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Chapter 3
The Z Transform

3.1 Introduction

Z-transform Generalization of DTFT

Remarks:

Certain conditions are needed for DTFT to be defined for discrete signals (e.g.

absolute summability of x[n)).
= Needs a general transformation for broader class of discrete signals.

1.

Laplace transform is a generalization of Fourier transform for continuous signals.

(ct.)

(1) Laplace vs. Fourier transform

(a) X(w)=F{z(t)} = [° x(t)e I tdt
(b) X(s)=LA{z(t)} = [ x(t)e **dt where s = 0 + jw.
Therefore,

X(w) = X(s)|s=jo

i.e., X(w) corresponds to the X (s) where o = 0, which means the sliced version

of the Laplace transform along the axis of o = 0.
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(2) Z transform vs. DTFT

(a) X(E™) = F{aln]} = 302 afn]e"

n=—oo

(b) X(2)=Z{z[n]} =32 _x[n]z™™™ where z = rel®.

Therefore,
X(e™) = X(2)]

z=ejw

i.e., X (e’¥) corresponds to the X (z) where r = 1, which means the Z transform
along the unit circle on the complex plane of z.

Figure 3.1: Laplace vs. Fourier transform and Z transform vs. DTFT.

46



3.2 Z transform

Definition 3.1 The z transform X(z) of a discrete-time signal z[n| is defined as
follows:

Z {z[n]} £ > zn]z" £ X(z) : Bilateral ztransform(two sided)

n=—oo

where z is a complex variable, ! i.e.

z = Re[zl—i—ﬂm[z]

= r.ev

REMARKS:

X(2) = X(re??) = > z(n] (rej“’)_n

n=—oo

= Z (z[n]r‘”) g Iwn

n=—oo

= F {x[n]r‘”}

(1) r=1 — X(z)= F{z[n]}

Figure 3.2: A unit circle on z plane.

(2) (@) z=1—j— -1 - —j =1

b) w=0— 2 -7 — & - 2

. implies the periodicity of DTFT w/ period 27.

1Re[z] = 7 cos(w), and Im[z] = rsin(w).
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(3) Region of concergence(ROC):

o0

X(2)= > (as[n]r_”) e = F {az[n]r‘"}
= For the existence of X (z), we need a condition(i.e. absolute summability of

sequence z[n|r—") as:

f: ‘x[n]r’”‘ < 00

n=—oo

OR Y |zl " <o |z|=r

n=—oo

Therefore, we have

ROC of X(2) = {z|X(z) exists or converges}
= {z] X lz[n]ll=|™ < oo}

composed of circles in terms of |z|

= ROC of X (z) only depends on |z|.
= ROC is compose of circles.

= If the unit circle is within the ROC, then DTFT exists.

Figure 3.3: A typical ROC on the z plane.
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(4) Most important and useful form of z transform: 2

X(z) = where P(z), Q(z) are polynomials of z

(a) {z|P(z) =0} : zerosof X(z): denoted O in z plane.
0} : polesof X(z): denoted X in z plane.

Example 3.1

Determine the z transform of an exponential sequence given below: 3

Figure 3.4: A right sided exponential sequence z[n] for 0 < a < 1.

Solution:
X(z)= Y znlz"=>a"2"=> (az_l)n
n=—00 n=0 n=0

ROC: Jaz7 ! <1 = |z] > |d

1 z

l—az! z—-a

X(2)

2For example, in an LTI system where i/o is related in a linear constant coefficient difference
equation, H(z) = Z{h[n]} is in the following form:

3Notice that 3 z[n] only for n > 0, thus a right sided sequence.
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Figure 3.5: The ROC of the z transform for a right sided exponential sequence.

Note:

(a) If la] <1 — X(e¥) exists. (Recall I!)
b) Ifla =1 “BS"  zm=un],  then

1
X(z) = ) |z] > 1

(c) poles: z=a (represented by X)
zeros: z =0 (represented by O)

Example 3.2

Determine the z transform of an exponential sequence given below: *

z[n] = —a"u[—n — 1]

Figure 3.6: A left sided exponential sequence z[n] for a > 1.

4Notice that 3 x[n] only for n < 0, thus a left sided sequence.
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Solution:

X(z) = i x[nlz™" = — 2_: a"z""m = — i (a_lz)n

ROC: |a™'2] <1 = |z] <|d

Figure 3.7: The ROC of the z transform for a left sided exponential sequence.

Note:

(a) IfJla| >1 — X(e¥) exists!

(b) Notice that the z transform X (z) is the same as in the previous example,
while the ROC is different.

—> This indicates the necessity of ROC for representing the z trans-
form.

(c) poles: z=a (represented by X)
zeros: z =0 (represented by O)
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Example 3.3

Determine the z transform of another exponential sequence given below: 5

x[n] = (;)nu[n] + (—;)nu[n] 2 11[n] + z2[n)

%) 1\" . 00 1 . n 1 1 .
@ %) =2(5) =2 (37) =romm <>y
b) Xy(2) = —=) 2= ——1)= , sz <1 (2] > =
(b) Xa(2) nz::o( 3) © %( 3 I+ 11 |37 (1> 3)
Therefore, the z-transform X (z) of x[n] is as follows:
1 1 22(2 —
X(2) = Xi(2) + Xa(2) + = (=~ 1)

IR S T > B C S TP )

where

ROC — {z| (yz| > ;) N (yz\ S ;)} _ {zI\ZI - ;}

Figure 3.8: The ROC of the z transform for z[n].

®Notice that 3 z[n] only for n > 0, thus a right sided sequence.
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Example 3.4

Determine the z transform of the exponential sequence given below: ©

o[n] = <—;)nu[n] - (;)nu[—n “ 1) 2 21 [n] + )

Solution:
1 1
@ X6 = g
1 1
®) %) = g Fl<g

Therefore, the z-transform X (z) of x[n] is as follows:

1 1 22(2 — %)

— _|_ — 12
1+%z—1 1— %z—l (z — %)(2—1—%)

ROC — {z| <|z| > ;) " <|z| < ;)} _ {4; <l < ;}

X(2) = Xu(2) + Xa(2)

where

Figure 3.9: The ROC of the z transform for two sided z[n].

Note:

From the above examples, notice that if z[n] is a (sum of) infinitely long exponential
sequences, then the z-transform X (z) is a rational function of 27! or 2.

Notice that 3 z[n] for entire n, i.e. —0o < n < oo, thus a two sided sequence.
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Example 3.5

Determine the z transform of a finite duration sequence given below:

z[n] = a"uln] — a"u[n — N]|

Figure 3.10: A finite duration sequence x[n].

Solution:
N-1 N—-1 _1\N
1—(az1)
X — n,—n _ ( 71)n —
(2) %a z nz::O az T
_F z%lil
zZ—a
B 1 2N — gV
NS g
(a) ROC:
1
—1|™ -1
Z’az ‘ <o — ‘az ‘<oo
n=0
Ll
00
2]

—  Ja|] <ocand z #0

—  entire z plane except z = 0

(b) Poles and zeros:

. 2mk
(i) zeros ": 2N —aVN =0 — zr=ae' N, k=1,2,...,N—1

(ii) poles: z=0 : (N —1)st order

"Note that the term (z — a) cencels out in the numerator and the denominator of X (z).
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Figure 3.11: The ROC of the z transform for a finite duration sequence z[n|.

Table 3.1: Common z-transform pairs at page 104
. Self study (assignment).
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3.3 Properties of ROC

1. ROC is a ring or a disc in the z-plane centered at the origin, i.e.

ROC = {z2|0 < rg < |2| <7 < o0}

2. F'{xz[n|} exists if and only if ROC contains the unit circle.

3. ROC cannot contain any poles.

4. If z[n] is a finite duration sequence, then ROC is the entire z-plane except
possibly at z =0 or z = oo.

(cf.) Note that the followings:

X(2) E;V tfn)z | < % )] - 2]

(i) if n < 0, then | X (2)| — o0 as z :— oc.

(i) if n > 0, then | X (2)] — o0 as z:— 0.

5. If z[n] is a right-sided sequence, then ROC extends outward from the outermost
finite pole to z = oo.

Figure 3.12: The ROC of a right-sided sequence.

8This is so because if ROC contains a pole, | X (z)| — oc.
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6. If z[n| is a left-sided sequence, then ROC extends inward from the innermost
non-zero pole to z = 0.

Figure 3.13: The ROC of a left-sided sequence.

7. If z[n] is a two-sided sequence, then ROC consists of a ring bounded by poles.

Figure 3.14: The ROC of a two-sided sequence.

8. ROC must be a connected region( i.e. cannot be disjoint).

Proof(detailed): Assignment(self study)
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Example 3.6

Given a pole-zero diagram with its pole locations as follows:

Figure 3.15: An example of pole-zero diagram.

Then, there 3 4 possible cases of ROC depending on which we get different
discrete-time signals.

(a) Right-sided sequence:

Figure 3.16: A pole-zero diagram for a right-sided sequence.

(b) Left-sided sequence:

Figure 3.17: A pole-zero diagram for a left-sided sequence.
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(¢) Two-sided sequence: #1

Figure 3.18: A pole-zero diagram for a two-sided sequence.

(d) Two-sided sequence: #2

Figure 3.19: Another pole-zero diagram for a two-sided sequence.

Note:

1. z[n] cannot be a finite duration sequence with the given pole-zero diagram of

X(2).

2. The only case when 3 the DTFT of z[n] is (3). Why?
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3.4 The inverse z-transform

EXAMPLE: Analysis of a DLTT system:

Figure 3.20: A DLTI system.

After analyzing DLTI system in z-domain (i.e. finding the output Y(2)), we need to
compute y[n] (ie. Y(2) — y[n]).

3.4.1 Inspection method

Use of familiar z-transform pairs, where tables of z-transform pairs are quite useful!!!

Example 3.7

Recall the following z-transform pair(either from the table or from the previous
example ...)

"l . 2l >l
Therefore,if we are given that:
1 1
X(2)= —— > =

then by inspection, we get the inverse z-transform easily as:
1 n
xn|={(=] uln
= () ul

cf.) If the ROC was |z| < %, then we know by inspection (from previous
5
experiences) that:



3.4.2 Partial fraction expansion: w/ inspection

Suppose X (z) is in the form of ratio of polynomials in 271, i.e.:

P(z) Zﬂio bpz

Q(Z) Ei;vzo akz_k

by [T, (1 — ckz -1

Qo Hk:l( k21)
)
)

or bo 2" (2 — ek
ao ZMHk 1(z = dg

A .
Zk:l 17dkkz—1’ lf M < N
SN BT+ Sl ke, (M >N
where

(i) B,: by long division of the numerator by the denominator

(i) Ax = (1= dpz™ )X (2)].y,

The inverse z-transform can then be found by:

MoN B N A,
= Z;)Z {BTz }—l—ZZ {1—dkz—1}

k=1
z! {Brz””} = B,0[n — 7]

o4 A (d)" uln)], ROC: |2| > |dy|
Z_ B — et
{ 1-— dszl }

— A (dg)" u[—n — 1], ROC: |z| < |d]

9Note that the z-transform of an unit sample sequence is: Z {d[n]} Y00 d[n]z
thus Z {0[n —no]} Yoo d[n—mnglz™™ =z""0.
10This is easily done by inspection!
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Remarks:

1. When X (z) has multiple poles(d;) of order s, i.e. if X(z) is in the following
form:

Pl p()
Q) ~ (- diz"a(2)

Then, the partial fraction expansion of X (z) is in the form given below: !

LI e

k=1,k£i de

2. X (z) has the same number of poles and zeros(see (3.2)), which is:

M, if M >N

# of poles and/or zeros = { N, M <N

"The first term is only when M > N, and the second term represents the single poles, while the
last term represents the multiple poles in X (z).
2Note that if s = 1, then C,, = A,,.
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Example 3.8
Find the inverse z-transform of X (z) given below along with its ROC.

1 2—1 —2 1 —1\2
X(2) = +227 270 (I+271)

Cl-dtg il (1-2 (142

where its ROC is as follows:

ROC = {z||z| > 1} == right-sided sequence

Figure 3.21: The ROC of X(z) with its pole-zero locations.

Solution:

Applying the partial fraction method, X(z) must be in the following form:
(M =N =2)

Ay As
X(Z):BO+1_;Z—1+1_Z—1
2

where

(i) By = 2 (the ratio of coefficient for 22 or 272, i.e. the highest order.)

.. . L—1)2
(i) Ar=X(2)(1-327N| _, = G2, =% =9
. _ -1 _ (42712 _ 9 _
1= o= IS =1=
(i) Ay = X(2)(1 =27,y = T 8
2% z=1 2
Therefore:
1 1
X = 2- 8
(2) 91 — 2271 * 1 —z1
1 n
— z[n] = 20[n]—9 (2) u[n] + 8uln]  (by inspection)
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Remark: Depending on the ROC, we could have different sequences, i.e.

1 1
X(2) =2 97— +87——
2

(1) ROC = {z||z| > 1}: outside of the unit circle (as in the example above)

1 n
x[n] = 20[n] — 9 (2> uln] 4+ 8u[n] : right-sided sequence

Figure 3.22: ROC = {z||z| > 1}: outside of the unit circle.

(2) ROC = {z]|z| < 3} inside of a circle

1 n
x[n] = 20[n] +9 <2> u[—n — 1] = 8u[—n — 1] : left-sided sequence

Figure 3.23: ROC = {z||z] < 1}: inside of a circle.

(3) ROC = {z]5 < |z| < 1}: in-between two circles

1 n
z[n] = 26[n] — 9 <2> u[n] — 8u[—n — 1] : two-sided sequence

Figure 3.24: ROC = {z|3 < |2| < 1}: in-between two circles.
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3.4.3 Power series expansion

Note that the definition of the z-transform X (z) itself is in the form of a power series,
l.e.

X(z) = Y zn]z™

—> Finding z[n] is equivalent to determining the coefficients of 27" in X (2)!!!

Example 3.9

Find the inverse z-transform of X (z) given below, where the ROC is the entire
z-plane except at z = 0.

(1-— %zfl)(l +zH(1 -2

X(z) =

Solution:

Developing the given X (z), we get:

X(z) = 20— )1+ -2

1 1
= 1'22—5'2—14—5‘271

= z[-2] - 22+ a[-1] -2+ [0 + 2[1] - 271

Therefore,

zn| =d0[n+2] — ;(5[n+ 1] = d[n] + ;(5[71 —1]

(cf.) Find z[n] using the partial fraction expansion method: assignment
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Example 3.10

Find the inverse z-transform of X (z) given below, where the ROC is the outside

of a circle with radius |al.
X(z) =log(1+az""), ROC = {z||z] > |a]}

Solution:

Developing the given X (z) using the logarithmic series expansion 3

00 )n—i—lanzn . )
X(z) = Z , laz77 < 1 (ie. |2| > |a])

n=1

>
A\g
3,
=
t\2|
3

Therefore:

(cf.)

, we get:

Note that x[n] is a right-sided sequence, since the ROC is given as the outside

of a circle.

Example 3.11

Find the inverse z-transform of X (z) given below, which we already have dis-

cussed in previous examples 4 | using the power series expansion method.

1 z
X pr— p—
() l—az! z—-a

13Logarithmic series: log(14+z) = -, % where |z] < 1.
14We know the answer as: z[n] = a™u[n] if |z| > |a| and z[n] = —a™u[—n — 1] if |z| < |al.
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Solution:
There 3 two possible ROC’s for the given X (z):

(i) ROC: |z| > |a| (i.e. right-sided sequence)

Since x[n] must be a right-sided sequence, X (z) should be expressed as a
series in powers of 27! (* n > 0)

—> By long division, we get:

1
X(z)zl—az—l = ...
X(z):# = l4az'+a®22+...
1 —azt

= 2[0] +2[1]z + 2227 4. ..

Therefore, we have:

(ii) ROC: |z| < |a| (i-e. left-sided sequence)

Since z[n| must be a left-sided sequence, X (z) should be expressed as a
series in powers of z (v n < 0)

— DBy long division, we get:

1
X = = ......
(2) —az 1 +1
X(z) = # = —a'z—a P +a32+ ...
—az71+1
= z[-1]z +2[-2]2% + z[-3]2* + . ..
Therefore, we have:
z[n] = —a"u[—n — 1]
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3.5 The z-transform properties

Let
X(z) = Z{z[n]}, ROC =R,

Xi(z) = Z{x1[n]}, ROC=R,,
Xo(2) = Z{x9[n]}, ROC=R,,

(1) Linearity:

Z{ax1[n] + bxa[n]} = aX1(z) + bX2(2), ROCD R,, NR,,

proof: assignment (trivial)

NOTE:
The fact that ROC 2 R,, NR,, rather than ROC = R, NR,, is due to the possible
cancellation of poles in X(z).

Example 3.12

Consider the finite duration sequence z[n| discussed in the previous example:

z[n] = a"uln] — a"uln — N]
= 1[n] — z3(n]
We already know that the ROC’s each sequence are as follows;
R, : |z| > |a
Ry, : |z| > |a]

R, : entire z-plane except atz =0
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Figure 3.25: The ROC of a finite duration sequence as R, D R,, N R,,.

Note that R, D R,, N R,,, and this results from the cancellation of the term

1 —az~! in the numerator and the denominator of X (z), i.e.
Xl(z) = 1fa1z—1

Xo(z) =02y atz ™ =0y (az™)" = g-aﬁ

Thus;
11— (az"H) l—az!

X(2) = Xu(2) = Xa(2) = T

1—az" o 1l—az

where the term 1 —az~! cancels out which eliminates the pole located at z = a,
and corresponding ROC extends to the origin.

(2) Time shifting:

Z{z[n—ng|} = X(2)z7™, ROC=R,E+{z=00rz=o00}

proof: assignment (trivial)

NOTE:
The fact that ROC = R, £ {z =0 or z = 00} is due to added term z~" by which
z =0 and z = oo arises for ng < 0 and ng > 0 respectively.
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Example 3.13

Find the inverse z-transform of the following X (2):
L. :
X(2) = —— |z| > 1 (right sided sequence)
— 32

Solution:
We will use two different appoaches to obtain x[n]:

(a) Ordinary way:

By applying the partial fraction expansion, we get '°
X(2) =4+ =1

Therefore, by inspection we obtain:

o] = —48[n] + 4 (i)nu[n]
= 4 (i)n u[n — 1]
— (i)n_l u[n — 1]

(b) Utilizing the time-shift property:

Express X (z) in the following form:

1

x[n] = z1 {1
11
1

which is the same result as in (a)!!!

5By partial fraction expansion, X (z) = —4 + Jﬁ, where A1 = z_1| =4.
4

-1
=1
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(3) Multiplication by an exponential sequence:

Z (]} = X (j) . ROC =R, ||
0
proof: assignment

Remarks:
(1) If R, = {z| rr < |z| <rr}, then the ROC of z[n]z{ becomes:
2
ROC = {z] rg< '2’ <rp}
0

= {z| |=lrr < 2| < |20|re}

(2) Pole-zero locations are also scaled by the factor of zg, i.e. the location z; in

X (2) becomes the location zyz; in X (%) 16

Special Cases:

(i) If 29 is a positive real number:

Only magnitude changes, which means that pole and/or zero moves in
radial direction!

(i) If 2o is complex w/ unit magnitude (i.e. 29 = /*°):

Pole and/or zero rotates by an angle of wy, which means that frequency
shift occurs! 17

1.e.:

ejwo

eI g ] Z, X ( e ) =X (ej(”_“")))

6The term (2 — z1) in X (2), whose root is z = 21, is being transformed into a term (i — zl) in

z z

X (%) where corresponding root then becomes = =21 that is z = zgz1.

17Recall the frequency shift property of the DTFT, that is e/“°"z[n] L x (ej(“”“’o)) if there 3
X(el¥).
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Example 3.14

Recall that the z-transform of the unit step sequence is as follows:

=z 1
1— 271

uln] |z > 1

Then, find the z-transform of the exponentially decaying (or growing) sinusoidal
sequence given below:

x[n] = r" cos(won)uln]

Solution:

Express z([n] as:

z[n] = r"cos(won)uln]
1 Jwo \n 1 —Jjwo\n
= 5(7‘6 ) u[n] + 5(7’6 )" uln]

x1[n] + x3[n]

Then, we have:

Xl(z)—;U<Z>—1 1

rejwo 21— rejwoy—l

where corresponding ROC of X;(z) becomes: |z| > 1 |re/*0| =r.
And

Xg(Z):;U( z )_1 1

re—jwo ) 21 — re—dwoy—1

where corresponding ROC of X5(z) becomes: |z| > 1 |re™*0| =r.

Therefore, the z-transform of z[n] is then,

1 —rcos(wp)z™t

T 1-2r cos(wg)z~t + 1222’

X(2) = Xi(2) + Xa(2) ROC = {z| |z| > r}
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(4) Convolution of sequences:

Z{x1[n] * z2[n]} = X1(2) - Xa(2), ROC D R,, N R,,
proof: assignment

Remarks:

(1) The fact that ROC 2 R,, N R,, rather than ROC = R,, N R,, is again due to
the possible cancellation of poles in X (z).

(2) This property is very useful in the analysis of a DLTT system.

(e-g.)
Figure 3.26: A DLTI system.
y[n] = hn] * x[n]
Y(z) = H(2)X(2)
where
Y(z)

Example 3.15
Determine the output sequence of the accumulator when the input signal is an

exponentially decaying sequence, i.e.

x[n] = a"uln], where 0 <a <1
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Solution:

We can obtain the output y[n] by taking convolution sum b/w h[n] and z[n]
(assignment), which might be very cumbersome to do!!! Instead, we try to get
the output in z-domain:

We already know that

H(z) = |z] > 1

1—2z71
Therefore, from the convolution property of z-transform;

1 1 22

T 1zt 1-—az?t (z—a)(z—1)

Y(2) = H(z)- X(2)
where the ROC of Y (2) is

ROC =R, ={z||2| > 1}, since |a| <1

Figure 3.27: The ROC R, of the output signal w/ its pole-zero locations.

Taking the partial fraction expansion of Y (z), we get;

Y (2) 1( L« )RR

:1—a 1—21 1—aqaz!

Therefore, by taking the inverse z-transform of Y (z), we obtain

1
1—a

1
l1—a

y[n] = Z7HY (2)} = (uln] — ™ uln]) = (1= a") uln]
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(5) Initial value theorem:

If z[n] =0 ¥V n <0, then
z[0] = lim X(2)

Z—00

proof: assignment (problem 3.54 at your testbook)

OTHER PROPERTIES: Self Study
(6) Differentiation of X (z): at p.122
(7) Conjugate of complex sequence: at p.123

(8) Time reversal: at p.123

SUMMARY (Table 3.2): Self Study
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3.6 The inverse z-transform using contour inte-
gration :Formal expression for inverse z-transform

Cauchy Integral Theorem(Formula): 8

. 1, k=1
— 2z = —S[k—1]
2my Jo 0, k#£1

where C' is a CCW (counter clockwise) contour encircling the origin.

Figure 3.28: Cauchy residue theorem: integrating 2% over a CCW contour C' in
z-plane..

Derivation of inverse z-transform:
. From the z-transform formula:

n=—oo

Multiplying z*~! to both sides and integrating over a CCW contour encircling the
origin within the ROC of X (z), we get:

1 1 >
_ X k=14, — 7]{ —n+k—1
o] %C (2)z" " dz o] Cn;wx[n]z 2
> 1
= 3 x[n]—f 2Ry
n=—infty 27Tj c
— 1 —(n—k+1)
= Y x[n]—j{ z dz
n=—infty 27Tj ¢

= > z[n]d[n—k] (by Cauchy integral theorem)

= x[k]

18Line integral or contour integral
19This will be officially proved using the Residue theorem at later section.
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Therefore, the inverse transform z[n] of X (z) in terms of countour integration can be
expressed in the following formula:

x[n] = 271?] ]éX(Z)z"_ldz (3.3)

where C' is a CCW contour encircling the origin within the ROC.

Remarks:

1. If the integration contour C' is taken to be the unit circle (i.e. z = e/¥), (3.3)
reduces to be the inverse DTFT, i.e.

1 n—1
x[n] = 27Tjf{CX(z)z dz
Let:

(i) z=¢e — contour C in zplane becomes an interval w = [—, 7.

(i) dz = je'*dw

Therefore,

1 & . ) ) )
z[n] = 27rj/TrX(eJ“’)eJ“’”_]“’ - jelYdw

1 ™ . .

= —/ X(e)e!*"dw
2’/T —Tr
inverse DTFT

2. (3.3) can be evaluated by the Cauchy Residue Theorem, which is:

x[n] = 271rj-7{CX(z)z”_1dz

= Y {residues of X(z)z""! at the poles inside C'}

7



where if the integrand is a rational function of z, i.e.

w1 (2)
X(2)" = m
then,
o 1 d ()
Res [X(2)2""" at 2 = dy] = (s— 1 des 1 | _,

(cf.) If s = 1 (single pole), then Res[X(2)z""! at z = dy] = (dp), assuming
z = dy is located inside of C.

3. Proof of Cauchy integral theorem:
Applying the Cauchy residue theorem, we get:

0, k<0 (¥noploes)

217{ 2 *dy = 1, k=1 (¥ single ploe at z = 0)
k—1
T JC 0, k>1 (¥ ﬁ% (1)} =0)
= 0k —1]

Example 3.16

Find the inverse z-transform of X (z) given below: 2
1 .

Solution:

Using the formal expression of the inverse z-transform,
] = 5§ X(2)e
zln| = — z)z z
21y Jo
1 n—1
= . 7{ i dz
2rj Jo 1 —az™!
1 n
Syt
2y Jc z —a

where C' is taken to be a circle of radius greater than |a| (i.e. a contour within
ROC encircling the origin).

20We already know from previous examples that 271 {X(2)} = x[n] = a"u[n].
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Figure 3.29: The integration contour C' in z-plane.

(1) n > 0: (asingle pole at z = a : inside of C)

z[n] = > [residues of X(z)z""! at the poles inside C]
= 2.
= aTL

(2) n < 0: (multiple poles at z = 0 & a single pole at z = a : inside of C')

z[n] =) [residues of X(z)z"! at the poles inside C]

z[—1] = ) [residues of X(z)z72 at the poles inside C]

= Z {residues of Z(Z%

) atz:O&z:a}

1 1

a a
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(i) n = —2:

> [residues of X (z)z~3

Z {res1dues of

)atZ—O&z—a}

1 d( 1 ) L1
 1ldz\z—a o 22| ,—4
o 1
a (z —a)? 0 a?

1 1
Y PY]
=0

(tedius to carry out!!!)

Likewise, we get z[n] =0 V n < 0, and therefore:

(cf.) For the case of n < 0, let m = —n, thus making m > 0, then: *

1

1
dz

x[n] = x[—m)

k1

21y

Z {readues of

z—a)zm

)matZ—a&z—O}

1 I { 1 }
= | +

2M =g (m—1)ldzm ! lz—all,—
1 1 (=)™ (m —1)!
am (m—1)! (z—a)m 0
1 N 1 (=)™ Ym - 1)
am (m—1)! (=1)ma™
11
~am am
=0

et f(2) = 715, then f((z) = L2205
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Remark:

The inverse z-transform formula (3.3) is very cumbersome to carry out for the case
when n < 0, since we get multiple poles at z = 0 due to the factor 2"~! in the
integrand(see below).

x[n] = ;j]{cX(z)znldz

This can be avoided by the change of variable technique, i.e. by letting:

=P

we get an equivalent formula of: 22

1 1
z[n] = .%,,X = |pTdp
21y Jo P
1 _ _]. . . 1
= ) Res|X |- |p " " at poles inside of C
p

where C” is a CCW circle of radius less tha %, if C' was a CCW circle of radius

greater than r.

Note:

(1) The integration contour is now CCW by exchanging the sign of the integration
and the direction of the contour!!! (i.e. —p~'dp — p~2dp makes the CW
contour €' a CCW contour C")

(2) The above formula for inverse z-transform, on the contrary, will cause multiple
poles at p = 0 when n > 0.

proof: done (refer the footnote below.)

22Note that from z = p~! we have: dz = —p~2dp, 2"~ = p~"*!, and the CCW contour C on z
becomes a CW (clockwise) contour C' on p.
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Example 3.17
Redo the previous example for the case of n < 0.

Solution:

Figure 3.30: The CCW integration contour C on the p plane.

1 —n—l1 /
z[n] = o 740/ f_ apdp (C': radius of less than é)

n—1

= > Res [p at poles inside of C'| (NONE)

1—ap

=0
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3.7 The complex convolution theorem

: Relative to (or generalization of) the periodic convolution property of DTFT

(cf.) Periodic convolution property of DTFT(Recall from S&S class)
:Windowing theorem or modulation property

Let wln| = z1[n] - z3[n], then

Flofl} =W () = o= [ X () X% () a0

2T -7

L () 2 % ()

(1>

Theorem 3.1 Let w[n] = x1[n] - x2[n], then the z-transform W (z) of w[n] is in the
following form:

1 z _
W(z) = % %02 X (v) Xo(v)v ™ dv
where Cy is a CCW contour within the overlap of ROC R,, of X5(v) and ROC of

X (2).

OR,
W(z) = 1% X1 (v) X <Z> v tdv
2my Jou v
where C] is a CCW contour within the overlap of ROC R,, of X;(v) and ROC of

Xz (%),
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Derivation:

Since
wln] = z1[n] - z2[n]
we have: - o
W(z) 2 Y wnle™ =Y w[n|waln]e™ (3.4)
Here,
= n—1
wl] = 5 fb ()" (3.5)
where Cy is a CCW contour within R,,.
Inserting (3.5) into (3.4), we get:
W) = 5 3wl f %) () et
z = 27Tjn:700x1n o, 2\U v (% (%
= o Sl (B) T e
= 27(] o |2 1 " 2{V)V v
1 z
= — ¢ X, (2) Xo(0)v! :
2@,]{}2 (2) X de (3.6)

where C5 should bow be a CCW contour within the overalp of ROC of X, (f) and

ROC of Xg(U).

Remark:

1. ROC R, of W(z):

Let

R,

TR, < |z| <7,

TR, < |z| < 7L,
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Then, from (3.6), the contour Cy is within regions of:

(i) Xo(v) + rg, <|v| <rp,

z z
i) Xq =] : rp, <|—|<T
(i) 1<v> i ‘v‘ b

From (ii), we have rg, |v| < |z| < rr,|v|, and combining (i) and (ii) we get the

ROC R, of W(z) as:

TR TRy, < |2| < 7r,7L,

= We denote it as R, = R,, - R.,, but notice that R,, may actually be larger
than R,, N R,,, depending on possible cancellation of poles.

2. Periodic convolution of DTFT:

In (3.6), let Cy (and/or Cy) be the unit circle(s), which means the change of
variable as v = e/ | then:

(i) Cy — —7<Q<n7
(ii) dv = je/%dQ

Also, let z = e/, then (3.6) becomes the DTFT W (e/*) of wn):

1
2mg

_ 271U /_ 7; X, (147 X, (%) de

W (ej“’) /7r X (ej(”’m) X5 (ejQ) oAl 'jedeQ

—T

- () e ()

as we expected!!!
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Example 3.18

Let w[n| = z1[n|xe[n] where x1[n] = a"u[n] and z3[n| = b™uln).

Determine the z-transform W (z) of w(n].

Solution:

We already have the following z-transform pairs:

zi[n] = a"uln] —  Xi(z) = 1 ar1’ 2] > |al

vl =Vl Xo(2)= 11, |

From (3.6), the z-transform of w[n| is then:

1 1 1 1
— : d
W) 21y f@ l—a (§>_1 1—p1 @

1 % —Z 1 J
= . v
215 Jey (v _ g) v—>b
Notice that:
{ pole #1: v=1b

pole #2: v=2

a

and, since Co MUST be within overlap region of the ROC’s of X3(v) and X, (5),
each ROC should be as follows;

ROC of X5(v) : |v| > |b]

> la| — Jo] <
al

ROC 0fX1< ) :

z
v

2z
v

Note that pole at v = b is inside of Cy whereas pole at v = 2 is outside of Cs.

Therefore, by the Cauchy’s residue theorem, we get:

W(z) = Res [v_—az.v—bat pole v = b
1
= b
s a
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(cf.) The ROC R,, of W(z):
Note from the ROC’s of X5(v) and X, ( ), we have:

z
v

b < Jo] < 12
]

— |zl > v[-]a] and |v] > o]
— |z[ > lal - [b]

Figure 3.31: ROC of X3(v) and X, (%) in v-plane.

Note:

Since w[n| can be put into the following form:
x1[n]xs[n] = a™b"uln| = (ab)"uln|

we can directly derive the z-transform by a simple inspection as:

B 1
1 —abz

W(z) ROC: |z| > |ab]

87



3.8 The Parseval’s theorem

Theorem 3.2

o0

> mifnlesn] = 2; fxwx; (L)t

n=—0oo

where C' is a CCW contour within overlap of ROC of X;(v) and ROC of X3 (v%)

Derivation:

Let y[n| = z1[n]x}[n], then from the complex convolution theorem, we have:

o

Y(z) = ) minjaj[n]e™

n=—0oo

1 z*
= — ¢ Xi(v)X5 (= )v'd
27rj7{c 1(0) 2<v*>v !

Put z = 1 in both sides ?* , then

Y= 3wl = 5 f x0)xs () ot

e 27y

ZNote that xx[n] < X*(z*); refer to Table 3.2 at p.126 of the textbook.

23

2Since (i) z = 1 must be inside of R,, and (ii) ROC is composed of circles = ROC R, must
include the unit circle for the Parseval’s theroem to be valid, i.e. Parseval;s theorem can only be

applied to absolutely summable sequences whose DTFT exists.
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Remarks:
(1) If z1[n] = xa[n] = x[n] are real sequences, then the Parseval’s theorem becomes:

oo 1
=— ¢ X)X Ho!
2my 7{0 (v)X (o™ o dv

and it represents the energy in z[n|:

(i) LHS = energy of x[n] in time domain

(i) RHS = energy of z[n| in z (or frequency) domain

(2) DTFT equivalent form:

Let v = ¢’“, then the Parseval’s theorem states:

s 1 m . A o
> w[njzin] = o] /_ﬁXl(eW)X; ((e_]“’)*) e 7Yl dw
1 T . .
= 5 [ X3(e) X5 () dw

Example 3.19

Suppose x[n] is a right-sided real sequence with its z-transform given below:

1 1
X = .
(2) 1—az7! 1—bz1

where 0 < a < b < 1.

Then, determine the energy contained in x[n].
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Solution:

From the Parseval’s theorem, we have:

> ol = > o
1 1y, —1
:2mﬁXMX@M’“

1 1 1 1
= 21 fc A= D0t 0 —a)d—bv) o

2

1 v 1 1
= oy /"{o w_a)w=0) (—a)i—b) oV

1 v 1
= 2nj fc o—a)w=b (1=a)i=b)™

where C' is taken to be the unit circle, since the unit circle must be within R, (
refer the footnote #24).

(ct.)
(i) ROC of X (v):

Figure 3.32: ROC of X (v).

(i) ROC of X (1):

Figure 3.33: ROC of X(1).
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(iii) The integration contour C' in v-plane with ROC R,

Figure 3.34: The CCW integration contour C' in v-plane with ROC R,.

Therefore, the energy in z[n| is:

(v—a)(v—=>)(1—av)(1l—bv)

o2 = > Res{ at poles inside of C' }

(v—a)(v—">0)(1 —av)(l —bv)

b

(a—b)(1— a2)(1 - ab) (b—a)(1 —ab)(1 —b?)
a(l —0%) —b(1 — a?)

= (joules)

(a—b)(1—a?)(1 - 02)(1 — ab)

= ZRes

atv:aandv:b}

(cf.) Notice that poles at v = 1 and v = § are outside of the unit circle C.

Remark:
Evaluating the energy of z[n] in time domain would be very difficult, if not

impossible, i.e.:

X(2) z, z[n] — i 2%[n

n=—oo

Assignment: Try the procedure described above.
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3.9 The unilateral z-transform

Definition 3.2 The unilateral z-transform of a sequence z[n| is defined as:

X(z) 2 i x[n]z™"

n=0

Remark:

(1) So far, we considered the so called “bi-lateral” z-transform:

X(z) 2 > zn]z"

n=—oo

(2) If z[n] = 0 for all n < 0, then X (z) = X(2).
(3) All of the ROC properties of X(z) are the same as those of X(z).

(4) Some of the properties of X(z) are the same, but some are different from those

of X(z).

Example 3.20

Let xz[n] = d[n], then:

(i) X(2) = i: §[n]z" = 4[0]2° =1
(i) X(2) = i}é[n]z" =0[0]z° =1
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Example 3.21
Let z[n] = d[n + 1], then:

(i) X(2) = i §[n+1)z7" = 5[0]2" = 2

n=—oo

(i) X(z2) = ié[nvL 1]z""=0

= X(z) # X(z)

Remark:
The principal use of X'(z) is iin analyzing DLTT systems described by a linear
constant coefficient difference equation with non-initial (i.e. n # 0) rest conditions.

Let y[n| = z[n — m] where m > 0, then:

Y(z)

o

> zln—m]z"

n=0

:B[—m]zo + 3?[1 - m}zl +-+ x[—l]z‘m“ —}—_Qj[(]]z_m ‘l‘l’[l]z_m_l 4.

n=0 n=1 n=m-—1 n=m n=m+1
Salk—1—mlz "+ alk —m] "
k=1 n=0

(let kK —m =n, then k =m +n)

zln — 1z 4 > " gn]a T

n m n=0

xn — 1z 4 X(2)z™™

M= M-

n m

(letn—1 — n)

i x[nlz7"TM+ X (2)zT™

n=—m
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OR

V(z) = ix[n —ml]z™"

(let n —m = k)

= ki: w[k]z k™
= k:z_: w[k]z 4 (g: x[k]zk> z™™
(let k& — n)

= i znlz"m 4+ X (2)z7™

n=-—m

Note:
Notice that the time shift property of X(z) is different from that of X (2)!!!

Example 3.22

Given a DLTT system with the i/o relation of:

1
yin) — 2l — 1] = ol
where x[n] = u[n] and with a non-initial rest condition of y[—1] = 1.

Find the output y[n| of the system.

Solution:

We know that:

X(z)=X(z) = |z| > 1

1— 271

Taking the unilateral z-transform of (3.7), we get:

V() gyl V() = = A()
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Solving for )(z),

Y6 = o

_ + (by partial fraction)

(ct.)

(i) y[-1] = 1.
(ii) If there is no non-initial condition (i.e. if y[n] =0, ¥V n < 0), then:
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