Contents

9 Linear Systems with Random Inputs 211
9.1 Linear system fundamentals . . . . . . ... ... ... ... ... .. 211
9.1.1 General linear system: . . . . .. ... ... ... ... ... 211
9.1.2 Time invariant system: . . . . . . . . . ... 213
9.1.3 Linear time invariant (LTT) system: . . . . . ... .. ... .. 213
9.1.4 Transfer function: . . . . . . ... ... 214
9.1.5 Idealized systems: . . . . . . .. ... ..o 215
9.1.6 Causal and stable systems: . . . . .. ... ... ... .. ... 216

9.2 Random signal response of linear systems . . . . . . . ... ... ... 217
9.2.1 Systemresponse. . . . . . . ... 217
9.2.2 Mean and mean squared value of the response . . . . . . . .. 218
9.2.3 Autocorrelation function of Y'(¢) . . . . . .. ... oL 219
9.2.4 Cross-correlation between the input and the output . . . . . . 220

9.3 System evaluation using random white noise . . . . . . .. ... ... 222
9.4 Spectral characteristics of system response . . . . .. ... ... ... 224
9.4.1 The PSDofoutput Y(¢) . . . ... ... ... ... ... ... 224
9.4.2 Cross PSD of the input/output . . . .. .. ... ... .... 226

9.5 Noise bandwith of an LTI system . . . . .. .. .. ... ... .... 228
9.6 Bandpass, bandlimited, and narrowband processes . . . . . . . . . .. 230
9.6.1 Typical narrowband random process . . . ... ... ... .. 231
9.6.2 Properties of narrowband r.p. N(¢) . . . ... ... ... ... 233



Chapter 9

Linear Systems with Random
Inputs

So far, we have studied the “characteristics of random signal”:

(1) Time domain: correlation functions, mean, etc.

(2) Frequency domain: power spectral density etc.

Y

From now on, we will deal with the “interaction os random signals with linear systems’

9.1 Linear system fundamentals

9.1.1 General linear system:

where y(t) = L[z(t)]

Figure 9.1: A general linear system L[-].
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Definition 9.1 A system L[] is called a linear system if:
N N N
y(t)=1L lz aixi(t)] =Y a;L[z;(t)] = aiyi(t)
i=1 i=1 i=1

where y;(t) £ L[z;(t)] for i =1,2,..., N and a;’s are constants.

Due to the sifting property of the Direc delta function, we have for an arbitrary signal
x(t) in general:

ﬂw:/mxum@—ﬂw

—0o0

Therefore, for a linear system, the output signal y(t) can be expressed as:

y(t) = Lla®) = L|[ " a(st - ryar

= /OO xz(T)L[6(t — 7)) dr : due to linearity

—0o0

o0

= / x(T)h(t, T)dT

—00

where h(t, T) 2 [0(t — 7)] is called the impulse response of the system Ll[-].

Remark:

The response of a linear system is completely determined by its impulse response
h(t,7) M
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9.1.2 Time invariant system:

Definition 9.2 A system L[] is called a time invariant if:
Lla(t —to] = y(t —to)
where y(t) £ L [z(t)].

9.1.3 Linear time invariant (LTI) system:

Definition 9.3 A system L[] is called an LTT system if it is both linear and time
invariant:

Figure 9.2: An LTT system.

For an LTI system, let:
h(t) = h(t,0) = L[6(t — 0)] = L[5(1)]
Then,

h(t,7) = LI[o(t—7)]
= LI[(t)],., . (- time invariant)

= h(t—r71)

Therefore, the 1/O realtionship of an LTI system becomes: !

y(t) = /_O; 2(T)h(t — 7)dr 2 2() * h(t)

: convolution integral

Note: x(t) * h(t) = h(t) * z(t).
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9.1.4 Transfer function:

. system characteristic in frequency domain which is equivalent to the impulse re-
sponse h(t) in time domain 2

Figure 9.3: An LTI system with A(¢) and H(w).

From the output signal y(t) expressed in the convolution integral:

o0

y(®) = [ a()h(t - 7)dr

—00

Take the Fourier transform of both sides:
Y(w) 2 F{y@t)} = / [/Oo h(t — T)dT:| e Ildt

- [ [ e real

(lett —7 =1)

= / /OO e dwt dt] e 1T dr

= H(w)-/_oo:c( Ye ™I dr

1.e.:

Definition 9.4 The Fourier transform of the impulse response for an LTI system is
called the transfer function:

H(w) 2 F{h(t)}

A L[]
= Tt T oa(h)

2 Another way of definition: if z(t) = /!, then H(w)
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9.1.5 Idealized systems:

The transfer function of an idealized system in a practical sense is in the following
form:

(i) Magnitude: flat with unit gain

(ii) Phase : linear phase

Figure 9.4: An example of an ideal LPF: (1) practical, (2) theoretical.

Note: The linear phase is needed for the “distortionless’ output of the system:

Figure 9.5: An LTI system.

From the I/O relationship of:

we have:

V@)™ = [H@) e X ()| )

= |Hw)||X(w)] eI [®r (W) +Px (w)]

In words, the magnitude characteristic of the system works in a multiplicative way,
whereas the phase characteristic of the system works in an additive way.
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Example 9.1

Let the input of the system be as follows:
x(t) = sin(wet + 0)

Then, the output will be:

y(t) = sin(wot + 0+ Py(wp))
= sin (wot + 0 + (—awy))
= sin (wo(t — @) + 0)

= z(t— «a)

Notice that the output y(t) is just a shifted version of the input z(¢) !!!

(cf) If ®y(w) were not linear, some distortions in y(¢) would have occurred.

9.1.6 Causal and stable systems:

Definition 9.5 An LTT system is called causal if:

y(to) = flx(t)], wheret <t+0

Fact: If the impulse response h(t) of an LTI system satisfies h(t) =0, Vt < 0, then
the system is a causal system.

Definition 9.6 A bounded input/bounded output LTI system is called a stable sys-
tem.

Fact: The impulse response h(t) of a stable LTI system should satisfy:

/_OO B(1)|dt < oo
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9.2 Random signal response of linear systems

: Response of a stable LTI system to a r.p. X(t)

Figure 9.6: A stable LTI system with random input.

Objective: Characteristics of the output Y'(¢) 3

(i) Time domain: mean, variance, correlation functions etc.

(ii) Freq. domain: power spectral density etc.

Question: * If X (¢) is WSS, then (1) is Y'(t) WSS? (2) are X (t) and Y (¢) JWSS?

9.2.1 System response

Since the output of an LTT system is the convolution integral between the impulse
response and the input, we have:

or

3Note that these are the criteria used for characterizing a random process.
4Recall that the output process of a non-linear system (e.g. product device) is not WSS, even
though the input is WSS.
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9.2.2 Mean and mean squared value of the response

Assuming X (¢) is a WSS process, then:
(i) Mean:

E[Y()] = EUOO W)X (t — 7)dr

—00

_ /°° h(r)E[X(t —7)|dr

= /OO h(7) - Xdr
= Y/OO h(t)dr : independent of ¢

(integral is constant, since the system is stable)

Y :constant

[l

(ii) Mean squared value:

E {Y2(t)} = [/OO ()X (t —7)dm /O:O h(72) X (t — 79)dTy
- / / E[X(t —1)X(t — )] dridr

== / / 7'1 RXX 7'1 —Tg)dTldTQ

>

Y2 : independent of ¢

IID

(cf) Variance(2nd sentral moment) : o2 () = Y2 — Y~ 2 o2 (constant).
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9.2.3 Autocorrelation function of Y (¢)

Assuming X (¢) is WSS, the autocorrelation of the output Y (¢) is given by:

Ryy(t,t+7) 2 E[YO)Y(t+7)]
= [/OO ()X (t — 1 )dm /OO W)X (t + T — 7)dmy

:/ / EX(t—n)X({t+ 71— 1) dndm
= / / W) Rxx (T + 1 — m2)dmdr

: independent of ¢ ( i.e. dependes only on 7)

1.e.

Ryy(t,t +T Ryy / / 7'2 RX)(<T+7'1 — Tg)dTldTQ (92)

Note:

(1) Y(¢t) is WSS if X(¢) is WSS. (* from (9.1) and (9.2).)

(2) Ryy(7) is in the form of two-fold convolution:

Ryy(T) :RX)((T) *h(—T)*h(T) (93)
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proof:

Ryy (1) = / h(m1)h(m2)Rx x (T + 71 — To)dTidTs

o0 J —00

= /OOth {/Oo (o) Rx x (T + 11 — my)dme| dny

o

= h(m) [T+ 1) * Rxx (7 +7)]dn

—00

(let 7+71=1)

9.2.4 Cross-correlation between the input and the output

Assuming X (¢) is WSS, then
(i) Correlation b/w X (¢) and Y (): °

Rxy(t,t+7) & E[X®)Y(t+7)]
_ [X(t) /_O; W)X (t 4+ 7 —7)dn
_ /Z W) E XX (¢t +7 — )] dn
= [ W) Rxx(r — m)dn

= h(r)* Rxx(1) £ Rxy(7) (9.4)

>This will be used later for system identification, i.e. estimating ;L(t)
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(ii) Similarly, we get the correlation b/w Y'(t) and X () as:

Ryx(t.t+7)=h(—7)* Rxx(7) £ Ryx(7) (9.5)

Fact:

If X (¢) is WSS, then the input X (¢) and the output Y () of an LTI system are JWSS:
(a) X(t) and Y (t) are WSS individually

(b) Rxy(t,t+7) = Rxy(7) : function of 7 only

Note:

From (9.3), (9.4) and (9.5), the autocorrelation of the output process can be repre-
sented in either of the following way:

Ryy(T) = ny(T) * h(—T)

Ryy (1) = Ryx(7) % h(T)
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9.3 System evaluation using random white noise

: System identification

Objective: Find the impulse response h(t) of an LTI system

Figure 9.7: An LTI system.

Block diagram:

Figure 9.8: Block diagram of system identification.
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Analysis:

Let X(t) be approximately white noise, i.e.

Rxx(7) ~ <J\2[0> o(7)

Then, the cross-correlation between the input and the output of the system is as
follows;

Rxy(1) = (1) * Rxx(7)

= /OO h(m)Rxx (T — 1 )dm

—0o0

= /oo h(7_1>]\2[05(7_ —7p)dm

N,
= ?Oh(T) . by sifting property of (%)
From which we get:
A(r) = <Ry (r)
T NO XY \T

Therefore, the estimation of the system’s impulse response becomes:

() = jioﬂym ~ h(r)
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9.4 Spectral characteristics of system response

Given an LTI system, where the input is a WSS r.p. X (¢), and the impulse response
h(t) of the system is assumed to be real:

Figure 9.9: An LTT system.

Then,
(1) The output Y (t) is WSS.
(2) The input X (¢) and the output Y (¢) are JWSS.

9.4.1 The PSD of output Y ()
Since Y (t) is WSS, we have:

Syy(w) = F{Ryy(r)}

= / Ryy(T)dT
= /oo [/ / Tl)h(Tz)RX)((T + T — TQ)dT]_dTQ:| e_jWTdT
Y h(r / (72) [/oo Rxx(t+1 — T2)d7'j| drodm

- [7 h(T / h(72)Sxx(w)e™ e 9“2 drydr; (time shift prop of F.T.)

_ / " h(r)emdn [ h(r)e i Sxx(w)
= H'(w)Hw)Sxx(w)  (since h(t) is assumed to be real)
= |Hw)["- Sxx(w)

. direct calculation of Syy(w) w/o via Ryy(T)
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We call |H(w)|* the power transfer function of the system:

power transfer function £ [H(w)|* = H*(w)H(w)

Corresponding output power of Y (¢) can then be calculated using the PSD Sxx(w)
of the input process X () as:

1 00
Pyy = %‘/_OoSyy(W)du)

S [ V@) - Sxxw)do

27 J oo

(cf) Another simpler way of derivation:
Syy(w) = F{Ryy(1)}
— F{h(r) * h(—7) * Rxx(1)}
= F{h(n)} - F{h(-7)} - F{Rxx()}
= H(w) H*w) - Sxx(w)
= [HW)]" - Sxx(w)

where we have used the following fact:

Fin=n} = [ n=r)ear
= /oo h(t)eldt (by letting t = —7)
- (/OO h(t)e‘j“’tdt> (since h(t) is assumed to be real)

= H'(w)
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9.4.2 Cross PSD of the input/output

Since X (t) and Y (¢) are JWSS, we have:
(i) Cross PSD of X (t) and Y'(¢):

Sxy(w) = F{Rxy(7)}
_ /_ °; Ry (1)e 57 dr
- [ [ | hlm) R (r - mdﬁ} T dr
= [Tnw [ Rextr = myeimar] an,

— 00

h(Tl)SX)((W)€_jWT1dT

I
—
g 8

o0

h(Tl)eiijldT . SX)((W)

Il
—

—0o0

= H(w) . Sxx<w)
(ii) Cross PSD of Y () and X (¢):
Syx(w) = F{Ryx(7)}
= /_O:o Ryx(T)eijw‘rdT

- /OO [/Oo h(r) RXX(T+T1)dTI:| e Tdr

oo

= /Oo h 7'1 l:/oo RXX(T+71)€ Jw dT:| dTl

[e.e]

= Ooh 71)Sxx (w)e ™ dr

= O:Oh m)e?™dr - Sxx(w)

= O:oh m)e 7O dr L Sy x (w)
= H(-w)- Sxx(w)

= H*(w)-Sxx(w) :assuming h(t) is real
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(cf) Another simpler way of derivation:

(i) Cross PSD of X(¢) and Y'(¢):

Sxy(w) = F{Rxy(7)}
= FA{h(1)* Rxx(7)}
= FA{h(r)}  F{Rxx(7)}

= H(w) : SX)(<CU)

(ii) Cross PSD of Y () and X(¢):

Syx(w) = F{Ryx(7)}
= F{h(—7)* Rxx(7)}
= FA{h(=7)} - F{Rxx(7)}

== H*(w) . SX)(((,U)
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9.5 Noise bandwith of an LTI system

Consider an LTT system with lowpass characteristics, whose impulse response h(t) is
assumed to be real :

Figure 9.10: The transfer function of an LTI system(lowpass).
Then,

H(-w)= [~ h(t)et=tdt = ( / N h(t)e—jwtdt)* — H'(w)
and therefore:
|H(—w)[* = H(—w)H"(—w) = H*(w)H (w) = |H(w)|”

which means that the power transfer function |H (w)|? is an even function of w.

We apply a white noise as an input to the system, whose power spectral density is
as follows:

N
Sxxw) =%
Then, the output power becomes:
Prv =5 [ Svwde = o [* [H@)P Sxx(w)d
YY_27T —o0 Ywa_Q?T —c0 v xxw)aw
2 [ N,
= [ H)P S
21 Jo 2
_ Ng [ 2
- 2 /O |H ()| dw (9.6)
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Now, consider an idealized system which is equivalent to the above system from the
viewpoints of:

(i) same output power

(ii) same value of power transfer function at w = 0, i.e. |H(0)[>.

Figure 9.11: An equivalent idealized system Hj(w)(lowpass).

Then, the power of Y (¢) from the idealized system is:

1 oo N,
Py — 7/ [Hi (@) - SR

27 —00

NO Wa 9
= —~2/ H(0)|"d

o2 [ HO)P do

No|H(0)]* Wy

2

From (9.6) and (9.7), we get:

No

o 2, No 2
o | @) do = 22 HO)F Wy
And the bandwidth of the equivalent idealized system is then:

R H@) dw

W .
|H(0)]

We call Wy the noise bandwidth ¢ of the system

6This term implies the white noise equivalent of the systems’s bandwidth.
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9.6 Bandpass, bandlimited, and narrowband pro-
cesses

Definition 9.7 Bandpass process:

A random process N (t) is called bandpass if its PSD Sy y(w) has its significant portion
concentrated around w = wy # 0, i.e.

Figure 9.12: The PSD Syy(w) of a typical bandpass random process.

Note:
Sy (0) does not necessarily have to be zero ! It only requires to be a relatively small
value compared to Syy(wp).

Definition 9.8 Bandlimited process:

A bandpass random process N(t) is called bandlimited if its PSD Syy(w) is zero
outside of some frequency band of width W concentrated around w = wy # 0, i.e.

Figure 9.13: The PSD Syy(w) of a typical bandlimited random process.
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Definition 9.9 Narrowband process:

A bandlimited random process N(t) is called narrowband if wy > W in its PSD
Snn(w), ie.

Figure 9.14: The PSD Syy(w) of a typical narrowband random process.

9.6.1 Typical narrowband random process

Judging from the PSD Syy(w) (of a narrowband r.p.), a typical narrowband r.p.
should have frequencies near w = wy, along with relatively slowly varying ampli-
tude(envelop) T A(t) and slowly varying phase & ¢(t) as well, i.e.:

N(t) = A(t) cos (wot + ¢(t)) (9.8)

where you should be reminded that A(t) and ¢(¢) are random processes.

Figure 9.15: A sample function n(t) of a narrowband random process N (t).

"This means that W < wy.
8This means that wy — % <w <wy+ %
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Note: (Refer Davenport and Root) :may be omitted
(1) If N(t) is Gaussian, then A(t) is Rayleigh and ¢(¢) is uniform over [0, 27].
(2) A(t) and ¢(t) are not statistically independent when N(t) is Gaussian.

(3) But, for a fixed t = to, A(tp) and ¢(to) are independent random variables.

Another way of expressing a narrowband r.p.:

N(t) = A(t)cos (wot + (1))
= A(t) cos(wot) cos (¢(t)) — A(t) sin(wpt) sin (¢(t))
= A(t)cos(¢(t)) - cos(wot) — A(t) sin (p(t)) - sin(wpt)

= X(t) - cos(wot) — Y (1) - sin(wpt) (9.9)

where

and

(cf) From now on, we will concentrate on a narrowband r.p. N(t) in the form of

9.9).
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9.6.2 Properties of narrowband r.p. N(t)

N(t) = X(t) - cos(wpt) — Y (t) - sin(wpt)

Suppose N (t) is WSS with following characteristics:

(i) Mean: E[N(t)] =0
(ii) The PSD:

non-zero, 0 <wy— W) < |w| <wy— Wi+ W
Svn(w) =

zero, otherwise

Figure 9.16: The PSD of a WSS narrowband random process N (t).
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Then, the WSS narrowband r.p. N(¢) has the following properties:

property 1: X(¢) and Y (t) are JWSS.
property 2: X (t) and Y (¢) have zero means:
EIX()] = B[V ()] =0
property 3: X (t), Y(t) and N(¢) have equal power:
E[X*(1)] = E[Y?(t)] = E [N*(t)]
property 4: The autocorrelation of X (¢):
Rxx(r) = ;/OOO Snn(w) cos ((w — wo)T) dw
property 5: X(¢) and Y (¢) have the same autocorrelation and PSD:
Ryy(7) = Rxx(1) — Syv(w) = Sxx(w)
property 6: The cross-correlation b/w X (¢) and Y (¢):
Ry (7) = 71T [ Stw)sin (@ — o)) de
property 7: The cross-correlation and PSD b/w Y (¢) and X (¢): °
Ryx(7) = —Rxy(r) — Syx(w)=—-Sxv(w)
property 8: X(t) and Y (¢) are orthogonal:
Rxy(0) = FE[X()Y(t)]=0, and Ryx(0)=0
property 9: X(t) and Y (t) are lowpass signals: 1°
Sxx(w) = Ly [Syn(w = wo) + Swn(w + wo)] = Syy (w)
property 10: The cross PSD of X(¢) and Y (¢):

Sxy(w) = jLy [Snn(w —wo) — Snn(w + wo)]

9Since in general, Rxy (1) = Ry x(—7), we can also derive the anti-symmetry of Rxy () as:

ny(T) = —ny(—T)
107,,(-) represents the lowpass portion.
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PROOF:

(1) The expectation of N(t) is:
E[N(t)] = E[X(t)] - cos(wot) — E[Y(t)] - sin(wet) =0
Therefore, we have:

E[X(t)]=FE[Y(t)]=0 : property 2

(2) Let Wy =¥ (i.e. wp is at the center of W), and wy > % (i.e. 3 no overlap):

Figure 9.17: The PSD of N(t).

Consider the following system:

Figure 9.18: N(t) through a product device(cosine) and an ideal LPF.

Then, we have the following facts:
(i) X(t) is the output of the above system, i.e.:
Vi(t) = 2N(t)cos(wot)
= 2X(t) cos®(wot) — 2Y (t) sin(wot) cos(wot)
= X(t) {1+ cos(2wpt)} — Y (¢) sin(2wpt)
| LPF

X(#)
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(ii) The autocorrelation of X (t):

Rxx(t,t+7) = E[X)X(t+71)]
_E U_Z MVit = r)dn [~ Bm)Vilt+ 7 = m)dn
_ / / EVi(t — m)Vi(t+ 1 — )] drdr
_ / / EAN(t — 1) cos (wo(t — 7))
- N(t+7— 1) cos (wo(t +7 — 7)) dndm

(since N(t) is WSS)

= / / h(72)Ryn(T + 71 — T2)

4 cos (wo(t — 7)) cos (wo(t + 7 — 7)) drdrs  (9.10)

Here, we have:

(a) Ryy part:

1 oo .
Ryn(r+m =) = FH {Syn(w)} = o /_ S (@)=

(b) cos part:

4 cos (wo(t — 7)) cos (wo(t + 7 — 7))
_ {ejwo(t—ﬁ) + e—jwo(t—ﬁ)} {ejwo(t+7—72) + e—jwo(t-l-T—Tz)}

_ ejwo(ZlH»Tleng) +e*jw0(T+T17T2) +€jw0(7’+7’177'2) +€7jw0(2t+T7717T2)

= () + (I1) 4+ (I1IT) + (IV)
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Applying (a) and (b) to (9.10), we get:

[1] First term (I):

[ btz V . WQMWMM T

—00 2T
1 o - | N |
— % /_ SNN(W) (/_ h(Tl)ej(UJUJO)TldTI> </_ h(T2>€](UJ+UJ0)T2dT2)

. gl2wot pi(wtwo)T g,
= 217T /_o:o Syn(w)H (w — wo)H (w + wo)eﬂwotej(w“wohdw
o [T Sl [H (o — ) B + ) e,
=0

where H(w) = |H(w)| e, i.e. H(w) has a linear phase since it is an
ideal LPF, and thus:

H*(w —wp) = |H(w — wp)| #*@0)

H(w+ wp) = |H(w + wp)| e-dwtwo)

Figure 9.19: Syy(w), |H(w — wp)| and |H (w + wp)|-

[2] The fourth term (IV):

In a similar manner, we can show that:

[ henm) [/ * SNNW) utr o) g, | g0t T—n=m) 41y 4, —

—00 27
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[3] The second term (II):

[ wente | [ Pgeeen i) eomieen s,

—00 27

1 [e] 0 . oo .
= 7/ Syn(w) (/ h(ﬁ)e](w_womd71> (/ h(Tz)e_J(w_wodez)
™ J—00 —00 —00

- el gy
1 o 2 _jlw—wo)T
— oo [ Swwlw) [H(w = wo) P 0
T J—0

1 oo ,
- S j(w—wo)'rd
o /0 Ny (w)e w

Similarly,

[4] The third term (III):

//_OO h(m1)h(72) [/‘X’ w@ﬁW(T+T1—TQ)dW] 0TI o dy

—00 2r
(let w = —w', then since Syn(—w') = Sy (W)
= // h(Tl)h<7'2) [/ Swejwl(7+TlT2)dw/] ejwo('r+‘rlf7—2)d7_1d7_2

1 oo .
= L S — )l e
mJ—c0

1 oo .
= %/0 SNN(w)e_j(“’_“O)wa
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Therefore, the autocorrelation of X (¢) becomes: !

Rxx(tt+7) = (II) + (III)
_ 217T/00o Syn(w)2cos (w — wp)T) dw

1 o0
= —/ Snn(w)cos ((w — wp)T)dw : property 4
7 Jo

= Rxx(7): function of 7 only

— X(t) is WSS |

(3) We follow a similar procedure as in (2) for Y (¢), i.e. consider the following
system:

Figure 9.20: N(¢) through a product device(sine) and an ideal LPF.

Then, we have the following facts:

(i) Y (¢) is the output of the above system 2, i.e.:

Va(t) = —2N(t)sin(wpt)
= —2X(¢) sin(wot) cos(wot) + 2V () sin®(wot)
= —X(t)sin(2wot) + Y (t) {1 — cos(2wot)}
| LPF

Y (t)

"Tn fact, note that the terms involving ¢ in (b) resolve to be zero.
12Be reminded that N(t) = X (t) cos(wot) — Y (¢) sin(wot).
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(ii) We repeat the same step in (2)-(ii), to get the autocorrelation of Y'(¢):
Ryy(t,t+7) = E[Y()Y(t+7)]
. (assignment)
1 o
= —/ Snn(w) cos ((w — wp)T) dw
7 Jo

- Ryy(T)

Rxx(r) : property 5

Consequently, we have:

Syy(w) = SXX (w)

— Y(t) is also WSS !

(4) The PSD SX)(<W) of X(t)
Since X (t) is WSS, we have:

Sxx(w) = F{Rxx(7)}
_ ]—“{i /OO" S (€2) cos (2 — wo)7) dQ} ( by property 4 )
- I Llr [ Su(@) cos (@ — wo)r) dQ} eI iy
= = [T 5@ [ con (@ wo)r) e
_ jr /O°° S () {70 (w — Q + wo) + 76(w + Q — wy)} O
— Syn(w+wo) + Syn(—w+wp) ( by sifting property of 6(-) )

= Syn(w+wy) +Syn(w—wy)  (since Q>0)

(w>—wo) (w<—wo)

= L,[Syn(w —wo) + Syn(w +wy)] : property 9
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Figure 9.21: The auto PSD Sxx(w) of X(?).

Another way of Sxx(w) derivation: 3

First, we find the PSD of V4 (t), and in order to do that determine Ry, y, (¢, t+7):
Rvv, (t’ t+ T) = K [Vl (t)‘/l(t + T)]

= FE[2N(t)cos(wot)2N (t + 7) cos(wot + woT)]
= 4F[N(t)N(t + 7)] cos(wpt) cos(wot + woT)

= 2Rnn(7){cos(woT) + cos(2wot + woT)}

1 T
— AlRyy(Lt+7)] = Jim — /_ Ry (1 £+ 7)dt = 2Ry (7) cos(wor)

: done before when discussing product device

— Sy (w) = F{2RyN(T) cos(woT)} = Svn(w — wo) + Synv(w + wo)

Figure 9.22: The auto PSD Sy, v, (w) of Vi(t).

—> After LPF
= Sxx(w) =L, [Snvy(w —wo) + Syn(w+wp)] : property 9.

I3Refer Ziemer and Tranter.
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(5) The power of X(t), Y(t), and N(t):

(i) The average power of X (¢):

E[X*(t)] = Rxx(0)

1 00
- 7/ Syn(w)dw  : from property 4
7w Jo

(ii) The average power of Y (t):

EY2()] = Ryy(0)

1 o]
= 7/ Sy (w)dw . from property 4 & 5
7 Jo

(iii) The average power of N (t):

1 oo
E [NQ(t)} = %/_OO Snn(w)dw : by Parseval’s theorem
1 o . . .
= 2-%/0 Syy(w)dw (7 Syn(w) is symmetric)

1 00
= */ SNN(w)dw
m™Jo

From (i), (ii), and (iii), we have:

E [XQ(t)} =F {Yz(t)} =L [NQ(t)} : property 3
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(6) The cross-correlation between X (¢) and Y'(¢):

Ryy(t,t+7) = E[XHY(t+7)
_ [/oo (r)Valt = )dry [ Bm)Valt + 7 = m)dry
_ / / E Vit — 7)Va(t + 7 — )] drydry
_ / / E[AN(t — 1) cos (wolt — 1))
N+ 7 — 1) sin (wolt + 7 — 1))] drydr
(since N(t) is WSS)

= —/ / h(m) Ryn (T + 11 — T2)

4 cos (wo(t — 7)) sin (wo(t + 7 — 7)) drdmy (9.11)

Here, we have:

(a) Ryy part:

1 oo )
RNN(T + 71— 7-2) - f_l {SNN((U)} = % [ SNN(w)ejw(T+T1—7'2)dw

(b) sinusoidal part:

4 cos (wo(t — 71)) sin (wo(t + 7 — 72))

_ l{ejwo(tiﬂ) + e*jwo(tin)} {ejwo(t*i’T*Tg) . e*jWO(tJrT*Tz)}
J

_ l{ejwo(QtJrT*Tl*TQ) . efjwo(‘rJr‘rlng) + ejwo(‘rJr‘rlng) . efjwo(ZtJr‘rf‘rlng)}
J

A = (0 + (111) = (V)

We can see that (9.11) is in a similar form of (9.10), except the (-) signs and
the % scalar !
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Therefore, the cross-correlation between X (¢) and Y (t) becomes:

ny(t, t+ 7') = (II) + (III)
= 1 /Oo Sy (w)ed @) dy, — R OOSNN(w)efj(wfwo)wa
27y Jo 2mg Jo
_ ;J/ Swn(w) - {0 _ it g,
m Jo
= %/0 Sy (w)27sin ((w — wp)T) dw

1 o)
= —/ Syn(w)sin ((w — wo)T) dw : property 6
7 Jo

= Rxy(7) : function of 7 only

— X(¢) and Y (t) are WSS individually.

—> X (¢) and Y (t) are JWSS by property 6 : property 1

Also, we have:

>

Rxy(0) = E[X()Y ()] = 71T/OOO Syn(w)sin(0)dw =0 : property 8

i.e. X(t) and Y (t) are orthogonal !
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(7) Cross PSD Sxy(w) of X(t) and Y (¢):

Since X (¢) and Y (¢) are JWSS, we have:

Sxy(w) = F{Rxy(7)}
_ }“{i / * Saa () sin (Q — wo)7) dQ} ( by property 6 )
_ /_ ‘: [i /0 % S () sin (2 — wo)7) dQ} =17 47
_ 71T / S () { / °; sin (2 — wo)7) ej“”df} a9
= [T Swnl@) (o — Q4 wo) + (e + D — o)} )

= j{-Svn(w+wy) + Syn(—w+wp)} (by sifting property of 4(-))

= —jSvn(w+wo) +jSyn(w—wy) (since Q>0)

(w>—wo) (w<=wo)

= jL,[Syn(w —wp) — Snn(w+wp)|] : property 10

Figure 9.23: The cross PSD Sxy (w) of X (t) and Y (¢).

Note: If Syy(w) is symmetric about w = wy, then Sxy (w) = 0.
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(8) The auto-correlation of N (t):

RNN(t, t + T)

1>

E[N{)N(t+7)]
—  E[{X(t) cos(wot) — Y (t) sin(wot)}
AX(t 4 7) cos (wo(t + 7)) = Y(t + 7) sin (wo(t + 7))}]

= Rxx(7) cos(wot) cos (wo(t + 7)) — Ry x(7) sin(wot) cos (wo(t + 7))
— Ry (1) cos(wot) sin (wo(t + 7)) + Ryy (7) sin(wyt) sin (wo(t + 7))
(since X (t) and Y (t) are JWSS)

— ; {cos(2wot + woT) + cos(woT)} Ry x (7)

_; {sin(2wot + wor) — sin(wor)} Ryx(7)

_; {sin(2wot 4+ woT) + sin(wor)} Rxy (T)

+; {— cos(2wot + wyr) + cos(wor)} Ryv(7)

1

= 5 [Ryx(r) = Ryy (7)) cos(2wot + wor)

5 oy (r) 4 Ry ()] sin(20t + wor)

—i—; [Rxx(7) + Ryy (7)] cos(woT)

—i—; [Ryx(7) — Rxy(7)]sin(wo7)

Ryy(7) : function of 7 only

(cf) Note that Ryn(t,t +7) = Ryn(7), since N(t) is WSS !l
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Since Ry should be a function of 7 only, we have from the above that:

(i) Rxx(r)— Ryy(7)
(11) ny(T) + Ryx(T)

0 = Rxx(7)= Ryy(r) : shown before
0 = RYX (T)

—Rxy(7) : property 7

Also, by taking the Fourier transform of (ii), we have:

Syx(u}) = —Sxy(w)

(cf) Relavant properties:

(a) Since Ryx(7) = Rxy(—7), which is the general property of the cross-
correlation function, the property 7 can be modified to show:

Rxy(t) = —Ryx(1) (property 7)
= —Rxy(-7)
ie. Rxy(r) = —Rxy(—7), which is the anti-symmetry property of the

cross-correlation function.

(b) Since Rxy(0) = 0 by the property 8, we have:

Ryx(0) = —Ryy(0) =0
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