Contents

\mathbf{The}	e Z Transform	45
3.1	Introduction	45
3.2	Z transform	47
3.3	Properties of ROC	56
3.4	The inverse z-transform	60
	3.4.1 Inspection method	60
	3.4.2 Partial fraction expansion: w/ inspection	61
	3.4.3 Power series expansion	65
3.5	The z-transform properties	68
3.6	The inverse z-transform using contour integration :Formal expression	
	for inverse z-transform	76
3.7	The complex convolution theorem	83
3.8	The Parseval's theorem	88
3.9	The unilateral z-transform	92

Chapter 3

The Z Transform

3.1 Introduction

Z-transform : Generalization of DTFT

Remarks:

- 1. Certain conditions are needed for DTFT to be defined for discrete signals (e.g. *absolute summability* of x[n]).
 - \Rightarrow Needs a general transformation for broader class of discrete signals.
- 2. Laplace transform is a generalization of Fourier transform for continuous signals.

(cf.)

(1) Laplace vs. Fourier transform

(a)
$$X(\omega) = \mathcal{F} \{ x(t) \} = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

(b) $X(s) = \mathcal{L} \{ x(t) \} = \int_{-\infty}^{\infty} x(t) e^{-st} dt$ where $s = \sigma + j\omega$.

Therefore,

$$X(\omega) = X(s)|_{s=i\omega}$$

i.e., $X(\omega)$ corresponds to the X(s) where $\sigma = 0$, which means the sliced version of the Laplace transform along the axis of $\sigma = 0$.

(2) Z transform vs. DTFT

(a)
$$X(E^{j\omega}) = F\{x[n]\} = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

(b)
$$X(z) = \mathcal{Z} \{x[n]\} = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
 where $z = re^{j\omega}$.

Therefore,

$$X(e^{j\omega}) = X(z)|_{z=ej\omega}$$

i.e., $X(e^{j\omega})$ corresponds to the X(z) where r = 1, which means the Z transform along the unit circle on the complex plane of z.

Figure 3.1: Laplace vs. Fourier transform and Z transform vs. DTFT.

3.2 Z transform

Definition 3.1 The z transform X(z) of a discrete-time signal x[n] is defined as follows:

$$\mathcal{Z}\left\{x[n]\right\} \stackrel{\Delta}{=} \sum_{n=-\infty}^{\infty} x[n] z^{-n} \stackrel{d}{=} X(z) \quad : \text{Bilateral z-transform(two sided)}$$

where z is a complex variable, ¹ i.e.

$$z = \operatorname{Re}[z] + j\operatorname{Im}[z]$$

 $= r \cdot e^{j\omega}$

REMARKS:

$$\begin{aligned} X(z) &= X(re^{j\omega}) &= \sum_{n=-\infty}^{\infty} x[n] \left(re^{j\omega} \right)^{-n} \\ &= \sum_{n=-\infty}^{\infty} \left(x[n]r^{-n} \right) e^{-j\omega n} \\ &= F \left\{ x[n]r^{-n} \right\} \end{aligned}$$

(1)
$$r = 1 \longrightarrow X(z) = F\{x[n]\}$$

Figure 3.2: A unit circle on z plane.

(2) (a)
$$z = 1 \rightarrow j \rightarrow -1 \rightarrow -j \rightarrow 1$$

(b) $\omega = 0 \rightarrow \frac{\pi}{2} \rightarrow \pi \rightarrow \frac{3\pi}{2} \rightarrow 2\pi$
: implies the periodicity of DTFT w/ period 2π .

¹Re[z] = $r \cos(\omega)$, and Im[z] = $r \sin(\omega)$.

(3) Region of concergence(ROC):

$$X(z) = \sum_{n=-\infty}^{\infty} \left(x[n]r^{-n} \right) e^{-j\omega n} = F\left\{ x[n]r^{-n} \right\}$$

 \Rightarrow For the existence of X(z), we need a condition(i.e. *absolute summability* of sequence $x[n]r^{-n}$) as:

$$\sum_{n=-\infty}^{\infty} \left| x[n] r^{-n} \right| < \infty$$

OR
$$\sum_{n=-\infty}^{\infty} |x[n]| |z|^{-n} < \infty$$
 $|z| = r$

Therefore, we have

ROC of
$$X(z) = \{z | X(z) \text{ exists or converges}\}\$$

= $\{z | \sum_{n=-\infty}^{\infty} |x[n]| |z|^{-n} < \infty\}$
: composed of circles in terms of $|z|$

- \Rightarrow ROC of X(z) only depends on |z|.
- \Rightarrow ROC is compose of circles.
- \Rightarrow If the unit circle is within the ROC, then DTFT exists.

Figure 3.3: A typical ROC on the z plane.

(4) Most important and useful form of z transform: 2

$$X(z) = \frac{P(z)}{Q(z)}, \text{ where } P(z), Q(z) \text{ are polynomials of } z$$

(a) $\{z|P(z) = 0\}: zeros \text{ of } X(z): \text{ denoted O in } z \text{ plane.}$
(b) $\{z|Q(z) = 0\}: poles \text{ of } X(z): \text{ denoted X in } z \text{ plane.}$

Example 3.1

Determine the z transform of an exponential sequence given below: 3

$$x[n] = a^n u[n]$$

Figure 3.4: A right sided exponential sequence x[n] for 0 < a < 1.

Solution:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} = \sum_{n=0}^{\infty} a^n z^{-n} = \sum_{n=0}^{\infty} \left(a z^{-1} \right)^n$$

(a)

ROC:
$$|az^{-1}| < 1 \implies |z| > |a|$$

(b)

$$X(z) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

$$H(z) = \frac{Y(z)}{X(z)}$$

³Notice that $\exists x[n]$ only for $n \ge 0$, thus a right sided sequence.

²For example, in an LTI system where i/o is related in a linear constant coefficient difference equation, $H(z) = \mathcal{Z}\{h[n]\}$ is in the following form:

Figure 3.5: The ROC of the z transform for a right sided exponential sequence.

Note:

(a) If
$$|a| < 1 \longrightarrow X(e^{j\omega})$$
 exists. (Recall !!!)
(b) If $|a| = 1 \xrightarrow{\text{e.g. } a=1} x[n] = u[n]$, then
 $X(z) = \frac{1}{1 - z^{-1}}, |z| > 1$
(c) poles: $z = a$ (represented by X)

zeros: z = 0 (represented by O)

Example 3.2

Determine the z transform of an exponential sequence given below: $^{\rm 4}$

$$x[n] = -a^n u[-n-1]$$

Figure 3.6: A left sided exponential sequence x[n] for a > 1.

⁴Notice that $\exists x[n]$ only for n < 0, thus a left sided sequence.

Solution:

(a)

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} = -\sum_{n=-\infty}^{-1} a^n z^{-n} = -\sum_{n=1}^{\infty} (a^{-1} z)^n$$
(a)
ROC: $|a^{-1} z| < 1 \implies |z| < |a|$
(b)

$$X(z) = \frac{-a^{-1}z}{1 - a^{-1}z} = \frac{z}{z - a}$$

Figure 3.7: The ROC of the z transform for a left sided exponential sequence.

Note:

- (a) If $|a| > 1 \longrightarrow X(e^{j\omega})$ exists!
- (b) Notice that the z transform X(z) is the same as in the previous example, while the ROC is different.
 ⇒ This indicates the necessity of ROC for representing the z transform.
- (c) poles: z = a (represented by X) zeros: z = 0 (represented by O)

Determine the z transform of another exponential sequence given below: 5

$$x[n] = \left(\frac{1}{2}\right)^n u[n] + \left(-\frac{1}{3}\right)^n u[n] \stackrel{\Delta}{=} x_1[n] + x_2[n]$$

Solution:

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n} = \sum_{n=-\infty}^{\infty} x_1[n] z^{-n} + \sum_{n=-\infty}^{\infty} x_2[n] z^{-n} \stackrel{\Delta}{=} X_1(z) + X_2(z)$$

(a)
$$X_1(z) = \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n z^{-n} = \sum_{n=0}^{\infty} \left(\frac{1}{2}z^{-1}\right)^n = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad \left|\frac{1}{2}z^{-1}\right| < 1 \ (|z| > \frac{1}{2})$$

(b)
$$X_2(z) = \sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n z^{-n} = \sum_{n=0}^{\infty} \left(-\frac{1}{3}z^{-1}\right)^n = \frac{1}{1+\frac{1}{3}z^{-1}}, \quad \left|\frac{1}{3}z^{-1}\right| < 1 \ (|z| > \frac{1}{3})$$

Therefore, the z-transform X(z) of x[n] is as follows:

$$X(z) = X_1(z) + X_2(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{1 + \frac{1}{3}z^{-1}} = \frac{2z(z - \frac{1}{12})}{(z - \frac{1}{2})(z + \frac{1}{3})}$$

where

$$ROC = \left\{ z | \left(|z| > \frac{1}{2} \right) \cap \left(|z| > \frac{1}{3} \right) \right\} = \left\{ z | |z| > \frac{1}{2} \right\}$$

Figure 3.8: The ROC of the z transform for x[n].

⁵Notice that $\exists x[n]$ only for $n \ge 0$, thus a right sided sequence.

Determine the z transform of the exponential sequence given below: 6

$$x[n] = \left(-\frac{1}{3}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[-n-1] \stackrel{\Delta}{=} x_1[n] + x_2[n]$$

Solution:

(a)
$$X_1(z) = \frac{1}{1 + \frac{1}{3}z^{-1}}, \quad |z| > \frac{1}{3}$$

(b) $X_2(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}, \quad |z| < \frac{1}{2}$

Therefore, the z-transform X(z) of x[n] is as follows:

$$X(z) = X_1(z) + X_2(z) = \frac{1}{1 + \frac{1}{3}z^{-1}} + \frac{1}{1 - \frac{1}{2}z^{-1}} = \frac{2z(z - \frac{1}{12})}{(z - \frac{1}{2})(z + \frac{1}{3})}$$

where

$$ROC = \left\{ z | \left(|z| > \frac{1}{3} \right) \cap \left(|z| < \frac{1}{2} \right) \right\} = \left\{ z | \frac{1}{3} < |z| < \frac{1}{2} \right\}$$

Figure 3.9: The ROC of the z transform for two sided x[n].

Note:

From the above examples, notice that if x[n] is a (sum of) infinitely long exponential sequences, then the z-transform X(z) is a rational function of z^{-1} or z.

⁶Notice that $\exists x[n]$ for entire n, i.e. $-\infty < n < \infty$, thus a **two** sided sequence.

Determine the z transform of a *finite duration* sequence given below:

$$x[n] = a^n u[n] - a^n u[n-N]$$

Figure 3.10: A finite duration sequence x[n].

Solution:

$$X(z) = \sum_{n=0}^{N-1} a^n z^{-n} = \sum_{n=0}^{N-1} \left(az^{-1}\right)^n = \frac{1 - (az^{-1})^N}{1 - az^{-1}}$$
$$= \frac{z - \frac{a^N}{z^{N-1}}}{z - a}$$
$$= \frac{1}{z^{N-1}} \cdot \frac{z^N - a^N}{z - a}$$

(a) ROC:

$$\sum_{n=0}^{N-1} \left| az^{-1} \right|^n < \infty \quad \longrightarrow \quad \left| az^{-1} \right| < \infty$$
$$\longrightarrow \quad \frac{|a|}{|z|} < \infty$$
$$\longrightarrow \quad |a| < \infty \text{ and } z \neq 0$$
$$\stackrel{\text{i.e.}}{\longrightarrow} \quad \text{entire } z \text{ plane except } z = 0$$

(b) Poles and zeros:

(i) zeros ⁷ :
$$z^N - a^N = 0 \longrightarrow z_k = ae^{j\frac{2\pi k}{N}}, \quad k = 1, 2, \dots, N-1$$

(ii) poles: $z = 0$: $(N-1)st$ order

⁷Note that the term (z - a) cencels out in the numerator and the denominator of X(z).

Figure 3.11: The ROC of the z transform for a finite duration sequence x[n].

Table 3.1: Common z-transform pairs at page 104

: Self study (assignment).

3.3 Properties of ROC

$$X(z) = \frac{P(z)}{Q(z)}$$

1. ROC is a *ring* or a *disc* in the z-plane centered at the origin, i.e.

$$ROC = \{ z | 0 \le r_R < |z| < r_L < \infty \}$$

- 2. $F \{x[n]\}$ exists if and only if ROC contains the unit circle.
- 3. ROC cannot contain any poles. ⁸
- 4. If x[n] is a finite duration sequence, then ROC is the entire z-plane except possibly at z = 0 or $z = \infty$.
 - (cf.) Note that the followings:

$$|X(z)| \left| \sum_{n=N_1}^{N_2} x[n] z^{-n} \right| \le \sum_{n=N_1}^{N_2} |x[n]| \cdot |z|^{-n}$$

- (i) if n < 0, then $|X(z)| \to \infty$ as $z :\to \infty$.
- (ii) if $n \ge 0$, then $|X(z)| \to \infty$ as $z :\to 0$.
- 5. If x[n] is a *right-sided* sequence, then ROC extends outward from the outermost finite pole to $z = \infty$.

Figure 3.12: The ROC of a right-sided sequence.

⁸This is so because if ROC contains a pole, $|X(z)| \rightarrow \infty$.

6. If x[n] is a *left-sided* sequence, then ROC extends inward from the innermost non-zero pole to z = 0.

Figure 3.13: The ROC of a left-sided sequence.

7. If x[n] is a two-sided sequence, then ROC consists of a ring bounded by poles.

Figure 3.14: The ROC of a two-sided sequence.

8. ROC must be a connected region (i.e. cannot be disjoint).

Proof(detailed): Assignment(self study)

Given a pole-zero diagram with its pole locations as follows:

Figure 3.15: An example of pole-zero diagram.

Then, there \exists 4 possible cases of ROC depending on which we get different discrete-time signals.

(a) Right-sided sequence:

Figure 3.16: A pole-zero diagram for a right-sided sequence.

(b) Left-sided sequence:

Figure 3.17: A pole-zero diagram for a left-sided sequence.

(c) Two-sided sequence: #1

Figure 3.18: A pole-zero diagram for a two-sided sequence.

(d) Two-sided sequence: #2

Figure 3.19: Another pole-zero diagram for a two-sided sequence.

Note:

- 1. x[n] cannot be a finite duration sequence with the given pole-zero diagram of X(z).
- 2. The only case when \exists the DTFT of x[n] is (3). Why?

3.4 The inverse z-transform

EXAMPLE: Analysis of a DLTI system:

Figure 3.20: A DLTI system.

After analyzing DLTI system in z-domain (i.e. finding the output Y(z)), we need to compute y[n] (i.e. $Y(z) \rightarrow y[n]$).

3.4.1 Inspection method

Use of familiar z-transform pairs, where tables of z-transform pairs are quite useful!!!

Example 3.7

Recall the following z-transform pair (either from the table or from the previous example ...)

$$a^n u[n] \quad \longleftrightarrow \quad \frac{1}{1-az^{-1}}, \ |z| > |a|$$

Therefore, if we are given that:

$$X(z) = \frac{1}{1 - (\frac{1}{5})z^{-1}}, \ |z| > \frac{1}{5}|$$

then by inspection, we get the inverse z-transform easily as:

$$x[n] = \left(\frac{1}{5}\right)^n u[n]$$

(cf.) If the ROC was $|z| < \frac{1}{5}$, then we know by inspection (from previous experiences) that:

$$x[n] = -\left(\frac{1}{5}\right)^n u[-n-1]$$

Partial fraction expansion: w/ inspection 3.4.2

Suppose X(z) is in the form of ratio of polynomials in z^{-1} , i.e.:

$$X(z) = \frac{P(z)}{Q(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

$$= \frac{b_0}{a_0} \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$

$$\stackrel{\text{OF}}{=} \frac{b_0}{a_0} \frac{z^N}{z^M} \frac{\prod_{k=1}^{M} (z - c_k)}{\prod_{k=1}^{N} (z - d_k)}$$

$$= \begin{cases} \sum_{k=0}^{N} \frac{A_k}{1 - d_k z^{-1}}, & \text{if } M < N \\ \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}, & \text{if } M \ge N \end{cases}$$

$$(3.1)$$

where

(i) B_r : by long division of the numerator by the denominator

(ii)
$$A_k = (1 - d_k z^{-1}) X(z)|_{z=d_k}$$

The inverse z-transform can then be found by:

$$x[n] = \sum_{r=0}^{M-N} \mathcal{Z}^{-1} \left\{ B_r z^{-r} \right\} + \sum_{k=1}^{N} \mathcal{Z}^{-1} \left\{ \frac{A_k}{1 - d_k z^{-1}} \right\}$$

where

(i) ⁹

$$\mathcal{Z}^{-1}\left\{B_r z^{-r}\right\} = B_r \delta[n-r]$$

(ii) ¹⁰

$$\mathcal{Z}^{-1}\left\{\frac{A_k}{1-d_k z^{-1}}\right\} = \left\{\begin{array}{ll} A_k \left(d_k\right)^n u[n], & \text{ROC: } |z| > |d_k| \\ -A_k \left(d_k\right)^n u[-n-1], & \text{ROC: } |z| < |d_k| \end{array}\right.$$

⁹Note that the z-transform of an unit sample sequence is: $\mathcal{Z}\left\{\delta[n]\right\} \sum_{n=-\infty}^{\infty} \delta[n]z^{-n} = 1$, and thus $\mathcal{Z}\left\{\delta[n-n_0]\right\} \sum_{n=-\infty}^{\infty} \delta[n-n_0]z^{-n} = z^{-n_0}$. ¹⁰This is easily done by inspection!

Remarks:

1. When X(z) has multiple poles (d_i) of order s, i.e. if X(z) is in the following form:

$$X(z) = \frac{P(z)}{Q(z)} = \frac{p(z)}{(1 - d_i z^{-1})^s q(z)}$$

Then, the partial fraction expansion of X(z) is in the form given below: ¹¹

$$X(z) = \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1, k \neq i}^{N} \frac{A_k}{1 - d_k z^{-1}} + \sum_{m=1}^{s} \frac{C_m}{(1 - d_i z^{-1})^m}$$

where 12

$$C_m = \frac{1}{(s-m)!(-d_i)^{s-m}} \left\{ \frac{d^{s-m}}{dw^{s-m}} \left[(1-d_iw)^s X(w^{-1}) \right] \right\}_{w=d_i^{-1}}, \quad (w \stackrel{\Delta}{=} z^{-1})$$

2. X(z) has the same number of poles and zeros(see (3.2)), which is:

of poles and/or zeros =
$$\begin{cases} M, & \text{if } M > N \\ N, & \text{if } M < N \end{cases}$$

¹¹The first term is only when M > N, and the second term represents the *single poles*, while the last term represents the multiple poles in X(z). ¹²Note that if s = 1, then $C_m = A_m$.

Find the inverse z-transform of X(z) given below along with its ROC.

$$X(z) = \frac{1 + 2z^{-1} + z^{-2}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}} = \frac{(1 + z^{-1})^2}{(1 - z^{-1})(1 - \frac{1}{2}z^{-1})}$$

where its ROC is as follows:

$$ROC = \{z | |z| > 1\} \implies right-sided sequence$$

Figure 3.21: The ROC of X(z) with its pole-zero locations.

Solution:

Applying the partial fraction method, X(z) must be in the following form: (M = N = 2)

$$X(z) = B_0 + \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - z^{-1}}$$

where

- (i) $B_0 = 2$ (the ratio of coefficient for z^2 or z^{-2} , i.e. the highest order.)
- (ii) $A_1 = X(z)(1 \frac{1}{2}z^{-1})\Big|_{z=\frac{1}{2}} = \frac{(1+z^{-1})^2}{1-z^{-1}}\Big|_{z=\frac{1}{2}} = \frac{9}{-1} = -9$ (ii) $A_1 = X(z)(1-z^{-1})\Big|_{z=1} = \frac{(1+z^{-1})^2}{1-\frac{1}{2}z^{-1}}\Big|_{z=1} = \frac{9}{\frac{1}{2}} = 8$

Therefore:

$$X(z) = 2 - 9 \frac{1}{1 - \frac{1}{2}z^{-1}} + 8 \frac{1}{1 - z^{-1}}$$

$$\implies x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] + 8u[n] \quad \text{(by inspection)}$$

Remark: Depending on the ROC, we could have different sequences, i.e.

$$X(z) = 2 - 9\frac{1}{1 - \frac{1}{2}z^{-1}} + 8\frac{1}{1 - z^{-1}}$$

(1) $ROC = \{z | |z| > 1\}$: outside of the unit circle (as in the example above)

$$x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] + 8u[n]$$
 : right-sided sequence

Figure 3.22: ROC = $\{z | |z| > 1\}$: outside of the unit circle.

(2) ROC = $\{z | |z| < \frac{1}{2}\}$: inside of a circle

$$x[n] = 2\delta[n] + 9\left(\frac{1}{2}\right)^n u[-n-1] - 8u[-n-1] \quad : \text{ left-sided sequence}$$

Figure 3.23: ROC = $\{z | |z| < \frac{1}{2}\}$: inside of a circle.

(3) ROC = $\{z|\frac{1}{2} < |z| < 1\}$: in-between two circles

 $x[n] = 2\delta[n] - 9\left(\frac{1}{2}\right)^n u[n] - 8u[-n-1] \quad : \text{ two-sided sequence}$

Figure 3.24: ROC = $\{z|\frac{1}{2} < |z| < 1\}$: in-between two circles.

3.4.3 Power series expansion

Note that the definition of the z-transform X(z) itself is in the form of a power series, i.e.

$$\begin{aligned} X(z) &= \sum_{n=-\infty}^{\infty} x[n] z^{-n} \\ &= \dots + x[-2] z^2 + x[-1] z^1 + x[0] z^0 + x[1] z^{-1} + x[2] z^{-2} + \dots \end{aligned}$$

 \implies Finding x[n] is equivalent to determining the coefficients of z^{-n} in X(z)!!!

Example 3.9

Find the inverse z-transform of X(z) given below, where the ROC is the entire z-plane except at z = 0.

$$X(z) = \frac{(1 - \frac{1}{2}z^{-1})(1 + z^{-1})(1 - z^{-1})}{z^{-2}}$$

Solution:

Developing the given X(z), we get:

$$X(z) = z^{2}(1 - \frac{1}{2}z^{-1})(1 + z^{-1})(1 - z^{-1})$$

= $1 \cdot z^{2} - \frac{1}{2} \cdot z - 1 + \frac{1}{2} \cdot z^{-1}$
= $x[-2] \cdot z^{2} + x[-1] \cdot z + x[0] + x[1] \cdot z^{-1}$

Therefore,

$$x[n] = \delta[n+2] - \frac{1}{2}\delta[n+1] - \delta[n] + \frac{1}{2}\delta[n-1]$$

(cf.) Find x[n] using the partial fraction expansion method: assignment

Find the inverse z-transform of X(z) given below, where the ROC is the outside of a circle with radius |a|.

$$X(z) = \log(1 + az^{-1}), \quad \text{ROC} = \{z | |z| > |a|\}$$

Solution:

Developing the given X(z) using the logarithmic series expansion ¹³, we get:

$$\begin{aligned} X(z) &= \sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^n z^n}{n}, \quad |az^{-1}| < 1 \text{ (i.e. } |z| > |a|) \\ &\stackrel{\Delta}{=} \sum_{n=-\infty}^{\infty} x[n] z^{-n} \end{aligned}$$

Therefore:

$$x[n] = \left\{ \begin{array}{cc} \frac{(-1)^{n+1}a^n}{n}, & n \ge 1\\ 0, & n \le 0 \end{array} \right\} = \frac{(-1)^{n+1}a^n}{n}u[n]$$

(cf.)

Note that x[n] is a right-sided sequence, since the ROC is given as the outside of a circle.

Example 3.11

Find the inverse z-transform of X(z) given below, which we already have discussed in previous examples ¹⁴, using the power series expansion method.

$$X(x) = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}$$

¹³Logarithmic series: $\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n}$, where |x| < 1. ¹⁴We know the answer as: $x[n] = a^n u[n]$ if |z| > |a|, and $x[n] = -a^n u[-n-1]$ if |z| < |a|.

Solution:

There \exists two possible ROC's for the given X(z):

(i) ROC: |z| > |a| (i.e. right-sided sequence)

Since x[n] must be a right-sided sequence, X(z) should be expressed as a series in powers of z^{-1} (: $n \ge 0$)

 \implies By long division, we get:

$$X(z) = \frac{1}{1 - az^{-1}} = \dots \dots$$
$$= \dots \dots$$
$$= \vdots$$
$$X(z) = \frac{1}{1 - az^{-1}} = 1 + az^{-1} + a^2 z^{-2} + \dots$$
$$= x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots$$

Therefore, we have:

$$x[n] = a^n u[n]$$

(ii) ROC: |z| < |a| (i.e. left-sided sequence)

Since x[n] must be a left-sided sequence, X(z) should be expressed as a series in powers of z (: n < 0)

 \implies By long division, we get:

$$X(z) = \frac{1}{-az^{-1} + 1} = \dots$$
$$= \dots$$
$$= \vdots$$

$$X(z) = \frac{1}{-az^{-1}+1} = -a^{-1}z - a^{-2}z^2 + a^{-3}z^3 + \dots$$
$$= x[-1]z + x[-2]z^2 + x[-3]z^3 + \dots$$

Therefore, we have:

$$x[n] = -a^n u[-n-1]$$

Let

$$X(z) = \mathcal{Z} \{x[n]\}, \quad \text{ROC} = R_x$$
$$X_1(z) = \mathcal{Z} \{x_1[n]\}, \quad \text{ROC} = R_{x_1}$$
$$X_2(z) = \mathcal{Z} \{x_2[n]\}, \quad \text{ROC} = R_{x_2}$$

(1) Linearity:

$$\mathcal{Z}\left\{ax_1[n] + bx_2[n]\right\} = aX_1(z) + bX_2(z), \quad \text{ROC} \supseteq R_{x_1} \cap R_{x_2}$$

proof: assignment (trivial)

NOTE:

The fact that ROC $\supseteq R_{x_1} \cap R_{x_2}$ rather than ROC $= R_{x_1} \cap R_{x_2}$ is **due to the possible** cancellation of poles in X(z).

Example 3.12

Consider the finite duration sequence x[n] discussed in the previous example:

$$x[n] = a^n u[n] - a^n u[n - N]$$
$$= x_1[n] - x_2[n]$$

We already know that the ROC's each sequence are as follows;

$$\left\{ egin{array}{ll} R_{x_1}: & |z| > |a| \ & R_{x_2}: & |z| > |a| \ & R_x: & ext{entire z-plane except at} z = 0 \end{array}
ight.$$

Figure 3.25: The ROC of a finite duration sequence as $R_x \supset R_{x_1} \cap R_{x_2}$.

Note that $R_x \supset R_{x_1} \cap R_{x_2}$, and this results from the cancellation of the term $1 - az^{-1}$ in the numerator and the denominator of X(z), i.e.

$$\begin{cases} X_1(z) = \frac{1}{1 - az^{-1}} \\ X_2(z) = \sum_{n=N}^{\infty} a^n z^{-n} = \sum_{n=N}^{\infty} (az^{-1})^n = \frac{(az^{-1})^n}{1 - az^{-1}} \end{cases}$$

Thus;

$$X(z) = X_1(z) - X_2(z) = \frac{1 - (az^{-1})^N}{1 - az^{-1}} = \frac{1 - az^{-1}}{1 - az^{-1}} \cdot q(z)$$

where the term $1 - az^{-1}$ cancels out which eliminates the pole located at z = a, and corresponding ROC extends to the origin.

(2) Time shifting:

$$\mathcal{Z} \{x[n-n_0]\} = X(z)z^{-n_0}, \quad \text{ROC} = R_x \pm \{z = 0 \text{ or } z = \infty\}$$

proof: assignment (trivial)

NOTE:

The fact that $\text{ROC} = R_x \pm \{z = 0 \text{ or } z = \infty\}$ is **due to added term** z^{-n_0} by which z = 0 and $z = \infty$ arises for $n_0 < 0$ and $n_0 > 0$ respectively.

Find the inverse z-transform of the following X(z):

$$X(z) = \frac{z^{-1}}{1 - \frac{1}{4}z^{-1}}, \quad |z| > \frac{1}{4} \quad (\text{right sided sequence})$$

Solution:

We will use two different appoaches to obtain x[n]:

(a) Ordinary way:

By applying the partial fraction expansion, we get $^{\rm 15}$

$$X(z) = -4 + \frac{4}{1 - \frac{1}{4}z^{-1}}$$

Therefore, by inspection we obtain:

$$x[n] = -4\delta[n] + 4\left(\frac{1}{4}\right)^n u[n]$$
$$= 4\left(\frac{1}{4}\right)^n u[n-1]$$
$$= \left(\frac{1}{4}\right)^{n-1} u[n-1]$$

(b) Utilizing the time-shift property:

Express X(z) in the following form:

$$X(z) = z^{-1} \cdot \left(\frac{1}{1 - \frac{1}{4}z^{-1}}\right)$$

Then, x[n] can be obtained as:

$$\begin{aligned} x[n] &= \mathcal{Z}^{-1} \left\{ \frac{1}{1 - \frac{1}{4}z^{-1}} \right\} \bigg|_{n \to n-1} \\ &= \left. \left(\frac{1}{4} \right)^n u[n] \bigg|_{n \to n-1} \\ &= \left. \left(\frac{1}{4} \right)^{n-1} u[n-1] \end{aligned}$$

which is the same result as in (a)!!!

¹⁵By partial fraction expansion, $X(z) = -4 + \frac{A_1}{1 - \frac{1}{4}z^{-1}}$, where $A_1 = z^{-1}|_{z=\frac{1}{4}} = 4$.

(3) Multiplication by an exponential sequence:

$$\mathcal{Z}\left\{x[n]z_0^n\right\} = X\left(\frac{z}{z_0}\right), \quad \text{ROC} = R_x \cdot |z_0|$$

proof: assignment

Remarks:

(1) If $R_x = \{z | r_R < |z| < r_L\}$, then the ROC of $x[n]z_0^n$ becomes:

ROC =
$$\{z | r_R < \left| \frac{z}{z_0} \right| < r_L \}$$

= $\{z | |z_0| r_R < |z| < |z_0| r_L \}$

(2) Pole-zero locations are also scaled by the factor of z_0 , i.e. the location z_1 in X(z) becomes the location $z_0 z_1$ in $X\left(\frac{z}{z_0}\right)$.¹⁶

Special Cases:

(i) If z_0 is a positive real number:

Only magnitude changes, which means that pole and/or zero moves in *radial direction*!

(ii) If z_0 is complex w/ unit magnitude (i.e. $z_0 = e^{j\omega_0}$):

Pole and/or zero rotates by an angle of ω_0 , which means that **frequency** shift occurs! ¹⁷

i.e.:

$$e^{j\omega_0 n} x[n] \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad X\left(\frac{e^{j\omega}}{e^{j\omega_0}}\right) = X\left(e^{j(\omega-\omega_0)}\right)$$

¹⁶The term $(z - z_1)$ in X(z), whose root is $z = z_1$, is being transformed into a term $\left(\frac{z}{z_0} - z_1\right)$ in $X\left(\frac{z}{z_0}\right)$ where corresponding root then becomes $\frac{z}{z_0} = z_1$; that is $z = z_0 z_1$.

¹⁷Recall the frequency shift property of the DTFT, that is $e^{j\omega_0 n} x[n] \xleftarrow{F} X(e^{j(\omega-\omega_0)})$ if there $\exists X(e^{j\omega})$.

Recall that the z-transform of the unit step sequence is as follows:

$$u[n] \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} \quad \frac{1}{1-z^{-1}}, \quad |z| > 1$$

Then, find the z-transform of the exponentially decaying (or growing) sinusoidal sequence given below:

$$x[n] = r^n \cos(\omega_0 n) u[n]$$

Solution:

Express x[n] as:

$$x[n] = r^n \cos(\omega_0 n) u[n]$$

= $\frac{1}{2} (re^{j\omega_0})^n u[n] + \frac{1}{2} (re^{-j\omega_0})^n u[n]$
 $\triangleq x_1[n] + x_2[n]$

Then, we have:

$$X_1(z) = \frac{1}{2}U\left(\frac{z}{re^{j\omega_0}}\right) = \frac{1}{2}\frac{1}{1 - re^{j\omega_0}z^{-1}}$$

where corresponding ROC of $X_1(z)$ becomes: $|z| > 1 \cdot |re^{j\omega_0}| = r$. And

$$X_2(z) = \frac{1}{2}U\left(\frac{z}{re^{-j\omega_0}}\right) = \frac{1}{2}\frac{1}{1 - re^{-j\omega_0}z^{-1}}$$

where corresponding ROC of $X_2(z)$ becomes: $|z| > 1 \cdot |re^{-j\omega_0}| = r$.

Therefore, the z-transform of x[n] is then,

$$X(z) = X_1(z) + X_2(z) = \frac{1 - r\cos(\omega_0)z^{-1}}{1 - 2r\cos(\omega_0)z^{-1} + r^2 z^{-2}}, \quad \text{ROC} = \{z | |z| > r\}$$

(4) Convolution of sequences:

$$\mathcal{Z}\left\{x_1[n] * x_2[n]\right\} = X_1(z) \cdot X_2(z), \quad \text{ROC} \supseteq R_{x_1} \cap R_{x_2}$$

proof: assignment

Remarks:

- (1) The fact that $\text{ROC} \supseteq R_{x_1} \cap R_{x_2}$ rather than $\text{ROC} = R_{x_1} \cap R_{x_2}$ is again due to the possible cancellation of poles in X(z).
- (2) This property is very useful in the *analysis* of a DLTI system.

(e.g.)

Figure 3.26: A DLTI system.

$$y[n] = h[n] * x[n]$$
$$Y(z) = H(z)X(z)$$

where

$$H(z) = \frac{Y(z)}{X(z)}$$
 : system function

Example 3.15

Determine the output sequence of the *accumulator* when the input signal is an exponentially decaying sequence, i.e.

$$h[n] = u[n]$$
$$x[n] = a^n u[n], \text{ where } 0 < a < 1$$

Solution:

We can obtain the output y[n] by taking convolution sum b/w h[n] and x[n] (assignment), which might be very cumbersome to do!!! Instead, we try to get the output in z-domain:

We already know that

$$X(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$
$$H(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$

Therefore, from the convolution property of z-transform;

$$Y(z) = H(z) \cdot X(z) = \frac{1}{1 - z^{-1}} \cdot \frac{1}{1 - az^{-1}} = \frac{z^2}{(z - a)(z - 1)}$$

where the ROC of Y(z) is

$$ROC = R_y = \{ z \mid |z| > 1 \}, \text{ since } |a| < 1$$

Figure 3.27: The ROC R_y of the output signal w/ its pole-zero locations.

Taking the partial fraction expansion of Y(z), we get;

$$Y(z) = \frac{1}{1-a} \left(\frac{1}{1-z^{-1}} - \frac{a}{1-az^{-1}} \right), \quad |z| > 1$$

Therefore, by taking the inverse z-transform of Y(z), we obtain

$$y[n] = \mathcal{Z}^{-1}\{Y(z)\} = \frac{1}{1-a} \left(u[n] - a^{n+1}u[n] \right) = \frac{1}{1-a} \left(1 - a^{n+1} \right) u[n]$$

(5) Initial value theorem:

If $x[n] = 0 \quad \forall n < 0$, then

$$x[0] = \lim_{z \to \infty} X(z)$$

proof: assignment (problem 3.54 at your testbook)

OTHER PROPERTIES: Self Study

- (6) Differentiation of X(z): at p.122
- (7) Conjugate of complex sequence: at p.123
- (8) Time reversal: at p.123

SUMMARY (Table 3.2): Self Study

3.6 The inverse z-transform using contour integration :Formal expression for inverse z-transform

Cauchy Integral Theorem(Formula): ¹⁸

$$\frac{1}{2\pi j} \oint_C z^{-k} dz = \left\{ \begin{array}{cc} 1, & k=1\\ \\ 0, & k \neq 1 \end{array} \right\} = \delta[k-1]$$

where C is a CCW(counter clockwise) contour encircling the origin.¹⁹

Figure 3.28: Cauchy residue theorem: integrating z^{-k} over a CCW contour C in z-plane..

Derivation of inverse z-transform:

¿From the z-transform formula:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

Multiplying z^{k-1} to both sides and integrating over a CCW contour encircling the origin within the ROC of X(z), we get:

$$\frac{1}{2\pi j} \oint_C X(z) z^{k-1} dz = \frac{1}{2\pi j} \oint_C \sum_{n=-\infty}^{\infty} x[n] z^{-n+k-1} dz$$
$$= \sum_{n=-infty}^{\infty} x[n] \frac{1}{2\pi j} \oint_C z^{-n+k-1} dz$$
$$= \sum_{n=-infty}^{\infty} x[n] \frac{1}{2\pi j} \oint_C z^{-(n-k+1)} dz$$
$$= \sum_{n=-\infty}^{\infty} x[n] \delta[n-k] \quad \text{(by Cauchy integral theorem)}$$
$$= x[k]$$

¹⁸Line integral or contour integral

¹⁹This will be officially proved using the Residue theorem at later section.

Therefore, the inverse transform x[n] of X(z) in terms of countour integration can be expressed in the following formula:

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
 (3.3)

where C is a CCW contour encircling the origin within the ROC.

Remarks:

1. If the integration contour C is taken to be the unit circle (i.e. $z = e^{j\omega}$), (3.3) reduces to be the inverse DTFT, i.e.

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

Let:

(i) $z = e^{j\omega} \longrightarrow$ contour C in z-plane becomes an interval $\omega = [-\pi, \pi]$. (ii) $dz = j e^{j\omega} d\omega$

Therefore,

$$x[n] = \frac{1}{2\pi j} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n - j\omega} \cdot j e^{j\omega} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
$$: \text{ inverse DTFT}$$

- 2. (3.3) can be evaluated by the Cauchy Residue Theorem, which is:

$$\begin{aligned} x[n] &= \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \\ &= \sum \{ \text{residues of } X(z) z^{n-1} \text{ at the poles inside } C \} \end{aligned}$$

where if the integrand is a rational function of z, i.e.

$$X(z)z^{n-1} = \frac{\psi(z)}{(z - d_0)^s}$$

then,

Res
$$[X(z)z^{n-1} \text{ at } z = d_0] = \frac{1}{(s-1)!} \left. \frac{d^{s-1}\psi(z)}{dz^{s-1}} \right|_{z=d_0}$$

(cf.) If s = 1 (single pole), then $\operatorname{Res} [X(z)z^{n-1} \text{ at } z = d_0] = \psi(d_0)$, assuming $z = d_0$ is located inside of C.

3. Proof of Cauchy integral theorem:

Applying the Cauchy residue theorem, we get:

$$\frac{1}{2\pi j} \oint_C z^{-k} dz = \begin{cases} 0, & k \le 0 & (\because \text{ no ploes}) \\ 1, & k = 1 & (\because \text{ single ploe at } z = 0) \\ 0, & k > 1 & (\because \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left\{ (1) \right\} = 0) \\ = \delta[k-1] \end{cases}$$

Example 3.16

Find the inverse z-transform of X(z) given below: ²⁰

$$X(z) = \frac{1}{1 - az^{-1}}, \quad \text{ROC: } |z| > |a|$$

Solution:

Using the formal expression of the inverse z-transform,

$$\begin{aligned} x[n] &= \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz \\ &= \frac{1}{2\pi j} \oint_C \frac{z^{n-1}}{1 - a z^{-1}} dz \\ &= \frac{1}{2\pi j} \oint_C \frac{z^n}{z - a} dz \end{aligned}$$

where C is taken to be a circle of radius greater than |a| (i.e. a contour within ROC encircling the origin).

²⁰We already know from previous examples that $\mathcal{Z}^{-1} \{X(z)\} = x[n] = a^n u[n]$.

Figure 3.29: The integration contour C in z-plane.

(1) $n \ge 0$: (a single pole at z = a : inside of C)

$$x[n] = \sum [\text{residues of } X(z)z^{n-1} \text{ at the poles inside } C]$$

= $z^n|_{z=a}$
= a^n

(2) n < 0: (multiple poles at z = 0 & a single pole at z = a: inside of C)

 $x[n] = \sum$ [residues of $X(z)z^{n-1}$ at the poles inside C]

(i)
$$n = -1$$
:

$$x[-1] = \sum \text{[residues of } X(z)z^{-2} \text{ at the poles inside } C\text{]}$$
$$= \sum \text{[residues of } \frac{1}{z(z-a)} \text{ at } z = 0 \& z = a\text{]}$$
$$= -\frac{1}{a} + \frac{1}{a}$$
$$= 0$$

(ii) n = -2:

 $x[-2] = \sum [\text{residues of } X(z)z^{-3} \text{ at the poles inside } C]$

$$= \sum \left[\text{residues of } \frac{1}{z^2(z-a)} \text{ at } z = 0 \ \& \ z = a \right]$$

$$= \frac{1}{1!} \frac{d}{dz} \left(\frac{1}{z-a} \right) \Big|_{z=0} + \frac{1}{z^2} \Big|_{z=a}$$

$$= \frac{-1}{(z-a)^2} \Big|_{z=0} + \frac{1}{a^2}$$

$$= -\frac{1}{a^2} + \frac{1}{a^2}$$

$$= 0$$

$$\vdots$$

(tedius to carry out!!!)

Likewise, we get $x[n] = 0 \quad \forall n < 0$, and therefore:

 $x[n] = a^n u[n]$

(cf.) For the case of n < 0, let m = -n, thus making m > 0, then:²¹

$$\begin{split} x[n] = x[-m] &= \frac{1}{2\pi j} \oint_C \frac{1}{(z-a)z^m} dz \\ &= \sum \left[\text{residues of } \frac{1}{(z-a)z^m} \text{ at } z = a \ \& \ z = 0 \right] \\ &= \frac{1}{z^m} \Big|_{z=a} + \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \left\{ \frac{1}{z-a} \right\} \Big|_{z=0} \\ &= \frac{1}{a^m} + \frac{1}{(m-1)!} \frac{(-1)^{m-1}(m-1)!}{(z-a)^m} \Big|_{z=0} \\ &= \frac{1}{a^m} + \frac{1}{(m-1)!} \frac{(-1)^{m-1}(m-1)!}{(-1)^m a^m} \\ &= \frac{1}{a^m} - \frac{1}{a^m} \\ &= 0 \end{split}$$

Remark:

The inverse z-transform formula (3.3) is very cumbersome to carry out for the case when n < 0, since we get *multiple poles* at z = 0 due to the factor z^{n-1} in the integrand(see below).

$$x[n] = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$

This can be avoided by the change of variable technique, i.e. by letting:

$$z = p^{-1}$$

we get an equivalent formula of: 22

$$x[n] = \frac{1}{2\pi j} \oint_{C''} X\left(\frac{1}{p}\right) p^{-n-1} dp$$
$$= \sum \operatorname{Res}\left[X\left(\frac{1}{p}\right) p^{-n-1} \text{ at poles inside of } C''\right]$$

where C'' is a **CCW** circle of radius less tha $\frac{1}{r}$, if C was a CCW circle of radius greater than r.

Note:

- (1) The integration contour is now CCW by exchanging the sign of the integration and the direction of the contour!!! (i.e. $-p^{-1}dp \rightarrow p^{-2}dp$ makes the CW contour C' a CCW contour C'')
- (2) The above formula for inverse z-transform, on the contrary, will cause multiple poles at p = 0 when $n \ge 0$.

proof: done (refer the footnote below.)

²²Note that from $z = p^{-1}$ we have: $dz = -p^{-2}dp$, $z^{n-1} = p^{-n+1}$, and the CCW contour C on z becomes a CW(clockwise) contour C' on p.

Redo the previous example for the case of n < 0.

Solution:

Figure 3.30: The CCW integration contour C' on the p plane.

$$x[n] = \frac{1}{2\pi j} \oint_{C'} \frac{p^{-n-1}}{1-ap} dp \quad (C': \text{ radius of less than } \frac{1}{a})$$
$$= \sum \operatorname{Res} \left[\frac{p^{-n-1}}{1-ap} \text{ at poles inside of } C' \right] \quad (\text{NONE})$$
$$= 0$$

3.7 The complex convolution theorem

: Relative to (or generalization of) the *periodic convolution property* of DTFT

(cf.) Periodic convolution property of DTFT(Recall from S&S class) :Windowing theorem or modulation property

Let $w[n] = x_1[n] \cdot x_2[n]$, then

$$F \{w[n]\} = W \left(e^{j\omega}\right) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X_1 \left(e^{j\Omega}\right) X_2 \left(e^{j(\omega-\Omega)}\right) d\Omega$$

$$\stackrel{\Delta}{=} \frac{1}{2\pi} X_1 \left(e^{j\omega}\right) \otimes X_2 \left(e^{j\omega}\right)$$

Theorem 3.1 Let $w[n] = x_1[n] \cdot x_2[n]$, then the z-transform W(z) of w[n] is in the following form:

$$W(z) = \frac{1}{2\pi j} \oint_{C_2} X_1\left(\frac{z}{v}\right) X_2(v) v^{-1} dv$$

where C_2 is a CCW contour within the overlap of ROC R_{x_2} of $X_2(v)$ and ROC of $X_1\left(\frac{z}{v}\right)$.

OR,

$$W(z) = \frac{1}{2\pi j} \oint_{C_1} X_1(v) X_2\left(\frac{z}{v}\right) v^{-1} dv$$

where C_1 is a CCW contour within the overlap of ROC R_{x_1} of $X_1(v)$ and ROC of $X_2\left(\frac{z}{v}\right)$.

Derivation:

Since

$$w[n] = x_1[n] \cdot x_2[n]$$

we have:

$$W(z) \stackrel{\Delta}{=} \sum_{n=-\infty}^{\infty} w[n] z^{-n} = \sum_{n=-\infty}^{\infty} x_1[n] x_2[n] z^{-n}$$
(3.4)

Here,

$$x_2[n] = \frac{1}{2\pi j} \oint_{C_2} X_2(v) v^{n-1} dv$$
(3.5)

where C_2 is a CCW contour within R_{x_2} .

Inserting (3.5) into (3.4), we get:

$$W(z) = \frac{1}{2\pi j} \sum_{n=-\infty}^{\infty} x_1[n] \oint_{C_2} X_2(v) \left(\frac{z}{v}\right)^{-n} v^{-1} dv$$

$$= \frac{1}{2\pi j} \oint_{C_2} \left\{ \sum_{n=-\infty}^{\infty} x_1[n] \left(\frac{z}{v}\right)^{-n} \right\} X_2(v) v^{-1} dv$$

$$= \frac{1}{2\pi j} \oint_{C_2} X_1\left(\frac{z}{v}\right) X_2(v) v^{-1} dv$$
(3.6)

where C_2 should bow be a CCW contour within the overalp of ROC of $X_1\left(\frac{z}{v}\right)$ and ROC of $X_2(v)$.

Remark:

1. ROC R_w of W(z):

Let

$$R_{x_1}$$
 : $r_{R_1} < |z| < r_{L_1}$
 R_{x_2} : $r_{R_2} < |z| < r_{L_2}$

Then, from (3.6), the contour C_2 is within regions of:

(i)
$$X_2(v)$$
 : $r_{R_2} < |v| < r_{L_2}$
(ii) $X_1\left(\frac{z}{v}\right)$: $r_{R_1} < \left|\frac{z}{v}\right| < r_{L_1}$

From (ii), we have $r_{R_1}|v| < |z| < r_{L_1}|v|$, and combining (i) and (ii) we get the ROC R_w of W(z) as:

$$r_{R_1} r_{R_2} < |z| < r_{L_1} r_{L_2}$$

 \Rightarrow We denote it as $R_w = R_{x_1} \cdot R_{x_2}$, but notice that R_w may actually be larger than $R_{x_1} \cap R_{x_2}$, depending on possible cancellation of poles.

2. Periodic convolution of DTFT:

In (3.6), let C_2 (and/or C_1) be the unit circle(s), which means the change of variable as $v = e^{j\Omega}$, then:

- (i) $C_2 \longrightarrow -\pi \leq \Omega \leq \pi$
- (ii) $dv = je^{j\Omega}d\Omega$

Also, let $z = e^{j\omega}$, then (3.6) becomes the DTFT $W(e^{j\omega})$ of w[n]:

$$W(e^{j\omega}) = \frac{1}{2\pi j} \int_{-\pi}^{\pi} X_1(e^{j(\omega-\Omega)}) X_2(e^{j\Omega}) e^{-j\Omega} \cdot j e^{j\Omega} d\Omega$$
$$= \frac{1}{2\pi j} \int_{-\pi}^{\pi} X_1(e^{j(\omega-\Omega)}) X_2(e^{j\Omega}) d\Omega$$
$$= \frac{1}{2\pi} X_1(e^{j\omega}) \otimes X_2(e^{j\omega})$$

as we expected!!!

Let $w[n] = x_1[n]x_2[n]$ where $x_1[n] = a^n u[n]$ and $x_2[n] = b^n u[n]$. Determine the z-transform W(z) of w[n].

Solution:

We already have the following z-transform pairs:

$$x_1[n] = a^n u[n] \quad \longleftrightarrow \quad X_1(z) = \frac{1}{1 - az^{-1}}, \quad |z| > |a|$$
$$x_2[n] = b^n u[n] \quad \longleftrightarrow \quad X_2(z) = \frac{1}{1 - bz^{-1}}, \quad |z| > |b|$$

From (3.6), the z-transform of w[n] is then:

$$W(z) = \frac{1}{2\pi j} \oint_{C_2} \frac{1}{1 - a\left(\frac{z}{v}\right)^{-1}} \cdot \frac{1}{1 - bz^{-1}} v^{-1} dv$$
$$= \frac{1}{2\pi j} \oint_{C_2} \frac{-\frac{z}{a}}{\left(v - \frac{z}{a}\right)} \cdot \frac{1}{v - b} dv$$

Notice that:

$$\begin{cases} \text{pole } \#1: \ v=b \\ \text{pole } \#2: \ v=\frac{z}{a} \end{cases}$$

and, since C_2 MUST be within overlap region of the ROC's of $X_2(v)$ and $X_1\left(\frac{z}{v}\right)$, each ROC should be as follows;

$$\begin{cases} \text{ROC of } X_2(v) : |v| > |b| \\ \text{ROC of } X_1\left(\frac{z}{v}\right) : \left|\frac{z}{v}\right| > |a| \longrightarrow |v| < \frac{|z|}{|a|} \end{cases}$$

Note that pole at v = b is inside of C_2 whereas pole at $v = \frac{z}{a}$ is outside of C_2 . Therefore, by the Cauchy's residue theorem, we get:

$$W(z) = \operatorname{Res}\left[\frac{-\frac{z}{a}}{v - \frac{z}{a}} \cdot \frac{1}{v - b} \text{ at pole } v = b\right]$$
$$= \frac{-\frac{z}{a}}{b - \frac{z}{a}}$$
$$= \frac{1}{1 - abz^{-1}}, \quad |z| > |ab|$$

(cf.) The ROC R_w of W(z): Note from the ROC's of $X_2(v)$ and $X_1\left(\frac{z}{v}\right)$, we have:

$$\begin{split} |b| < |v| < \frac{|z|}{|a|} \\ \rightarrow \quad |z| > |v| \cdot |a| \text{ and } |v| > |b| \\ \rightarrow \quad |z| > |a| \cdot |b| \end{split}$$

Figure 3.31: ROC of $X_2(v)$ and $X_1\left(\frac{z}{v}\right)$ in v-plane.

Note:

Since w[n] can be put into the following form:

$$x_1[n]x_2[n] = a^n b^n u[n] = (ab)^n u[n]$$

we can directly derive the z-transform by a simple inspection as:

$$W(z) = \frac{1}{1 - abz^{-1}}, \quad \text{ROC: } |z| > |ab|$$

3.8 The Parseval's theorem

Theorem 3.2

$$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi j} \oint_C X_1(v) X_2^*\left(\frac{1}{v^*}\right) v^{-1} dv$$

where C is a CCW contour within overlap of ROC of $X_1(v)$ and ROC of $X_2^*\left(\frac{1}{v^*}\right)$.

Derivation:

Let $y[n] = x_1[n]x_2^*[n]$, then from the complex convolution theorem, we have: ²³

$$Y(z) = \sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] z^{-n}$$

= $\frac{1}{2\pi j} \oint_C X_1(v) X_2^*\left(\frac{z^*}{v^*}\right) v^{-1} dv$

Put z = 1 in both sides ²⁴, then

$$Y(z)|_{z=1} = \sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi j} \oint_C X_1(v) X_2^*\left(\frac{1}{v^*}\right) v^{-1} dv$$
q.e.d.

²³Note that $x*[n] \leftrightarrow X^*(z^*)$; refer to Table 3.2 at p.126 of the textbook.

²⁴Since (i) z = 1 must be inside of R_y , and (ii) ROC is composed of circles \Rightarrow ROC R_y must include the **unit circle** for the Parseval's theorem to be valid, i.e. Parseval;s theorem can only be applied to *absolutely summable* sequences whose DTFT exists.

Remarks:

(1) If $x_1[n] = x_2[n] = x[n]$ are *real* sequences, then the Parseval's theorem becomes:

$$\sum_{n=-\infty}^{\infty} x^2[n] = \frac{1}{2\pi j} \oint_C X(v) X(v^{-1}) v^{-1} dv$$

and it represents the *energy* in x[n]:

- (i) LHS = energy of x[n] in time domain
- (ii) RHS = energy of x[n] in z (or frequency) domain
- (2) DTFT equivalent form:

Let $v = e^{j\omega}$, then the Parseval's theorem states:

$$\sum_{n=-\infty}^{\infty} x_1[n] x_2^*[n] = \frac{1}{2\pi j} \int_{-\pi}^{\pi} X_1(e^{j\omega}) X_2^*\left((e^{-j\omega})^*\right) e^{-j\omega} j e^{j\omega} d\omega$$
$$= \frac{1}{2\pi j} \int_{-\pi}^{\pi} X_1(e^{j\omega}) X_2^*(e^{j\omega}) d\omega$$

Example 3.19

Suppose x[n] is a *right-sided* real sequence with its z-transform given below:

$$X(z) = \frac{1}{1 - az^{-1}} \cdot \frac{1}{1 - bz^{-1}}$$

where 0 < a < b < 1.

Then, determine the energy contained in x[n].

Solution:

From the Parseval's theorem, we have:

$$\begin{split} \sum_{n=-\infty}^{\infty} y[n] &\equiv \sum_{n=-\infty}^{\infty} x^2[n] \\ &= \frac{1}{2\pi j} \oint_C X(v) X(v^{-1}) v^{-1} dv \\ &= \frac{1}{2\pi j} \oint_C \frac{1}{(1-av^{-1})(1-bv^{-1})} \cdot \frac{1}{(1-av)(1-bv)} \cdot \frac{1}{v} dv \\ &= \frac{1}{2\pi j} \oint_C \frac{v^2}{(v-a)(v-b)} \cdot \frac{1}{(1-av)(1-bv)} \cdot \frac{1}{v} dv \\ &= \frac{1}{2\pi j} \oint_C \frac{v}{(v-a)(v-b)} \cdot \frac{1}{(1-av)(1-bv)} dv \end{split}$$

where C is taken to be the unit circle, since the unit circle must be within R_y (refer the footnote #24).

(cf.)

(i) ROC of X(v):

Figure 3.32: ROC of X(v).

(ii) ROC of $X(\frac{1}{v})$:

Figure 3.33: ROC of $X(\frac{1}{v})$.

Figure 3.34: The CCW integration contour C in v-plane with ROC R_y .

Therefore, the energy in x[n] is:

$$\sum_{n=-\infty}^{\infty} x^{2}[n] = \sum \operatorname{Res} \left\{ \frac{v}{(v-a)(v-b)(1-av)(1-bv)} \text{ at poles inside of } C \right\}$$
$$= \sum \operatorname{Res} \left\{ \frac{v}{(v-a)(v-b)(1-av)(1-bv)} \text{ at } v = a \text{ and } v = b \right\}$$
$$= \frac{a}{(a-b)(1-a^{2})(1-ab)} + \frac{b}{(b-a)(1-ab)(1-b^{2})}$$
$$= \frac{a(1-b^{2}) - b(1-a^{2})}{(a-b)(1-a^{2})(1-b^{2})(1-ab)} \text{ (joules)}$$

(cf.) Notice that poles at $v = \frac{1}{a}$ and $v = \frac{1}{b}$ are outside of the unit circle C.

Remark:

Evaluating the energy of x[n] in time domain would be very difficult, if not impossible, i.e.:

$$X(z) \xrightarrow{Z^{-1}} x[n] \longrightarrow \sum_{n=-\infty}^{\infty} x^2[n]$$

Assignment: Try the procedure described above.

3.9 The unilateral z-transform

Definition 3.2 The unilateral z-transform of a sequence x[n] is defined as:

$$\mathcal{X}(z) \stackrel{\Delta}{=} \sum_{\mathbf{n}=\mathbf{0}}^{\infty} x[n] z^{-n}$$

Remark:

(1) So far, we considered the so called "bi-lateral" z-transform:

$$X(z) \stackrel{\Delta}{=} \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$

- (2) If x[n] = 0 for all n < 0, then $X(z) = \mathcal{X}(z)$.
- (3) All of the *ROC properties* of $\mathcal{X}(z)$ are the same as those of X(z).
- (4) Some of the *properties of* $\mathcal{X}(z)$ are the same, but some are different from those of X(z).

Example 3.20

Let $x[n] = \delta[n]$, then:

(i)
$$X(z) = \sum_{n=-\infty}^{\infty} \delta[n] z^{-n} = \delta[0] z^0 = 1$$

(ii) $\mathcal{X}(z) = \sum_{n=0}^{\infty} \delta[n] z^{-n} = \delta[0] z^0 = 1$

$$\implies X(z) = \mathcal{X}(z)$$

Let $x[n] = \delta[n+1]$, then:

(i)
$$X(z) = \sum_{n=-\infty}^{\infty} \delta[n+1]z^{-n} = \delta[0]z^1 = z$$

(ii) $\mathcal{X}(z) = \sum_{n=0}^{\infty} \delta[n+1]z^{-n} = 0$
 $\implies X(z) \neq \mathcal{X}(z)$

Remark:

The principal use of $\mathcal{X}(z)$ is iin analyzing DLTI systems described by a linear constant coefficient difference equation with *non-initial* (i.e. $n \neq 0$) rest conditions.

Let y[n] = x[n-m] where m > 0, then:

$$\begin{aligned} \mathcal{Y}(z) &= \sum_{n=0}^{\infty} x[n-m]z^{-n} \\ &= \underbrace{x[-m]z^{0}}_{n=0} + \underbrace{x[1-m]z^{1}}_{n=1} + \cdots + \underbrace{x[-1]z^{-m+1}}_{n=m-1} + \underbrace{x[0]z^{-m}}_{n=m} + \underbrace{x[1]z^{-m-1}}_{n=m+1} + \cdots \\ &= \sum_{k=1}^{m} x[k-1-m]z^{-k+1} + \sum_{n=0}^{\infty} x[k-m]z^{-k} \\ & (\text{let } k-m=n, \text{ then } k=m+n) \\ &= \sum_{n=1-m}^{0} x[n-1]z^{-n-m+1} + \sum_{n=0}^{\infty} x[n]z^{-n}z^{-m} \\ &= \sum_{n=1-m}^{0} x[n-1]z^{-n-m+1} + \mathcal{X}(z)z^{-m} \\ & (\text{let } n-1 \to n) \\ &= \sum_{n=-m}^{-1} x[n]z^{-n-m} + \mathcal{X}(z)z^{-m} \end{aligned}$$

$$\mathcal{Y}(z) = \sum_{n=0}^{\infty} x[n-m]z^{-n}$$

$$(\text{let } n-m=k)$$

$$= \sum_{k=-m}^{\infty} x[k]z^{-k-m}$$

$$= \sum_{k=-m}^{-1} x[k]z^{-k-m} + \left(\sum_{k=0}^{\infty} x[k]z^{-k}\right)z^{-m}$$

$$(\text{let } k \to n)$$

$$= \sum_{n=-m}^{-1} x[n]z^{-n-m} + \mathcal{X}(z)z^{-m}$$

Note:

Notice that the time shift property of $\mathcal{X}(z)$ is different from that of X(z)!!!

Example 3.22

Given a DLTI system with the i/o relation of:

$$y[n] - \frac{1}{2}y[n-1] = x[n]$$
(3.7)

where x[n] = u[n] and with a non-initial rest condition of y[-1] = 1. Find the output y[n] of the system.

Solution:

We know that:

$$X(z) = \mathcal{X}(z) = \frac{1}{1 - z^{-1}}, \quad |z| > 1$$

Taking the unilateral z-transform of (3.7), we get:

$$\mathcal{Y}(z) - \frac{1}{2} \left\{ y[-1] + \mathcal{Y}(z) z^{-1} \right\} = \frac{1}{1 - z^{-1}} = \mathcal{X}(z)$$

Solving for $\mathcal{Y}(z)$,

$$\begin{aligned} \mathcal{Y}(z) &= \frac{1}{1 - \frac{1}{2}z^{-1}} \left\{ \frac{1}{2}y[-1] + \frac{1}{1 - z^{-1}} \right\} \\ &= \frac{\frac{1}{2}}{1 - \frac{1}{2}z^{-1}} + \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - z^{-1})} \\ &= \frac{1}{2}\frac{1}{1 - \frac{1}{2}z^{-1}} - \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - z^{-1}} \quad \text{(by partial fraction)} \\ &= \frac{2}{1 - z^{-1}} - \frac{1}{2}\frac{1}{1 - \frac{1}{2}z^{-1}} \end{aligned}$$

 $\Rightarrow y[n] = 2u[n] - \frac{1}{2} \left(\frac{1}{2}\right)^n u[n] \quad \text{(by inverse unilateral z-transform)}$ $= \left\{1 - \left(\frac{1}{2}\right)^{n+1}\right\} u[n]$

(cf.)

- (i) y[-1] = 1.
- (ii) If there is no non-initial condition (i.e. if y[n] = 0, $\forall n < 0$), then:

$$\begin{split} Y(z) &- \frac{1}{2} Y(z) z^{-1} = X(z) \\ \to & \left(1 - \frac{1}{2} z^{-1} \right) Y(z) = X(z) \\ \to & Y(z) = \frac{1}{1 - \frac{1}{2} z^{-1}} \cdot \frac{1}{1 - z^{-1}} = \frac{-1}{1 - \frac{1}{2} z^{-1}} + \frac{2}{1 - z^{-1}} \\ \to & y[n] = \left\{ - \left(\frac{1}{2} \right)^n + 2 \right\} u[n] \end{split}$$