} h(\tau_{1})X(t-\tau_{1})d\tau_{1}\int_{-\infty}^{\infty} h(\tau_{2})X(t-\tau_{2})d\tau_{2}\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1})h(\tau_{2})E\left[X(t-\tau_{1})X(t-\tau_{2})\right]d\tau_{1}d\tau_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1})R_{XX}(\tau_{1}-\tau_{2})d\tau_{1}d\tau_{2}$$

$$\stackrel{\triangle}{=} \overline{Y^{2}} : \text{independent of } t$$

(cf) Variance(2nd sentral moment) : $\sigma_Y^2(t) = \overline{Y^2} - \overline{Y}^2 \stackrel{\Delta}{=} \sigma_Y^2$ (constant).

9.2.3 Autocorrelation function of Y(t)

Assuming X(t) is WSS, the autocorrelation of the output Y(t) is given by:

$$R_{YY}(t, t + \tau) \stackrel{\triangle}{=} E[Y(t)Y(t + \tau)]$$

$$= E\left[\int_{-\infty}^{\infty} h(\tau_1)X(t - \tau_1)d\tau_1 \int_{-\infty}^{\infty} h(\tau_2)X(t + \tau - \tau_2)d\tau_2\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)E[X(t - \tau_1)X(t + \tau - \tau_2)]d\tau_1d\tau_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_{XX}(\tau + \tau_1 - \tau_2)d\tau_1d\tau_2$$

: independent of t (i.e. dependes only on $\tau)$

i.e.

$$R_{YY}(t, t + \tau) = R_{YY}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_{XX}(\tau + \tau_1 - \tau_2)d\tau_1 d\tau_2$$
 (9.2)

Note:

- (1) Y(t) is WSS if X(t) is WSS. ($\dot{\cdot}$ from (9.1) and (9.2).)
- (2) $R_{YY}(\tau)$ is in the form of two-fold convolution:

$$R_{YY}(\tau) = R_{XX}(\tau) * h(-\tau) * h(\tau)$$
(9.3)

proof:

$$R_{YY}(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_{1})h(\tau_{2})R_{XX}(\tau + \tau_{1} - \tau_{2})d\tau_{1}d\tau_{2}$$

$$= \int_{-\infty}^{\infty} h(\tau_{1}) \left[\int_{-\infty}^{\infty} h(\tau_{2})R_{XX}(\tau + \tau_{1} - \tau_{2})d\tau_{2} \right] d\tau_{1}$$

$$= \int_{-\infty}^{\infty} h(\tau_{1}) \left[h(\tau + \tau_{1}) * R_{XX}(\tau + \tau_{1}) \right] d\tau_{1}$$

$$(\text{let } \tau + \tau_{1} = \tau')$$

$$= \int_{-\infty}^{\infty} h(\tau' - \tau) \left[h(\tau') * R_{XX}(\tau') \right] d\tau'$$

$$(\text{let } h(\tau') * R_{XX}(\tau') = y(\tau'))$$

$$= \int_{-\infty}^{\infty} y(\tau')h(\tau' - \tau)d\tau'$$

$$= \int_{-\infty}^{\infty} y(\tau')h\left(-(\tau - \tau') \right) d\tau'$$

$$= y(\tau) * h(-\tau)$$

$$= h(\tau) * R_{XX}(\tau) * h(-\tau)$$

9.2.4 Cross-correlation between the input and the output

Assuming X(t) is WSS, then

(i) Correlation b/w X(t) and Y(t): ⁵

$$R_{XY}(t, t + \tau) \stackrel{\triangle}{=} E[X(t)Y(t + \tau)]$$

$$= E\left[X(t)\int_{-\infty}^{\infty} h(\tau_1)X(t + \tau - \tau_1)d\tau_1\right]$$

$$= \int_{-\infty}^{\infty} h(\tau_1)E[X(t)X(t + \tau - \tau_1)]d\tau_1$$

$$= \int_{-\infty}^{\infty} h(\tau_1)R_{XX}(\tau - \tau_1)d\tau_1$$

$$= h(\tau) * R_{XX}(\tau) \stackrel{\triangle}{=} R_{XY}(\tau)$$
 (9.4)

⁵This will be used later for system identification, i.e. estimating $\hat{h}(t)$.

(ii) Similarly, we get the correlation b/w Y(t) and X(t) as:

$$R_{YX}(t.t+\tau) = h(-\tau) * R_{XX}(\tau) \stackrel{\Delta}{=} R_{YX}(\tau)$$
 (9.5)

Fact:

If X(t) is WSS, then the input X(t) and the output Y(t) of an LTI system are **JWSS**:

- (a) X(t) and Y(t) are WSS individually
- (b) $R_{XY}(t, t + \tau) = R_{XY}(\tau)$: function of τ only

Note:

From (9.3), (9.4) and (9.5), the autocorrelation of the output process can be represented in either of the following way:

$$R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$$

or

$$R_{YY}(\tau) = R_{YX}(\tau) * h(\tau)$$

9.3 System evaluation using random white noise

: System identification

Objective: Find the impulse response h(t) of an LTI system

Figure 9.7: An LTI system.

Block diagram:

Figure 9.8: Block diagram of system identification.

Analysis:

Let X(t) be approximately white noise, i.e.

$$R_{XX}(\tau) \simeq \left(\frac{N_0}{2}\right) \delta(\tau)$$

Then, the cross-correlation between the input and the output of the system is as follows;

$$\begin{split} R_{XY}(\tau) &= h(\tau) * R_{XX}(\tau) \\ &= \int_{-\infty}^{\infty} h(\tau_1) R_{XX}(\tau - \tau_1) d\tau_1 \\ &= \int_{-\infty}^{\infty} h(\tau_1) \frac{N_0}{2} \delta(\tau - \tau_1) d\tau_1 \\ &= \frac{N_0}{2} h(\tau) \quad \text{: by sifting property of } \delta(t) \end{split}$$

From which we get:

$$h(\tau) \simeq \frac{2}{N_0} R_{XY}(\tau)$$

Therefore, the estimation of the system's impulse response becomes:

$$\widehat{h}(\tau) = \frac{2}{N_0} \widehat{R_{XY}}(\tau) \approx h(\tau)$$

9.4 Spectral characteristics of system response

Given an LTI system, where the input is a WSS r.p. X(t), and the impulse response h(t) of the system is assumed to be *real*:

Figure 9.9: An LTI system.

Then,

- (1) The output Y(t) is WSS.
- (2) The input X(t) and the output Y(t) are JWSS.

9.4.1 The PSD of output Y(t)

Since Y(t) is WSS, we have:

$$S_{YY}(\omega) = \mathcal{F} \{R_{YY}(\tau)\}$$

$$= \int_{-\infty}^{\infty} R_{YY}(\tau) d\tau$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1) h(\tau_2) R_{XX}(\tau + \tau_1 - \tau_2) d\tau_1 d\tau_2 \right] e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau_1) \int_{-\infty}^{\infty} h(\tau_2) \left[\int_{-\infty}^{\infty} R_{XX}(\tau + \tau_1 - \tau_2) d\tau \right] d\tau_2 d\tau_1$$

$$= \int_{-\infty}^{\infty} h(\tau_1) \int_{-\infty}^{\infty} h(\tau_2) S_{XX}(\omega) e^{j\omega\tau_1} e^{-j\omega\tau_2} d\tau_2 d\tau_1 \text{ (time shift prop of F.T.)}$$

$$= \int_{-\infty}^{\infty} h(\tau_1) e^{j\omega\tau_1} d\tau_1 \int_{-\infty}^{\infty} h(\tau_2) e^{-j\omega\tau_2} d\tau_2 S_{XX}(\omega)$$

$$= H^*(\omega) H(\omega) S_{XX}(\omega) \text{ (since } h(t) \text{ is assumed to be real)}$$

$$= |H(\omega)|^2 \cdot S_{XX}(\omega)$$

: direct calculation of $S_{YY}(\omega)$ w/o via $R_{YY}(\tau)$

We call $|H(\omega)|^2$ the **power transfer function** of the system:

power transfer function
$$\stackrel{\Delta}{=} |H(\omega)|^2 = H^*(\omega)H(\omega)$$

Corresponding output power of Y(t) can then be calculated using the PSD $S_{XX}(\omega)$ of the input process X(t) as:

$$P_{YY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{YY}(\omega) d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 \cdot S_{XX}(\omega) d\omega$$

(cf) Another simpler way of derivation:

$$S_{YY}(\omega) = \mathcal{F} \{ R_{YY}(\tau) \}$$

$$= \mathcal{F} \{ h(\tau) * h(-\tau) * R_{XX}(\tau) \}$$

$$= \mathcal{F} \{ h(\tau) \} \cdot \mathcal{F} \{ h(-\tau) \} \cdot \mathcal{F} \{ R_{XX}(\tau) \}$$

$$= H(\omega) \cdot H^*(\omega) \cdot S_{XX}(\omega)$$

$$= |H(\omega)|^2 \cdot S_{XX}(\omega)$$

where we have used the following fact:

$$\mathcal{F}\{h(-\tau)\} = \int_{-\infty}^{\infty} h(-\tau)e^{-j\omega\tau}d\tau$$

$$= \int_{-\infty}^{\infty} h(t)e^{j\omega t}dt \qquad \text{(by letting } t = -\tau\text{)}$$

$$= \left(\int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt\right)^* \quad \text{(since } h(t) \text{ is assumed to be real)}$$

$$= H^*(\omega)$$

9.4.2 Cross PSD of the input/output

Since X(t) and Y(t) are JWSS, we have:

(i) Cross PSD of X(t) and Y(t):

$$S_{XY}(\omega) = \mathcal{F} \{R_{XY}(\tau)\}$$

$$= \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\tau_1) R_{XX}(\tau - \tau_1) d\tau_1 \right] e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau_1) \left[\int_{-\infty}^{\infty} R_{XX}(\tau - \tau_1) e^{-j\omega\tau} d\tau \right] d\tau_1$$

$$= \int_{-\infty}^{\infty} h(\tau_1) S_{XX}(\omega) e^{-j\omega\tau_1} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau_1) e^{-j\omega\tau_1} d\tau \cdot S_{XX}(\omega)$$

$$= H(\omega) \cdot S_{XX}(\omega)$$

(ii) Cross PSD of Y(t) and X(t):

$$S_{YX}(\omega) = \mathcal{F} \{ R_{YX}(\tau) \}$$

$$= \int_{-\infty}^{\infty} R_{YX}(\tau) e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} h(\tau_1) R_{XX}(\tau + \tau_1) d\tau_1 \right] e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau_1) \left[\int_{-\infty}^{\infty} R_{XX}(\tau + \tau_1) e^{-j\omega\tau} d\tau \right] d\tau_1$$

$$= \int_{-\infty}^{\infty} h(\tau_1) S_{XX}(\omega) e^{j\omega\tau_1} d\tau$$

$$= \int_{-\infty}^{\infty} h(\tau_1) e^{j\omega\tau_1} d\tau \cdot S_{XX}(\omega)$$

$$= \int_{-\infty}^{\infty} h(\tau_1) e^{-j(-\omega)\tau_1} d\tau \cdot S_{XX}(\omega)$$

$$= H(-\omega) \cdot S_{XX}(\omega)$$

$$= H^*(\omega) \cdot S_{XX}(\omega) \text{ :assuming } h(t) \text{ is real}$$

- (cf) Another simpler way of derivation:
- (i) Cross PSD of X(t) and Y(t):

$$S_{XY}(\omega) = \mathcal{F} \{ R_{XY}(\tau) \}$$

$$= \mathcal{F} \{ h(\tau) * R_{XX}(\tau) \}$$

$$= \mathcal{F} \{ h(\tau) \} \cdot \mathcal{F} \{ R_{XX}(\tau) \}$$

$$= H(\omega) \cdot S_{XX}(\omega)$$

(ii) Cross PSD of Y(t) and X(t):

$$S_{YX}(\omega) = \mathcal{F} \{ R_{YX}(\tau) \}$$

$$= \mathcal{F} \{ h(-\tau) * R_{XX}(\tau) \}$$

$$= \mathcal{F} \{ h(-\tau) \} \cdot \mathcal{F} \{ R_{XX}(\tau) \}$$

$$= H^*(\omega) \cdot S_{XX}(\omega)$$

9.5 Noise bandwith of an LTI system

Consider an LTI system with lowpass characteristics, whose impulse response h(t) is assumed to be real:

Figure 9.10: The transfer function of an LTI system(lowpass).

Then,

$$H(-\omega) = \int_{-\infty}^{\infty} h(t)e^{+j\omega t}dt = \left(\int_{-\infty}^{\infty} h(t)e^{-j\omega t}dt\right)^* = H^*(\omega)$$

and therefore:

$$\left|H(-\omega)\right|^2 = H(-\omega)H^*(-\omega) = H^*(\omega)H(\omega) = \left|H(\omega)\right|^2$$

which means that the power transfer function $|H(\omega)|^2$ is an even function of ω .

We apply a **white noise** as an input to the system, whose power spectral density is as follows:

$$S_{XX}(\omega) = \frac{N_0}{2}$$

Then, the output power becomes:

$$P_{YY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{YY}(\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H(\omega)|^2 S_{XX}(\omega) d\omega$$
$$= \frac{2}{2\pi} \int_{0}^{\infty} |H(\omega)|^2 \frac{N_0}{2} d\omega$$
$$= \frac{N_0}{2\pi} \int_{0}^{\infty} |H(\omega)|^2 d\omega \qquad (9.6)$$

Now, consider an idealized system which is equivalent to the above system from the viewpoints of:

- (i) same output power
- (ii) same value of power transfer function at $\omega = 0$, i.e. $|H(0)|^2$.

Figure 9.11: An equivalent idealized system $H_I(\omega)$ (lowpass).

Then, the power of Y(t) from the idealized system is:

$$P_{YY} = \frac{1}{2\pi} \int_{-\infty}^{\infty} |H_I(\omega)|^2 \cdot \frac{N_0}{2} d\omega$$

$$= \frac{N_0}{4\pi} \cdot 2 \int_0^{W_N} |H(0)|^2 d\omega$$

$$= \frac{N_0 |H(0)|^2 W_N}{2\pi}$$
(9.7)

From (9.6) and (9.7), we get:

$$\frac{N_0}{2\pi} \int_0^\infty |H(\omega)|^2 d\omega = \frac{N_0}{2\pi} |H(0)|^2 W_N$$

And the bandwidth of the equivalent idealized system is then:

$$W_N = \frac{\int_0^\infty |H(\omega)|^2 d\omega}{|H(0)|^2}$$

We call W_N the **noise bandwidth** ⁶ of the system

⁶This term implies the white noise equivalent of the systems's bandwidth.

9.6 Bandpass, bandlimited, and narrowband processes

Definition 9.7 Bandpass process:

A random process N(t) is called *bandpass* if its PSD $S_{NN}(\omega)$ has its significant portion concentrated around $\omega = \omega_0 \neq 0$, i.e.

Figure 9.12: The PSD $S_{NN}(\omega)$ of a typical bandpass random process.

Note:

 $S_{NN}(0)$ does not necessarily have to be zero! It only requires to be a relatively small value compared to $S_{NN}(\omega_0)$.

Definition 9.8 Bandlimited process:

A bandpass random process N(t) is called *bandlimited* if its PSD $S_{NN}(\omega)$ is zero outside of some frequency band of width W concentrated around $\omega = \omega_0 \neq 0$, i.e.

Figure 9.13: The PSD $S_{NN}(\omega)$ of a typical bandlimited random process.

Definition 9.9 Narrowband process:

A bandlimited random process N(t) is called narrowband if $\omega_0 \gg W$ in its PSD $S_{NN}(\omega)$, i.e.

Figure 9.14: The PSD $S_{NN}(\omega)$ of a typical narrowband random process.

9.6.1 Typical narrowband random process

Judging from the PSD $S_{NN}(\omega)$ (of a narrowband r.p.), a typical narrowband r.p. should have frequencies near $\omega = \omega_0$, along with relatively slowly varying amplitude(envelop) ⁷ $\hat{A}(t)$ and slowly varying phase ⁸ $\phi(t)$ as well, i.e.:

$$N(t) = A(t)\cos(\omega_0 t + \phi(t)) \tag{9.8}$$

where you should be reminded that A(t) and $\phi(t)$ are random processes.

Figure 9.15: A sample function n(t) of a narrowband random process N(t).

⁷This means that $W \ll \omega_0$.

⁸This means that $\omega_0 - \frac{W}{2} < \omega < \omega_0 + \frac{W}{2}$.

Note: (Refer *Davenport and Root*) :may be omitted

- (1) If N(t) is Gaussian, then A(t) is Rayleigh and $\phi(t)$ is uniform over $[0, 2\pi]$.
- (2) A(t) and $\phi(t)$ are not statistically independent when N(t) is Gaussian.
- (3) But, for a fixed $t = t_0$, $A(t_0)$ and $\phi(t_0)$ are independent random variables.

Another way of expressing a narrowband r.p.:

$$N(t) = A(t)\cos(\omega_0 t + \phi(t))$$

$$= A(t)\cos(\omega_0 t)\cos(\phi(t)) - A(t)\sin(\omega_0 t)\sin(\phi(t))$$

$$= A(t)\cos(\phi(t))\cdot\cos(\omega_0 t) - A(t)\sin(\phi(t))\cdot\sin(\omega_0 t)$$

$$\stackrel{\text{let}}{=} X(t)\cdot\cos(\omega_0 t) - Y(t)\cdot\sin(\omega_0 t)$$

$$(9.9)$$

where

$$X(t) \stackrel{\Delta}{=} A(t) \cos(\phi(t))$$

$$Y(t) \stackrel{\Delta}{=} A(t) \sin (\phi(t))$$

and

$$A(t) = \sqrt{X^2(t) + Y^2(t)}$$

$$\phi(t) = \tan^{-1} \left[\frac{Y(t)}{X(t)} \right]$$

(cf) From now on, we will concentrate on a narrowband r.p. N(t) in the form of (9.9).

9.6.2 Properties of narrowband r.p. N(t)

$$N(t) = X(t) \cdot \cos(\omega_0 t) - Y(t) \cdot \sin(\omega_0 t)$$

Suppose N(t) is WSS with following characteristics:

- (i) Mean: E[N(t)] = 0
- (ii) The PSD:

$$S_{NN}(\omega) = \begin{cases} \text{non-zero, } 0 < \omega_0 - W_1 < |\omega| < \omega_0 - W_1 + W \\ \text{zero, } \text{otherwise} \end{cases}$$

Figure 9.16: The PSD of a WSS narrowband random process N(t).

Then, the WSS narrowband r.p. N(t) has the following properties:

property 1: X(t) and Y(t) are JWSS.

property 2: X(t) and Y(t) have zero means:

$$E[X(t)] = E[Y(t)] = 0$$

property 3: X(t), Y(t) and N(t) have equal power:

$$E\left[X^2(t)\right] = E\left[Y^2(t)\right] = E\left[N^2(t)\right]$$

property 4: The autocorrelation of X(t):

$$R_{XX}(\tau) = \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \cos((\omega - \omega_0)\tau) d\omega$$

property 5: X(t) and Y(t) have the same autocorrelation and PSD:

$$R_{YY}(\tau) = R_{XX}(\tau) \longrightarrow S_{YY}(\omega) = S_{XX}(\omega)$$

property 6: The cross-correlation b/w X(t) and Y(t):

$$R_{XY}(\tau) = \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \sin((\omega - \omega_0)\tau) d\omega$$

property 7: The cross-correlation and PSD b/w Y(t) and X(t): ⁹

$$R_{YX}(\tau) = -R_{XY}(\tau) \longrightarrow S_{YX}(\omega) = -S_{XY}(\omega)$$

property 8: X(t) and Y(t) are orthogonal:

$$R_{XY}(0) = E[X(t)Y(t)] = 0$$
, and $R_{YX}(0) = 0$

property 9: X(t) and Y(t) are lowpass signals: ¹⁰

$$S_{XX}(\omega) = L_p \left[S_{NN}(\omega - \omega_0) + S_{NN}(\omega + \omega_0) \right] = S_{YY}(\omega)$$

property 10: The cross PSD of X(t) and Y(t):

$$S_{XY}(\omega) = jL_p \left[S_{NN}(\omega - \omega_0) - S_{NN}(\omega + \omega_0) \right]$$

$$R_{XY}(\tau) = -R_{XY}(-\tau)$$

⁹Since in general, $R_{XY}(\tau) = R_{YX}(-\tau)$, we can also derive the anti-symmetry of $R_{XY}(\tau)$ as:

 $^{^{10}}L_p(\cdot)$ represents the lowpass portion.

PROOF:

(1) The expectation of N(t) is:

$$E[N(t)] = E[X(t)] \cdot \cos(\omega_0 t) - E[Y(t)] \cdot \sin(\omega_0 t) \equiv 0$$

Therefore, we have:

$$E[X(t)] = E[Y(t)] = 0$$
: property 2

(2) Let $W_1 = \frac{W}{2}$ (i.e. ω_0 is at the center of W), and $\omega_0 > \frac{W}{2}$ (i.e. \exists no overlap):

Figure 9.17: The PSD of
$$N(t)$$
.

Consider the following system:

Figure 9.18: N(t) through a product device(cosine) and an ideal LPF.

Then, we have the following facts:

(i) X(t) is the output of the above system, i.e.:

$$V_1(t) = 2N(t)\cos(\omega_0 t)$$

$$= 2X(t)\cos^2(\omega_0 t) - 2Y(t)\sin(\omega_0 t)\cos(\omega_0 t)$$

$$= X(t)\left\{1 + \cos(2\omega_0 t)\right\} - Y(t)\sin(2\omega_0 t)$$

$$\downarrow \text{ LPF}$$

$$X(t)$$

(ii) The autocorrelation of X(t):

$$R_{XX}(t,t+\tau) = E\left[X(t)X(t+\tau)\right]$$

$$= E\left[\int_{-\infty}^{\infty} h(\tau_1)V_1(t-\tau_1)d\tau_1 \int_{-\infty}^{\infty} h(\tau_2)V_1(t+\tau-\tau_2)d\tau_2\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)E\left[V_1(t-\tau_1)V_1(t+\tau-\tau_2)\right]d\tau_1d\tau_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)E\left[4N(t-\tau_1)\cos\left(\omega_0(t-\tau_1)\right)\right]$$

$$\cdot N(t+\tau-\tau_2)\cos\left(\omega_0(t+\tau-\tau_2)\right)d\tau_1d\tau_2$$
(since $N(t)$ is WSS)
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_{NN}(\tau+\tau_1-\tau_2)$$

$$\cdot 4\cos\left(\omega_0(t-\tau_1)\right)\cos\left(\omega_0(t+\tau-\tau_2)\right)d\tau_1d\tau_2 \quad (9.10)$$

Here, we have:

(a) R_{NN} part:

$$R_{NN}(\tau + \tau_1 - \tau_2) = \mathcal{F}^{-1}\left\{S_{NN}(\omega)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) e^{j\omega(\tau + \tau_1 - \tau_2)} d\omega$$

(b) cos part:

$$4\cos(\omega_0(t-\tau_1))\cos(\omega_0(t+\tau-\tau_2))$$

$$= \left\{ e^{j\omega_0(t-\tau_1)} + e^{-j\omega_0(t-\tau_1)} \right\} \left\{ e^{j\omega_0(t+\tau-\tau_2)} + e^{-j\omega_0(t+\tau-\tau_2)} \right\}$$

$$= e^{j\omega_0(2t+\tau-\tau_1-\tau_2)} + e^{-j\omega_0(\tau+\tau_1-\tau_2)} + e^{j\omega_0(\tau+\tau_1-\tau_2)} + e^{-j\omega_0(2t+\tau-\tau_1-\tau_2)}$$

$$\stackrel{\text{let}}{=} (I) + (II) + (III) + (IV)$$

Applying (a) and (b) to (9.10), we get:

[1] First term (I):

= 0

$$\int \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2) \left[\int_{-\infty}^{\infty} \frac{S_{NN}(\omega)}{2\pi} e^{j\omega(\tau+\tau_1-\tau_2)} d\omega \right] e^{j\omega_0(2t+\tau-\tau_1-\tau_2)} d\tau_1 d\tau_2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) \left(\int_{-\infty}^{\infty} h(\tau_1) e^{j(\omega-\omega_0)\tau_1} d\tau_1 \right) \left(\int_{-\infty}^{\infty} h(\tau_2) e^{-j(\omega+\omega_0)\tau_2} d\tau_2 \right)$$

$$\cdot e^{j2\omega_0 t} e^{j(\omega+\omega_0)\tau} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) H^*(\omega-\omega_0) H(\omega+\omega_0) e^{j2\omega_0 t} e^{j(\omega+\omega_0)\tau} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) |H(\omega-\omega_0)| |H(\omega+\omega_0)| e^{-j2\alpha\omega_0} e^{j2\omega_0 t} e^{j(\omega+\omega_0)\tau} d\omega$$

where $H(\omega) = |H(\omega)| e^{-j\alpha\omega}$, i.e. $H(\omega)$ has a linear phase since it is an ideal LPF, and thus:

$$H^*(\omega - \omega_0) = |H(\omega - \omega_0)| e^{j\alpha(\omega - \omega_0)}$$
$$H(\omega + \omega_0) = |H(\omega + \omega_0)| e^{-j\alpha(\omega + \omega_0)}$$

Figure 9.19:
$$S_{NN}(\omega)$$
, $|H(\omega - \omega_0)|$ and $|H(\omega + \omega_0)|$.

[2] The fourth term (IV):

In a similar manner, we can show that:

$$\int \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2) \left[\int_{-\infty}^{\infty} \frac{S_{NN}(\omega)}{2\pi} e^{j\omega(\tau+\tau_1-\tau_2)} d\omega \right] e^{-j\omega_0(2t+\tau-\tau_1-\tau_2)} d\tau_1 d\tau_2 = 0$$

[3] The second term (II):

$$\int \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2) \left[\int_{-\infty}^{\infty} \frac{S_{NN}(\omega)}{2\pi} e^{j\omega(\tau+\tau_1-\tau_2)} d\omega \right] e^{-j\omega_0(\tau+\tau_1-\tau_2)} d\tau_1 d\tau_2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) \left(\int_{-\infty}^{\infty} h(\tau_1) e^{j(\omega-\omega_0)\tau_1} d\tau_1 \right) \left(\int_{-\infty}^{\infty} h(\tau_2) e^{-j(\omega-\omega_0)\tau_2} d\tau_2 \right)$$

$$\cdot e^{j(\omega-\omega_0)\tau} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) |H(\omega-\omega_0)|^2 e^{j(\omega-\omega_0)\tau} d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} S_{NN}(\omega) e^{j(\omega-\omega_0)\tau} d\omega$$

Similarly,

[4] The third term (III):

$$\int_{-\infty}^{\infty} h(\tau_1)h(\tau_2) \left[\int_{-\infty}^{\infty} \frac{S_{NN}(\omega)}{2\pi} e^{j\omega(\tau+\tau_1-\tau_2)} d\omega \right] e^{j\omega_0(\tau+\tau_1-\tau_2)} d\tau_1 d\tau_2$$
(let $\omega = -\omega'$, then since $S_{NN}(-\omega') = S_{NN}(\omega')$)
$$= \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2) \left[\int_{-\infty}^{\infty} \frac{S_{NN}(\omega')}{2\pi} e^{j\omega'(\tau+\tau_1-\tau_2)} d\omega' \right] e^{j\omega_0(\tau+\tau_1-\tau_2)} d\tau_1 d\tau_2$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) |H(\omega-\omega_0)|^2 e^{-j(\omega-\omega_0)\tau} d\omega$$

$$= \frac{1}{2\pi} \int_{0}^{\infty} S_{NN}(\omega) e^{-j(\omega-\omega_0)\tau} d\omega$$

Therefore, the autocorrelation of X(t) becomes: ¹¹

$$R_{XX}(t, t + \tau) = (II) + (III)$$

$$= \frac{1}{2\pi} \int_0^\infty S_{NN}(\omega) 2\cos((\omega - \omega_0)\tau) d\omega$$

$$= \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \cos((\omega - \omega_0)\tau) d\omega : \mathbf{property 4}$$

$$= R_{XX}(\tau) : \text{function of } \tau \text{ only}$$

 $\implies X(t)$ is WSS!

(3) We follow a similar procedure as in (2) for Y(t), i.e. consider the following system:

Figure 9.20: N(t) through a product device(sine) and an ideal LPF.

Then, we have the following facts:

(i) Y(t) is the output of the above system ¹², i.e.:

$$V_2(t) = -2N(t)\sin(\omega_0 t)$$

$$= -2X(t)\sin(\omega_0 t)\cos(\omega_0 t) + 2Y(t)\sin^2(\omega_0 t)$$

$$= -X(t)\sin(2\omega_0 t) + Y(t)\left\{1 - \cos(2\omega_0 t)\right\}$$

$$\downarrow \text{ LPF}$$

$$Y(t)$$

 $^{^{11}}$ In fact, note that the terms involving t in (b) resolve to be zero.

¹²Be reminded that $N(t) = X(t)\cos(\omega_0 t) - Y(t)\sin(\omega_0 t)$.

(ii) We repeat the same step in (2)-(ii), to get the autocorrelation of Y(t):

$$R_{YY}(t, t + \tau) = E[Y(t)Y(t + \tau)]$$

$$\vdots \text{ (assignment)}$$

$$= \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \cos((\omega - \omega_0)\tau) d\omega$$

$$= R_{YY}(\tau)$$

$$\equiv R_{XX}(\tau) : \text{ property 5}$$

Consequently, we have:

$$S_{YY}(\omega) = S_{XX}(\omega)$$

 $\implies Y(t)$ is also WSS!

(4) The PSD $S_{XX}(\omega)$ of X(t): Since X(t) is WSS, we have:

$$S_{XX}(\omega) = \mathcal{F}\left\{R_{XX}(\tau)\right\}$$

$$= \mathcal{F}\left\{\frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\cos\left((\Omega - \omega_{0})\tau\right)d\Omega\right\} \text{ (by property 4)}$$

$$= \int_{-\infty}^{\infty}\left[\frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\cos\left((\Omega - \omega_{0})\tau\right)d\Omega\right]e^{-j\omega\tau}d\tau$$

$$= \frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\left[\int_{-\infty}^{\infty}\cos\left((\Omega - \omega_{0})\tau\right)e^{-j\omega\tau}d\tau\right]d\Omega$$

$$= \frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\left\{\pi\delta(\omega - \Omega + \omega_{0}) + \pi\delta(\omega + \Omega - \omega_{0})\right\}d\Omega$$

$$= S_{NN}(\omega + \omega_{0}) + S_{NN}(-\omega + \omega_{0}) \text{ (by sifting property of }\delta(\cdot)\text{)}$$

$$= \underbrace{S_{NN}(\omega + \omega_{0})}_{(\omega \geq -\omega_{0})} + \underbrace{S_{NN}(\omega - \omega_{0})}_{(\omega \leq -\omega_{0})} \text{ (since }\Omega \geq 0\text{)}$$

$$= L_{p}\left[S_{NN}(\omega - \omega_{0}) + S_{NN}(\omega + \omega_{0})\right] \text{ : property 9}$$

Figure 9.21: The auto PSD $S_{XX}(\omega)$ of X(t).

Another way of $S_{XX}(\omega)$ derivation: ¹³

First, we find the PSD of $V_1(t)$, and in order to do that determine $R_{V_1V_1}(t, t+\tau)$:

$$R_{V_1V_1}(t, t + \tau) = E[V_1(t)V_1(t + \tau)]$$

$$= E[2N(t)\cos(\omega_0 t)2N(t + \tau)\cos(\omega_0 t + \omega_0 \tau)]$$

$$= 4E[N(t)N(t + \tau)]\cos(\omega_0 t)\cos(\omega_0 t + \omega_0 \tau)$$

$$= 2R_{NN}(\tau)\left\{\cos(\omega_0 \tau) + \cos(2\omega_0 t + \omega_0 \tau)\right\}$$

$$\implies A \left[R_{V_1 V_1}(t, t + \tau) \right] = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} R_{V_1 V_1}(t, t + \tau) dt = 2R_{NN}(\tau) \cos(\omega_0 \tau)$$

: done before when discussing product device

$$\implies S_{V_1V_1}(\omega) = \mathcal{F}\left\{2R_{NN}(\tau)\cos(\omega_0\tau)\right\} = S_{NN}(\omega - \omega_0) + S_{NN}(\omega + \omega_0)$$

Figure 9.22: The auto PSD $S_{V_1V_1}(\omega)$ of $V_1(t)$.

 \implies After LPF

$$\implies S_{XX}(\omega) = L_p \left[S_{NN}(\omega - \omega_0) + S_{NN}(\omega + \omega_0) \right]$$
: property 9.

¹³Refer Ziemer and Tranter.

- (5) The power of X(t), Y(t), and N(t):
 - (i) The average power of X(t):

$$E\left[X^2(t)\right] = R_{XX}(0)$$

$$= \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) d\omega \quad : \text{ from property 4}$$

(ii) The average power of Y(t):

$$E\left[Y^2(t)\right] = R_{YY}(0)$$

= $\frac{1}{\pi} \int_0^\infty S_{NN}(\omega) d\omega$: from property 4 & 5

(iii) The average power of N(t):

$$\begin{split} E\left[N^2(t)\right] &= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) d\omega &: \text{by Parseval's theorem} \\ &= 2 \cdot \frac{1}{2\pi} \int_{0}^{\infty} S_{NN}(\omega) d\omega \quad (\because S_{NN}(\omega) \text{ is symmetric}) \\ &= \frac{1}{\pi} \int_{0}^{\infty} S_{NN}(\omega) d\omega \end{split}$$

From (i), (ii), and (iii), we have:

$$E\left[X^{2}(t)
ight]=E\left[Y^{2}(t)
ight]=E\left[N^{2}(t)
ight]$$
 : property 3

(6) The cross-correlation between X(t) and Y(t):

$$R_{XY}(t,t+\tau) = E[X(t)Y(t+\tau)]$$

$$= E\left[\int_{-\infty}^{\infty} h(\tau_1)V_1(t-\tau_1)d\tau_1 \int_{-\infty}^{\infty} h(\tau_2)V_2(t+\tau-\tau_2)d\tau_2\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)E\left[V_1(t-\tau_1)V_2(t+\tau-\tau_2)\right]d\tau_1d\tau_2$$

$$= -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)E\left[4N(t-\tau_1)\cos\left(\omega_0(t-\tau_1)\right)\right]$$

$$\cdot N(t+\tau-\tau_2)\sin\left(\omega_0(t+\tau-\tau_2)\right)d\tau_1d\tau_2$$
(since $N(t)$ is WSS)
$$= -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\tau_1)h(\tau_2)R_{NN}(\tau+\tau_1-\tau_2)$$

$$\cdot 4\cos\left(\omega_0(t-\tau_1)\right)\sin\left(\omega_0(t+\tau-\tau_2)\right)d\tau_1d\tau_2 \qquad (9.11)$$

Here, we have:

(a) R_{NN} part:

$$R_{NN}(\tau + \tau_1 - \tau_2) = \mathcal{F}^{-1}\left\{S_{NN}(\omega)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{NN}(\omega) e^{j\omega(\tau + \tau_1 - \tau_2)} d\omega$$

(b) sinusoidal part:

$$4\cos(\omega_0(t-\tau_1))\sin(\omega_0(t+\tau-\tau_2))$$

$$= \frac{1}{j} \left\{ e^{j\omega_0(t-\tau_1)} + e^{-j\omega_0(t-\tau_1)} \right\} \left\{ e^{j\omega_0(t+\tau-\tau_2)} - e^{-j\omega_0(t+\tau-\tau_2)} \right\}$$

$$= \frac{1}{j} \left\{ e^{j\omega_0(2t+\tau-\tau_1-\tau_2)} - e^{-j\omega_0(\tau+\tau_1-\tau_2)} + e^{j\omega_0(\tau+\tau_1-\tau_2)} - e^{-j\omega_0(2t+\tau-\tau_1-\tau_2)} \right\}$$

$$\equiv \frac{1}{j} \left\{ (I) - (II) + (III) - (IV) \right\}$$

We can see that (9.11) is in a similar form of (9.10), except the (-) signs and the $\frac{1}{j}$ scalar!

Therefore, the cross-correlation between X(t) and Y(t) becomes:

$$R_{XY}(t, t + \tau) = (II) + (III)$$

$$= \frac{1}{2\pi j} \int_0^\infty S_{NN}(\omega) e^{j(\omega - \omega_0)\tau} d\omega - \frac{1}{2\pi j} \int_0^\infty S_{NN}(\omega) e^{-j(\omega - \omega_0)\tau} d\omega$$

$$= \frac{-j}{2\pi} \int_0^\infty S_{NN}(\omega) \cdot \left\{ e^{j(\omega - \omega_0)\tau} - e^{-j(\omega - \omega_0)\tau} \right\} d\omega$$

$$= \frac{-j}{2\pi} \int_0^\infty S_{NN}(\omega) 2j \sin\left((\omega - \omega_0)\tau\right) d\omega$$

$$= \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \sin\left((\omega - \omega_0)\tau\right) d\omega \quad : \text{ property 6}$$

$$= R_{XY}(\tau) : \text{ function of } \tau \text{ only}$$

 $\implies X(t)$ and Y(t) are WSS individually.

$$\implies X(t)$$
 and $Y(t)$ are JWSS by property 6 : property 1

Also, we have:

$$R_{XY}(0) \stackrel{\Delta}{=} E\left[X(t)Y(t)\right] = \frac{1}{\pi} \int_0^\infty S_{NN}(\omega) \sin(0) d\omega = 0$$
: property 8

i.e. X(t) and Y(t) are orthogonal!

(7) Cross PSD $S_{XY}(\omega)$ of X(t) and Y(t):

Since X(t) and Y(t) are JWSS, we have:

$$S_{XY}(\omega) = \mathcal{F}\left\{R_{XY}(\tau)\right\}$$

$$= \mathcal{F}\left\{\frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\sin\left((\Omega-\omega_{0})\tau\right)d\Omega\right\} \text{ (by property 6)}$$

$$= \int_{-\infty}^{\infty}\left[\frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\sin\left((\Omega-\omega_{0})\tau\right)d\Omega\right]e^{-j\omega\tau}d\tau$$

$$= \frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\left[\int_{-\infty}^{\infty}\sin\left((\Omega-\omega_{0})\tau\right)e^{-j\omega\tau}d\tau\right]d\Omega$$

$$= \frac{1}{\pi}\int_{0}^{\infty}S_{NN}(\Omega)\left\{-j\pi\delta(\omega-\Omega+\omega_{0})+j\pi\delta(\omega+\Omega-\omega_{0})\right\}d\Omega$$

$$= j\left\{-S_{NN}(\omega+\omega_{0})+S_{NN}(-\omega+\omega_{0})\right\} \text{ (by sifting property of }\delta(\cdot))$$

$$= \underbrace{-jS_{NN}(\omega+\omega_{0})}_{(\omega\geq-\omega_{0})}+\underbrace{jS_{NN}(\omega-\omega_{0})}_{(\omega\leq-\omega_{0})} \text{ (since }\Omega\geq0\text{)}$$

$$= jL_{p}\left[S_{NN}(\omega-\omega_{0})-S_{NN}(\omega+\omega_{0})\right] : \text{ property 10}$$

Figure 9.23: The cross PSD $S_{XY}(\omega)$ of X(t) and Y(t).

Note: If $S_{NN}(\omega)$ is symmetric about $\omega = \omega_0$, then $S_{XY}(\omega) = 0$.

(8) The auto-correlation of N(t):

$$R_{NN}(t, t + \tau)$$

$$\triangleq E[N(t)N(t + \tau)]$$

$$= E[\{X(t)\cos(\omega_0 t) - Y(t)\sin(\omega_0 t)\}$$

$$\cdot \{X(t + \tau)\cos(\omega_0 (t + \tau)) - Y(t + \tau)\sin(\omega_0 (t + \tau))\}]$$

$$= R_{XX}(\tau)\cos(\omega_0 t)\cos(\omega_0 (t + \tau)) - R_{YX}(\tau)\sin(\omega_0 t)\cos(\omega_0 (t + \tau))$$

$$-R_{XY}(\tau)\cos(\omega_0 t)\sin(\omega_0 (t + \tau)) + R_{YY}(\tau)\sin(\omega_0 t)\sin(\omega_0 (t + \tau))$$

$$(since X(t) \text{ and } Y(t) \text{ are JWSS})$$

$$= \frac{1}{2}\{\cos(2\omega_0 t + \omega_0 \tau) + \cos(\omega_0 \tau)\}R_{XX}(\tau)$$

$$-\frac{1}{2}\{\sin(2\omega_0 t + \omega_0 \tau) - \sin(\omega_0 \tau)\}R_{XY}(\tau)$$

$$-\frac{1}{2}\{\sin(2\omega_0 t + \omega_0 \tau) + \cos(\omega_0 \tau)\}R_{XY}(\tau)$$

$$+\frac{1}{2}\{-\cos(2\omega_0 t + \omega_0 \tau) + \cos(\omega_0 \tau)\}R_{YY}(\tau)$$

$$= \frac{1}{2}[R_{XX}(\tau) - R_{YY}(\tau)]\cos(2\omega_0 t + \omega_0 \tau)$$

$$-\frac{1}{2}[R_{XY}(\tau) + R_{YX}(\tau)]\sin(2\omega_0 t + \omega_0 \tau)$$

$$+\frac{1}{2}[R_{XX}(\tau) - R_{XY}(\tau)]\sin(2\omega_0 t + \omega_0 \tau)$$

$$+\frac{1}{2}[R_{YX}(\tau) - R_{XY}(\tau)]\sin(\omega_0 \tau)$$

$$\equiv R_{NN}(\tau) : \text{function of } \tau \text{ only}$$

(cf) Note that $R_{NN}(t, t + \tau) \equiv R_{NN}(\tau)$, since N(t) is WSS !!!

Since R_{NN} should be a function of τ only, we have from the above that:

(i)
$$R_{XX}(\tau) - R_{YY}(\tau) \equiv 0 \implies R_{XX}(\tau) = R_{YY}(\tau)$$
: shown before

(ii)
$$R_{XY}(\tau) + R_{YX}(\tau) \equiv 0 \implies R_{YX}(\tau) = -R_{XY}(\tau)$$
: property 7

Also, by taking the Fourier transform of (ii), we have:

$$S_{YX}(\omega) = -S_{XY}(\omega)$$

(cf) Relavant properties:

(a) Since $R_{YX}(\tau) = R_{XY}(-\tau)$, which is the general property of the cross-correlation function, the property 7 can be modified to show:

$$R_{XY}(\tau) = -R_{YX}(\tau)$$
 (property 7)
= $-R_{XY}(-\tau)$

i.e. $R_{XY}(\tau) = -R_{XY}(-\tau)$, which is the anti-symmetry property of the cross-correlation function.

(b) Since $R_{XY}(0) = 0$ by the property 8, we have:

$$R_{YX}(0) = -R_{XY}(0) = 0$$