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Chapter 2

Discrete-Time Signals and
Systems

2.1 Review(Introduction)

Mathematical representation of signals:

A function of one or more independent variables

(cf) In most cases, the independent variable is time, but not necessarily so; e.g. v(t)
is the voltage, I(x, y) is the intensity or brightness of an image, and I(x, y, t) is a
moving image.

Category of signals

1. Continuous-time signal(Analog signal): time and amplitude are continuous

↓ (sampling)

2. Discrete-time signal(Sequence): time is discrete and amplitude is continu-
ous

↓ (quantization)

3. Digital signal : time and amplitude are discrete

(cf): Quantization is for representing signal amplitude with finite number of bits!

⇒ Main focus will be on the discrete-time signals & systems, and quantization effect
for digital signal will be dealt with separately...
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2.2 Discrete-time signals(Sequences)

Representation: x = {x[n]} where n is an integer

x[n] is called the “n-th” sample

(cf) We consider only the periodic sampling of analog signals:

x[n] = xa(nTs)

Figure 2.1: Periodic sampling of an analog signal.

where Ts is called the sampling period in (sec), and ωs = 2π
Ts

is the sampling frequency
in (rad/sec).

Basic sequence operations for DSP:

1. Sum: z[n] = x[n] + y[n]

2. Product: z[n] = x[n]y[n]

3. Scalar multiple: y[n] = αx[n]

4. Time shift: y[n] = x[n− n0]

Note: Sum and product should be carried out sample by sample.
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Typical(Basic) discrete-time signals:

(1) Unit sample sequence(impulse or Kronecker-delta function):

δ[n]
∆
=

{
1 n = 0
0 n 6= 0

(cf) δ[n] corresponds to the unit impulse(or Dirac delta) function δ(t) of continuous-
time signals!!!

Figure 2.2: Unit sample sequence.

Remark: Any discrete-time signal x[n] can be represented as a linear combination
of scaled, delayed impulses, i.e.

x[n] =
∞∑

k=−∞
x[k]δ[n− k]

where x[k] denotes the n-th sample xk of x[n].

Figure 2.3: A discrete-time signal expressed via δ[n].

(2) Unit step sequence:

u[n]
∆
=

{
1 n ≥ 0
0 n < 0

Figure 2.4: Unit step sequence.
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Remark: Relatioship between δ[n] and u[n]: 1

1. u[n] =
∑n

k=−∞ δ[k] =

{
1 n ≥ 0
0 n < 0

2. u[n] =
∑∞

k=0 δ[n− k]

3. δ[n] = u[n]− u[n− 1] (: called backward difference)

(3) Exponential and sinusoidal sequences:

1. Exponential sequence:

x[n] = Aαn

= |A||α|nej(ω0n+φ)

= |A||α|n cos(ω0n + φ) + j|A||α|n sin(ω0n + φ)
∆
= Re{x[n]}+ jIm{x[n]}

where A and α are complex constants, in general, i.e. A = |A|ejφ and α =
|α|ejω0 .

There exist three different cases for x[n] depending on the value of α:

(a) |α| > 1: x[n] oscillates w/ exponentially growing envelope.

(b) |α| < 1: x[n] oscillates w/ exponentially decaying envelope.

(c) |α| = 1: x[n] oscillates w/ constant envelope.

(cf) For the case of |α| = 1, x[n] is called the “complex exponential sequence”.

Note:

(a) If A and α are real, x[n] = Aαn is real as well, and depending on the value
of α 3: 0 < α < 1, −1 < α < 0, & |α| = 1, x[n] becomes exponentially
growing, exponentially decaying, and constant respectively.

(b) We concentrate on “complex exponential sequence”, i.e. for the case of
|α| = 1.

x[n] = |A|| cos(ω0n + φ) + j|A| sin(ω0n + φ)

= |A|ej(ω0n+φ)

1Its analogy for continuous cases are: u(t) =
∫ t

−∞ δ(θ)dθ, and δ(t) = du(t)
dt respectively.
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2. Sinusoidal sequence:

x[n] = A cos(ω0n + φ), or A sin(ω0n + φ)

Note: Sinusoidal sequences are the real and/or imaginary parts of the “complex
exponential sequence”.

3. Comparison b/w continuous and discrete-time cases: 2

(a) Frequency dimension:{
ω0 : frequency : dim(ω0) = radian
φ : phase : dim(φ) = radian

Note the argument of sinusoidal functions is phase or angle in radians!!!

x(t) = A cos(ω0t + φ) : ω0 (rad/sec)

x[n] = A cos(ω0n + φ) : ω0 (rad) or (rad/sample)

(b) Frequency range:





(i) |A|ej{(ω0+2πr)n+φ} = |A|ejω0n · ej2πrn · ejφ = |A|ej(ω0n+φ

(ii) A cos{(ω0 + 2πr)n + φ} = A cos(ω0n + 2πrn + φ) = A cos(ω0n + φ)

NOTE:

The frequency ω0 +2πr is indistinguishable from frequency ω0, i.e.
they are the SAME frequencies!!!

⇒ The only frequency interval that we have to consider for (exponential
& sinusoidal) discrete signals is of length 2π, 3: 0 ≤ ω0 ≤ 2π. 3 4

Figure 2.5: Frequency range for discrete-time signals.

2The differences are due to the fact that n is an integer, i.e. dimensionless.
3Since dim(ω0)=radian, ω0 should be between 0 and 2π.
4For continuous signals, A cos(ω0t + φ), ω0 could be 0 ≤ ω0 < ∞.
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(c) Peridicity:

Definition 2.1 A sequence x[n] is called periodic if

x[n] = x[n + N ] ∀n where N : integer

The continuous complex exponential signals and the sinusoids are always
periodic, and the corresponding period is T = 2π

ω0
, i.e. 5

ejω0t = cos(ω0t) + sin(ω0t) : periodic (T =
2π

ω0

(sec))

However, for discrete complex exponentials and sinusoids to be periodic,
we have:





(i) ejω0n = ejω0(n+N) = ejω0n · ejω0N

(ii) cos(ω0n + φ) = cos{ω0(n + N) + φ} = cos(ω0n + ω0N + φ)

For (i) and (ii) to be valid, the necessary condition is as follows:

ω0N = 2πk ⇒ N =
2π

ω0

k (should be an integer!!!) (2.1)

Therefore:

(1) The period N may not necessarily be 2π
ω0

, since 2π
ω0

may not be an
integer.

(2) May not be periodic at all depending on the frequency ω0.

5ejω0t = ejω0(t+T ) = ejω0t · ejω0T , and therefore ω0T = 2πn → T = 2πn
ω0

. We call T = 2π
ω0

the
fundamental period of the signal.
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Example 2.1 (periodicity of discrete sinusoids)

(1) x1[n] = cos(3
4
πn) = cos(t)|t= 3π

4
n T = 6π(sec)

(2) x2[n] = cos(n) = cos(t)|t=n Non-periodic

Solution:

(1) ω0 = 3π
4

:

3π
4

N = 2πk → smallest integer value N = 8(6= 4
3π

2π = 8
3
)

Figure 2.6: x1[n] = cos(3
4
πn)

(2) ω0 = 1:

N = 2πk → ∃ no such integer value N = 8

Figure 2.7: x2[n] = cos(n)

Remarks:

1. Combining (b) and (c) along with (2.1), we can see that for periodic(N : which
is given or fixed) complex exponential or real sinusoidal sequences,

∃ only N possible frequency components 6 7 3:

ωk =
2π

N
k where k = 0, 1, 2, . . . , N − 1

= k · ωf

(cf) Note that ωk = ωk+N = 2π + ωk, since ωk and 2π + ωk are the same
frequencies, and we call ωf the fundamental frequency.

6As we will see later, this is the reason why the discrete Fourier series(DFS) is a finite series.
7Continuous Fourier series(CFS) is an infinite series.
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2. Since ω0 = ω0 + 2πk, for complex exponential and real sinusoidal sequences,
frequency around ωDC , where

ωDC = 2πk k = integer

represent the low frequencies increasing up to ωH = 2πk+π, which is the highest
frequency possible.

(cf): The frequency of continuous sinusoids A cos(Ω0t + φ) could be arbitrarily
large as Ω0 increases.

Example 2.2

x[n] = cos(ω0n)

(a) ω0 = 0, x[n] = 1 ∀n
(b) ω0 = π

4
, x[n] = cos(π

4
n) (oscillation becomes more rapid)

(c) ω0 = π, x[n] = cos(πn) (highest frequency possible)

(d) ω0 = 7π
4

, x[n] = cos(7π
4

n) = cos(π
4
n) (ω0 = 7π

4
= π

4
)) 8

(e) ω0 = 2π, x[n] = 1 ∀n, (ω0 = 2π = 0)

8cos( 7π
4 n) = cos(2πn− π

4 n) = cos(π
4 n)
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2.3 Discrete-time systems

A discrete-time system is generally represented by the following block diagram, where
the input sequence is x[n] and the output sequence is y[n]:

y[n] = T{x[n]}

Figure 2.8: Block diagram of a discrete-time system

Typical classes of systems

1. Memoryless system(Static system):

A system is called “memoryless” if n-th sample of the output y[n] depends only
on the n-th sample of the input x[n].

Example 2.3

(1) y[n] = T{x[n]} = x2[n] :square device(memotyless)

(2) y[n] = T{x[n]} = x[n− n0] :ideal delay(system w/ memory)
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2. Linear system:

A system is “linear” if the following condition is satisfied:

T{
M∑

k=1

akxk[n]} =
M∑

k=1

akT{xk[n]}

=
M∑

k=1

akyk[n]

Example 2.4

Consider a mixer, or juicer which we use in our everyday life:

(1) You put a fresh apple, a tomato, and pear altogether in the mixer and
make a cup of fruit juice.

(2) You put a fresh apple in a mixer and make an apple juice, then you
make a fresh tomato juice, and pear juice. After that you mix them
and make a cup of fruit juice.

Would those two cups of juices taste same? Could we then consider the
system(mixer) as a linear system?

3. Time invariant system:(Shift invariant system)

A system is called “time-invariant” if:

T{x[n− n0]} = y[n− n0] ∀n0 : integer

where y[n] = T{x[n]}.

Example 2.5

Consider a mixer, or juicer which we use in our everyday life:

(1) You keep a fresh apple for a week, and make a cup of apple juice.

(2) You make a fresh cup of apple juice and keep it for a week.

Would those two cups of juices taste same? Could we then consider the
system(mixer) as a time-invariant system?
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Example 2.6 Compressor 9 10

y[n] = x[Mn] where M is an integer

Figure 2.9: A discrete-time system: compressor

Determine whether the above system(compressor) is shift-invariant or not.

Solution:

T{x[n− n0]} = x[Mn− n0]

6= x[Mn−Mn0]

= y[n− n0]

Therefore, the system is NOT shift-invariant (unless M = 1).

Example 2.7

Determine whether the following system is shift-invariant or not:

y[n] = T{x[n]}x[n2]

Solution:

T{x[n− n0]} = x[n2 − n0]

6= x[(n− n0)
2]

= y[n− n0]

Therefore, the system is NOT shift-invariant.

9This is related to the time scaling property of Fourier transform we mentioned in Signals &
Systems class. The output y[n] is merely a sequence of resampling every M − th points in x[n], and
the system is called a “compressor” although the term is not exact in a rigorous sense.
We should interprete the term “compressor” meaning reducing the amount of data to represent a
sequence.

10Ina compressor, the time index n is replace by Mn.
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4. Causal system:(non-anticipative)

A system is called “causal” if:

y[n0] = f{x[n]} where n ≤ n0

Example 2.8

(1) y[n] = T{x[n]} = x[n]− x[n− 1] :backward difference system(c)

(2) y[n] = T{x[n]} = x[n + 1]− x[n] :forward difference system(n-c)

(3) y[n] = T{x[n]} = x[Mn] :compressor(n-c, unless M = 1)

(4)

y[n] = T{x[n]} =
1

M1 + M2 + 1

M2∑

k=−M1

x[n− k]

:moving average(n-c, unless M1 = 0) 11

5. Stable system:

A system is called “stable” if and only if (iff) a bounded input produces a
bounded output sequence.

Note: A sequence x[n] is bounded if ∃ a positive finite value Bx 3: |x[n]| ≤
Bx < ∞ ∀n.

Example 2.9 Accumulator 12

Determine the system defined below is a stable system or not.

y[n] =
n∑

k=−∞
x[k]

Solution: Suppose x[n] = u[n], then the input x[n] is bounded since
∃ Bx (e.g. Bx = 2) 3: |x[n]| ≤ Bx < ∞ ∀n.

The corresponding output sequence of the system is given as:

y[n] =

{
0 n < 0
n + 1 n ≥ 0

Since there does NOT ∃ By 3: n = 1 ≤ By ∀n, y[n] is not bounded.
Therefore, the system is NOT a stable system.

11Average of present sample, past M2 samples, and future M1 samples.
12Recall that u[n] =

∑n
−∞ δ[k].
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2.4 LTI(Linear Time Invariant) system

A system T{·} is called an LTI system if it satisfies both the linearity and time-
invariant properties:

1. Linearity:

T{
M∑

k=1

akxk[n]} =
M∑

k=1

akT{xk[n]}

2. Time Invariance:

T{x[n− nd]}y[n− nd] where y[n] = T{x[n]}

Remarks:

(1) An LTI system T{·} is completely specified(characterized) by its impulse re-

sponse h[n] where h[n]
∆
= T{δ[n]}

(2) The output sequence y[n] od an LTI system can be represented as a “convolution
sum” b/w input x[n] and the system’s impulse response h[n], i.e.:

y[n] =
∞∑

k=−∞
x[k]h[n− k]

∆
= x[n] ∗ h[n]

Derivation:

Figure 2.10: An LTI system

Recall that any sequence x[n] can be expressed as a linear combination of weighted
and shifted impulses, i.e.

x[n] =
∞∑

k=−∞
x[k]δ[n− k]
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Therefore, the output sequence y[n] of an LYI system for an arbitrary input sequence
x[n] is as follows:

y[n] = T{x[n]} = T{
∞∑

k=−∞
x[k]δ[n− k]}

=
∞∑

k=−∞
x[k]T{δ[n− k]} (linearity)

=
∞∑

k=−∞
x[k]h[n− k] (time-invariance)

∆
= x[n] ∗ h[n]

:Convolution Sum

Interpretation of convolution sum:

Figure 2.11: DLTI system

x[n] =
∞∑

k=−∞
x[k]δ[n− k] (2.2)

y[n] =
∞∑

k=−∞
x[k]h[n− k] (2.3)

From (2.2) and (2.3), we can see that each sample of the input sequence (i.e. xk[n] =
x[k]δ[n− k]) is transformed into output sample yk[n] = x[k]h[n− k], and the results
are summed up to form the output sequence y[n].
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Example 2.10 Consider a DLTI system and find out the output sequence y[n],
where the input x[n] and the inpulse response h[n] of the system are respectively

given as follows: x[n] = δ[n + 1]− δ[n− 1]
∆
= x−1[n] + x1[n]

h[n] = δ[n] + 1
2
δ[n− 1]

Figure 2.12: Input x[n] and impulse response h[n] of a DLTI system.

Solution: According to the above interpretation of convolution sum, we have:

y[n] = x[−1]h[n + 1] + x[1]h[n− 1]
∆
= y−1[n] + y1[n]

which is depicted in the following figure.

Figure 2.13: Output y[n].

Evaluation of convolution sum: all in k domain

y[n] =
∞∑

k=−∞
x[k]h[n− k]

(1) Flip h[k] around k = 0 to obtain h[−k].

(2) Shift h[−k] in amount of n to obtain h[n− k].

(3) Multiply x[k] to h[n − k], and take sum of them to obtain y[n] for a fixed(or
certain range of) n.
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Example 2.11 Repeat the previous example 2.10, and find the output se-
quence by directly evaluating the convolution sum.

Solution: The output expressed in the form of convolution sum is as follows:

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞
x[k]h[n− k]

We must calculate this summation for six different cases of n:

Figure 2.14: Convolution sum in k domain.

(a) n ≤ −2; y[n] = 0

(b) n = −1; y[−1] = 1× 1 = 1

(c) n = 0; y[0] = 1× 1
2

= 1
2

(d) n = 1; y[1] = −1× 1 = −1

(e) n = 2; y[2] = −1× 1
2

= −1
2

(f) n ≥ 3; y[n] = 0

Figure 2.15: Output y[n] via convolution sum.
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2.5 Properties of LTI system

where h[n] = T{δ[n]}

Figure 2.16: A typical LTI system

Recall that an LTI system is completely characterized by its impulse response h[n].
Therefore:

properties of LTI system ≡ properties of h[n]

(w/ properties of the convolution sum)

1. Commutative property:

h[n] ∗ x[n] = x[n] ∗ h[n]

(a)
∑∞

k=−∞ h[k]x[n− k] =
∑∞

k=−∞ x[k]h[n− k].

(b) The prrof is trivial. (assignment)

(c) Roles of x[n] and h[n] can be interchanged, i.e. two different systems may
have the same output, depending on the input. (y[n] = x[n] ∗ h[n] =
h[n] ∗ x[n])

2. Distributive property:

x[n] ∗ {h1[n] + h2[n]} = x[n] ∗ h1[n] + x[n] ∗ h2[n]

proof: trivial (assignment)
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Remarks:

(a) Cascade of LTI systems:

where h[n] = h1[n] ∗ h2[n] ∗ . . . ∗ hN [n]

Figure 2.17: Cascade of LTI systems.

(i) proof is trivial (assignment)

(ii) The order of subsystems is irrelevant( due to commutativity).

(b) Parallel connection of LTI systems:

where h[n] =
N∑

i=1

hi[n]

Figure 2.18: Parallel connection of LTI systems(e.g. filter banks).

(i) proof is trivial (assignment)

(ii) The result is due to distributivity of LTI system.

19



3. Stable LTI system:

An LTI system is stable iff h[n] is absolutely summable. i.e.

∞∑

k=−∞
|h[k]| = S < ∞

Note: The stability condition of LTI system is in terms of h[n] only!!!

Proof:

(a) If (←):

Suppose
∑∞

k=−∞ |h[k]| < ∞, and let the input x[n] is bounded, i.e. |x[n]| ≤
Bx, then we must prove that the output y[n] is also bounded.

|y[n]| = |
∞∑

k=−∞
h[k]x[n− k]| ≤

∞∑

k=−∞
|h[k]||x[n− k]|

≤
∞∑

k=−∞
|h[k]| ·Bx

< ∞ (since
∑ |h[k]| < ∞, Bx < ∞)

Therefore, y[n] is bounded, and the system is stable.

(b) Only if (→):

This is equivalent to proving; if
∑∞

k=−∞ |h[k]| → ∞, the system is unstable,
i.e. bounded x[n] may cause unbounded y[n]. 13

Take an input sequence x[n] as:

x[n]
∆
=

{
h∗[−n]
|h[−n]| if h[n] 6= 0

0 if h[n] = 0

Clearly, |x[n]| ≤ 1 = Bx < ∞ (bounded), but

y[0] =
∞∑

k=−∞
x[0− k]h[k] =

∞∑

k=−∞

h∗[k]h[k]

|h[k]| =
∞∑

k=−∞
|h[k]| → ∞

Therefore, the system is unstable. (Q.E.D.)

13Antithesis: A → B ≡ B → A.
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4. Causal LTI sysrem:

An LTI system is causal if

h[n] = 0 ∀n < 0

Note: Again, notice that the causality condition of LTI system is in terms of
h[n] only!!!

Proof:

y[n] =
∞∑

k=−∞
h[k]x[n− k]

→ y[n0] =
∞∑

k=−∞
h[k]x[n0 − k]

=
∞∑

k=0

h[k]x[n0 − k] (by condition)

Since y[n0] depends only on the input x[n] for n ≤ n0, the system is causal.

Example 2.12 Find out whether the following systems are stable, and
causal. (Be reminded that the impulse response of the system is defined

as: h[n]
∆
= T{δ[n]}.)

(i) Ideal Delay: y[n] = x[n− nd], where nd > 0 (integer)

(ii) Accumulator: y[n] =
∑n

k=−∞ x[k]

(iii) Forward difference: y[n] = x[n + 1]− x[n]

(iv) Backward difference: y[n] = x[n]− x[n− 1]

Solution:

(i) Ideal Delay: y[n] = x[n− nd], where nd > 0 (integer)

Applying the definition of the impulse response, we have;

h[n] = T{δ[n]} = δ[n− nd]

(a)
∑∞

k=−∞ |h[k]| = ∑∞
k=−∞ δ[n− nd] = 1 < ∞ :stable.

(b) h[n] = 0 ∀ n < 0 :causal
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Remark: The system’s impulse response h[n] has a finite number of
non-zero samples(i.e. finite duration): called a FIR (finite impulse
response) system.
⇒ An FIR system is always stable if each sample in h[n] is of finite
magnitude.

(ii) Accumulator: y[n] =
∑n

k=−∞ x[k]

Using the definition of the impulse response, we have;

h[n] = T{δ[n]} =
n∑

k=−∞
δ[k] =

{
1 n ≥ 0
0 n < 0

}
= u[n]

(a)
∑∞

k=−∞ |h[k]| = ∑∞
k=−∞ u[k] =

∑∞
k=0 u[k] →∞ :unstable.

(b) h[n] = u[n] = 0 ∀ n < 0 :causal

Remark: h[n] has infinite number of non-zero samples: called an IIR
(infinite impulse response) system.
⇒ could be a stable system. (i.e. not always unstable even though it
has ∞ number of samples.)

(e.g.)

h[n] = anu[n], |a| < 1

→
∞∑

k=−∞
|h[k]| =

∞∑

k=0

|a|k

=
1

1− |a| < ∞

Figure 2.19: Impulse responses of a stable and an unstable LTI systems.

(iii) Forward difference: y[n] = x[n + 1]− x[n]

By the definition of the impulse response, we have;

h[n] = T{δ[n]} = δ[n + 1]− δ[n]

(a)
∑∞

k=−∞ |h[k]| = 2 < ∞ :stable.

(b) h[n] = 1 6= 0 for n = −1 :non-causal
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(iv) Backward difference: y[n] = x[n]− x[n− 1]

By the definition of the impulse response, we have;

h[n] = T{δ[n]} = δ[n]− δ[n− 1]

(a)
∑∞

k=−∞ |h[k]| = 2 < ∞ :stable.

(b) h[n] = 0 6= 0 ∀ n < 0 :causal

5. Inverse sysrem:

An LTI system with impulse response hi[n] is called the inverse system od
another LTI system w/ h[n] if:

hi[n] ∗ h[n] = h[n] ∗ hi[n] = δ[n] (2.4)

Example 2.13

Figure 2.20: Cascade of the accumulator(h1[n]) and the backward difference(h2[n])
systems.

h1[n] ∗ h2[n] = u[n] ∗ {δ[n]− δ[n− 1]}
= u[n]− u[n− 1]

= δ[n]

Therefore, the accumulator and the backward difference systems are in-
verse systems to each other. 14

Remark: Solving (2.4) directly in time to find an inverse system hi[n] for a
h[n] is difficult in general.

⇒ Solving in frequency domain using Z-transform will make the job easier for
you! (will be covered later at Chapter 5.)

14This result make sense that the accunulator stacks up the incoming samples while the backward
difference system sequentially pulls out the samples one at a time, which means that the system
does not have any effect at all on the input signal.
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2.6 Linear constant coefficient difference equa-
tions

For some LTI systems, the input x[n] and the output y[n] are related in an N -th
order linear constant coefficient difference equation, i.e.: 15

N∑

k=0

aky[n− k] =
M∑

k=0

bkx[n− k] (2.5)

Representation of an LTI system in (2.5):

Example 2.14

Accumulator:

From the previous example, we know that the accumulator and the backward
difference systems are inverse systems to each other, i.e.:

Figure 2.21: The accumulator(h1[n]) and the backward difference(h2[n]) systems in
cascade.

Therefore, from the input/output relation of the backward difference system in
the above figure, we have

y[n]− y[n− 1] = x[n], : I/O relation of accumulator in the form of (2.5)

where a0 = 1, a1 = −1,M = 0, N = 1, b0 = 1.

Or, from the i/o relation of the accumulator; 16

y[n] =
n∑

k=−∞
x[k]

= x[n] +
n−1∑

k=−∞
x[k]

= x[n]− y[n− 1]

⇒ y[n]− y[n− 1] = x[n]

15This will be useful when we discuss the structures of digital filters later.
16This is the method in your textbook.
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Rearranging the above I/O realtion of the accumulator, we get 17 18

y[n] = y[n− 1] + x[n] (Recursion representation) (2.6)

Figure 2.22: Accumulator in recursive form.

Example 2.15

Moving average:

Recall that the I/O relation of the moving average system is as follows:

y[n] =
1

M1 + M2 + 1

M2∑

k=−M1

x[n− k]

Consider that case when M1− = 0 to make the system be causal, i.e.

y[n] =
1

M2 + 1

M2∑

k=0

x[n− k] (2.7)

Notice that (2.7) itself is in the form of (2.5), where N = 0, a0 = 1, bk =
1

M2+1
for 0 ≤ k ≤ M2.

Another possibility: 19

The impulse response of the system is now

h[n] =
1

M2 + 1

M2∑

k=0

δ[n− k] =





0, n < 0
1

M2+1
, M2 ≥ n ≥ 0

0, n > M2

=
1

M2 + 1
{u[n]− u[n−M2 − 1]}

=
1

M2 + 1
{δ[n]− δ[n−M2 − 1]} ∗ u[n]

17This form clearly reveals the reason why the system is called accumulator.
18Representing the system’s i/o in (2.5) is NOT unique. In fact we replace y[n− 1] = y[n− 2] +

x[n−1] in (2.6), we get another form of recursion representation as: y[n−1]−y[n−2] = x[n]+x[n−1],
which mean there are infinitely many ways of representation!!!

19Representation of an LTI system in (2.5) is not unique, and in fact there exist infinitely many
ways, and details including the solution of (2.5) will be discussed later at Chapter 6.
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Figure 2.23: Impulse response h[n] of a causal moving average system.

Therefore, the system acn be represented in the following block diagram which
is in a cascade form:

Figure 2.24: A causal moving average system in cascade of two subsystems.

y[n]− y[n− 1] = x1[n] (from previous example) (2.8)

x1[n] =
1

M2 + 1
{x[n]− x[n−M2 − 1]} (2.9)

Inserting (2.9) into (2.8), we get

y[n]− y[n− 1] =
1

M2 + 1
{x[n]− x[n−M2 − 1]} (2.10)

(2.10) is also in the form of (2.5) where a0 = 1, a1 = −1, N = 1, b0 = −bM2+1 =
1

M2+1
.
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2.7 Frequency domain representation of discrete-
time signals and systems

Consider an LTI system w/ an input x[n] = ejωn, i.e. complex exponential sequence
of frequency ω(rad). 20

Figure 2.25: LTI system w/ input x[n] = ejωn.

y[n] = h[n] ∗ x[n] =
∞∑

k=−∞
h[k]x[n− k]

=
∞∑

k=−∞
h[k]ejω(n−k)

= ejωn ·



∞∑

k=−∞
h[k]e−jωk




= ejωn ·H(ejω)

= x[n] ·H(ejω)

where

H(ejω)
∆
=

∞∑

k=−∞
h[k]e−jωk

In summary, we have

T{x[n]} = H(ejω) · x[n]

⇒ T{ejωn} = H(ejω) · ejωn

Note that the output of the LTI system w/ sinusoidal input is again sinusoidal
with the same frequency. So, representation of signals associated with LTI systems
using sinusoids is very important!!!

20x[n] = ejωn = cos(ωn) + j sin(ωn).
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Remarks:

1. H(ejω) is the DTFT of h[n]. (Recall from Signals and Systems class...)

2. ejωn is the eigenfunction and H(ejω) is the eigenvalue of the LTI system. 21

3. H(ejω) represents the change in complex magnitude of ejωn as a function of
frequency ω, and called the frequency response of the system:

H(ejω) = HR(ejω) + jHI(e
jω)

= |H(ejω)|ejΦH(ejω)

where

ΦH(ejω) = arctan
HI(e

jω)

HR(ejω)

Example 2.16

Determine the frequency response of the ideal delay system.

Figure 2.26: An ideal delay system of nd samples.

Solution:

y[n] = x[n− nd]

(#1) Let x[n] = ejωn, then

y[n] = ejω(n−nd) = ejωn · e−jωnd

= ejωn ·H(ejω)

Therefore, we have;

H(ejω) = e−jωnd = cos(ωnd)− j sin(ωnd) ≡ HR(ejω) + jHI(e
jω)

= 1 · ej(−ωnd) ≡ |H(ejω)|ejΦH(ejω)

21In linear algebra, for a square matrix A, if it satisfies y = Ax = λx, x and λ are called the
eigenvector and the eigenvalue of the matrix A. In this case, A is the system, x is the input, and
y = Ax corresponds to the output of an LTI system as an anology.
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(#2) Since h[n] = δ[n− nd], we get

H(ejω) =
∞∑

n=−∞
h[n]e−jωn =

∞∑

n=−∞
δ[n− nd]e

−jωn = e−jωnd

Remark:
The concept of frequency response for a discrete system is very similar to the transfer
function of a continuous system, i.e.

H(Ω) = F{h(t)} =
∫ ∞

−∞
h(t)e−jΩtdt

But, the main difference is H(ejω) is periodic in ω with period of 2π, i.e. 22

H(ejω) = H(ej(ω+2πk)), ∀ k:integer

Proof: Assignment(easy and already done at S&S class.)

(cf)

1. The fact is due to that ejωn is periodic in ω (2π), so the system H(ejω) should
respond identically to ejωn and ej(ω+2πk)n.

2. Usually, we specify H(ejω) for −π ≤ ω ≤ π.

22As a matter of fact, DTFT of any sequence is periodic(2π).
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Example 2.17

Frequency response ideal filters:

(a) Ideal LPF:

(b) Ideal BPF:

(c) Ideal HPF:

(d) Ideal BSF(band stop filter):

Figure 2.27: Ideal LPF, BPF, HPF, and BSP.
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2.8 Representation of sequences by Fourier trans-
forms(Discrete time Fourier transform: DTFT)

Recall that the DTFT pair for a non-periodic sequence x[n] is defined as:

X(ejω) =
∞∑

n=−∞
x[n]e−jωn :analysis (2.11)

x[n] =
1

2π

∫

2π
X(ejω)ejωndω :synthesis (2.12)

(
x[n]

F←→ X(ejω)
)

In general, there are two ways of representing the DTFT:

X(ejω) = XR(ejω) + XI(e
jω) :rectangular form

or
= |X(ejω)|ejΦX(ejω) :polar form

where |X(ejω)| and ΦX(ejω) are called the magnitude spectrum and the phase spectrum
respectively.

Remark:

1. The phase ΦX(ejω) is not unique, since the phase angle rotates for every 2π(rad),
i.e.

ejΦX(ejω) = ej[ΦX(ejω)+2πk]

2. Also recall again that X(ejω) is periodic in ω w/ period of 2π, i.e.

ΦX(ejω) = ΦX(ej(ω+2πk))

3. Representation:

(i) The principal value( within [−π, π]) of the phase:

ΦX(ejω) = ARG
[
X(ejω)

]
for − π ≤ ΦX(ejω) ≤ π

(ii) The phase value in the main period(since it is periodic):

ΦX(ejω) = arg
[
X(ejω)

]
for 0 ≤ ω ≤ π
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Derivation of (2.11) and (2.12): Done at S&S class

Verification of (2.11) and (2.12):

Let x̂[n] = 1
2π

∫ π
−π

(∑∞
m=−∞ x[m]e−jωm

)
ejωmdω, then we want to show that :

x̂[n] = x[n]

proof:23

LHS =
1

2π

∫ π

−π

∞∑

m=−∞
x[m]e−jωm · ejωmdω

=
∞∑

m=−∞
x[m]

[
1

2π

∫ π

−π
ejω(n−m)dω

]

=
∞∑

m=−∞
x[m]

sin[π(n−m)]

π(n−m)

=
∞∑

m=−∞
x[m]δ[n−m]

= x[n]

= RHS

Condition of x[n] to have X(ejω): sufficient condition

For a sequence x[n] to be represented by (2.12) (IDTFT: i.e. for X(ejω) to exists),
the infinite sun in (2.11) should converge, i.e. |X(ejω)| < ∞. Therefore, we have:

|X(ejω)| = |
∞∑

n=−∞
x[n]e−jωn|

≤
∞∑

n=−∞
|x[n]||e−jωn|

=
∞∑

n=−∞
|x[n]|

⇒ If
∑∞

n=−∞ |x[n]| < ∞, then |X(ejω)| < ∞.

⇒ If x[n] is “absolutely summable” (i.e.
∑∞

n=−∞ |x[n]| < ∞),
then X(ejω) exists!!!!!

23Note that sin[π(n−m)]
π(n−m) =

{
1, n = m
0, n 6= m
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(cf)

1. If a sequence x[n] is a finite duration/magnitude sequence, X(ejω) exists.

2. If a DLTI systems h[n] is stable, the frequency response H(ejω) exists.(e.g. FIR
system)

Example 2.18

Find the DTFT of x[n] = anu[n].

Solution:

X(ejω) =
∞∑

n=0

ane−jωn =
∞∑

n=0

(
ae−jω

)n

=
1

1− ae−jω
if |ae−jω| < 1 (or |a| < 1)

(cf) Absolute summability on x[n]:

∞∑

n=−∞
|x[n]| =

∞∑

n=0

|a|n =
1

1− |a| if |a| < 1

Note that the above two conditions are equivalent, and we can conclude that if
x[n] is absolutely summable, then X(ejω) exists.

Singular sequences:

Sequences which are not absolutely summable, but still have their own DTFT.

1. x[n] = 1 ∀ n:

X(ejω) =
∞∑

k=−∞
2πδ(ω + 2πk)

where δ(ω) is the continuous unit impulse function of which definition is as
follows:

δ(ω) =

{
∞, ω = 0
0, ω 6= 0
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and ∫ ∞

−∞
δ(ω)dω = 1

verification:

Let X(ejω) =
∑∞

k=−∞ 2πδ(ω − ω0 + 2πk), where |ω0| ≤ π, then

x[n] =
1

2π

∫ π

−π
2πδ(ω − ω0)e

jωndω

=
1

2π
2πejω0n

= ejω0n


i.e. ejω0n F←→

∞∑

k=−∞
2πδ(ω − ω0 + 2πk)




By letting ω0 = 0, the relationship is proved.

Figure 2.28: DTFT of discrete d-c signal.

2. x[n] =
∑

m amejωmn −∞ < n < ∞:

From the above verification, it is obvious that: 24

X(ejω) =
∞∑

k=−∞
2π

∑
m

amδ(ω − ωm + 2πk)

3. x[n] = u[n]: unit step sequence 25 26

X(ejω) = U(ejω) =
1

1− e−jω
+

∞∑

r=−∞
πδ(ω + 2πr)

derivation: assignment

24Due to the linearity property of DTFT to be discussed later.
25Note that u[n] is not absolutely summable, and

∑∞
n=−∞ u[n]e−jωn =

∑∞
n=0

(
e−jω

)n → ∞,
since |e−jω| = 1.

26Notice the similarity b/w the DTFT of u[n] and the FT of the unit step function u(t), which is
F [u(t)] = U(Ω) = πδ(Ω) + 1

jΩ .
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2.9 Symmetry properties of DTFT

Definition 2.2 A complex sequence xe[n]( or a complex function Xe(ω)) is called
conjugate symmetric if:

xe[n] = x∗e[−n] or Xe(ω) = X∗
e (−ω)

(cf)

1. In other words, the real part is even, whereas the imaginary part is odd.

2. If the sequence and/or the function is real, called even sequence(or function).

Definition 2.3 A complex sequence xo[n]( or a complex function Xo(ω)) is called
conjugate anti-symmetric if:

xo[n] = −x∗o[−n] or Xo(ω) = −X∗
o (−ω)

(cf)

1. In other words, the real part is odd, whereas the imaginary part is even.

2. If the sequence and/or the function is real, called odd sequence(or function).

FACT:
Any sequence x[n] and its DTFT X(ejω) can be decomposed into the sum of conjugate
symmetric and the conjugate anti-symmetric parts:

1. x[n] = xe[n] + xo[n]

where xe[n] =
1

2
{x[n] + x∗[−n]}

xo[n] =
1

2
{x[n]− x∗[−n]}

2. X(ejω) = Xe(e
jω) + Xo(e

jω)

where Xe(e
jω) =

1

2

{
X(ejω) + X∗(ejω)

}

Xo(e
jω) =

1

2

{
X(ejω)−X∗(ejω)

}

proof: assignment

Assignment: Table 2.1 at p.56 needs to be self studied and verified, including
the relevant examples.
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2.10 Other properties of DTFT: Review

Let 27

x[n]
F←→ X(ejω)

1. Linearity:

F

{
M∑

k=1

akxk[n]

}
=

M∑

k=1

akF {xk[n]}

2. Time-shift and frequency shift:

F {x[n− n0]} = X(ejω) · e−jωn0

F
{
x[n] · ejω0n

}
= X(ej(ω−ω0))

3. Time reversal: 28

F {x[−n]} = X(e−jω)
†
= X∗(ejω)

4. Differentiation in frequency:

F {n · x[n]} = j
d

dω
X(ejω)

5. Parseval’s theorem:

The energy E of a sequence x[n] calculated in time and frequency domain are
equal:

E =
∞∑

n=−∞
|x[n]|2 ≡ 1

2π

∫ π

−π
|X(ejω)|2dω

where |X(ejω)|2 is called the “energy density spectrum” of x[n].

27Observe the close similarity with those of Fourier transform.
28† The second equality is if x[n] is real. For real x[n], X(ejω) is conjugate symmetric, i.e.

Re[X(ejω)] is even, and Im[X(ejω)] is odd; refer the Table 2.1.
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6. Convolution:

F {x[n]w[n]} =
1

2π

∫ π

−π
X(ejΩ)W (ej(ω−Ω))dΩ

=
1

2π
X(ejω) ∗W (ejω) :periodic convolution

proof: assignments

Self study:

(1) DTFT properties at Table 2.2 in page 59 of your textbook.

(2) Typical DTFT pairs at Table 2.3 in page 62 of the textbook.

(3) Examples from page 63 to page 64 at the textbook.
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2.11 Discrete-time random signals

We need quite a lot of backgrounds on probability, random variables, and random
processes to deal with discrete-time random signals. We, therefore, omit this section,
and you will have opportunities to cover this topic later at the graduate courses,
hopefully. 29

29Or, you may study this section for yourself with some references and Appendix A of your
textbook.
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