Contents

3 The Z Transform 45
3.1 Introduction 45
3.2 Z transform 47
3.3 Properties of ROC 56
3.4 The inverse z-transform 60
3.4.1 Inspection method 60
3.4.2 Partial fraction expansion: w/ inspection 61
3.4.3 Power series expansion 65
3.5 The z-transform properties 68
3.6 The inverse z-transform using contour integration :Formal expression for inverse z-transform 76
3.7 The complex convolution theorem 83
3.8 The Parseval's theorem 88
3.9 The unilateral z-transform 92

Chapter 3

The Z Transform

3.1 Introduction

Z-transform : Generalization of DTFT

Remarks:

1. Certain conditions are needed for DTFT to be defined for discrete signals (e.g. absolute summability of $x[n]$).
\Rightarrow Needs a general transformation for broader class of discrete signals.
2. Laplace transform is a generalization of Fourier transform for continuous signals.
(cf.)
(1) Laplace vs. Fourier transform
(a) $X(\omega)=\mathcal{F}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$
(b) $X(s)=\mathcal{L}\{x(t)\}=\int_{-\infty}^{\infty} x(t) e^{-s t} d t \quad$ where $s=\sigma+j \omega$.

Therefore,

$$
X(\omega)=\left.X(s)\right|_{s=j \omega}
$$

i.e., $X(\omega)$ corresponds to the $X(s)$ where $\sigma=0$, which means the sliced version of the Laplace transform along the axis of $\sigma=0$.
(2) Z transform vs. DTFT
(a) $X\left(E^{j \omega}\right)=F\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$
(b) $X(z)=\mathcal{Z}\{x[n]\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n} \quad$ where $z=r e^{j \omega}$.

Therefore,

$$
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e j \omega}
$$

i.e., $X\left(e^{j \omega}\right)$ corresponds to the $X(z)$ where $r=1$, which means the Z transform along the unit circle on the complex plane of z.

Figure 3.1: Laplace vs. Fourier transform and Z transform vs. DTFT.

3.2 Z transform

Definition 3.1 The z transform $X(z)$ of a discrete-time signal $x[n]$ is defined as follows:

$$
\mathcal{Z}\{x[n]\} \triangleq \sum_{n=-\infty}^{\infty} x[n] z^{-n} \stackrel{d}{=} X(z) \quad: \text { Bilateral z-transform(two sided) }
$$

where z is a complex variable, ${ }^{1}$ i.e.

$$
\begin{aligned}
z & =\operatorname{Re}[z]+j \operatorname{Im}[z] \\
& =r \cdot e^{j \omega}
\end{aligned}
$$

REMARKS:

$$
\begin{aligned}
X(z)=X\left(r e^{j \omega}\right) & =\sum_{n=-\infty}^{\infty} x[n]\left(r e^{j \omega}\right)^{-n} \\
& =\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n} \\
& =F\left\{x[n] r^{-n}\right\}
\end{aligned}
$$

(1) $r=1 \quad \longrightarrow \quad X(z)=F\{x[n]\}$

Figure 3.2: A unit circle on z plane.
(2) (a) $z=1 \rightarrow j \rightarrow-1 \rightarrow-j \rightarrow 1$
(b) $\omega=0 \rightarrow \frac{\pi}{2} \rightarrow \pi \rightarrow \frac{3 \pi}{2} \rightarrow 2 \pi$
: implies the periodicity of DTFT $\mathrm{w} /$ period 2π.

[^0](3) Region of concergence(ROC):
$$
X(z)=\sum_{n=-\infty}^{\infty}\left(x[n] r^{-n}\right) e^{-j \omega n}=F\left\{x[n] r^{-n}\right\}
$$
\Rightarrow For the existence of $X(z)$, we need a condition(i.e. absolute summability of sequence $x[n] r^{-n}$) as:
\[

$$
\begin{gathered}
\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty \\
\text { OR } \quad \sum_{n=-\infty}^{\infty}|x[n]||z|^{-n}<\infty \quad \because|z|=r
\end{gathered}
$$
\]

Therefore, we have

$$
\begin{aligned}
\text { ROC of } X(z) & =\{z \mid X(z) \text { exists or converges }\} \\
& =\left\{\left.z\left|\sum_{n=-\infty}^{\infty}\right| x[n]| | z\right|^{-n}<\infty\right\} \\
& : \text { composed of circles in terms of }|z|
\end{aligned}
$$

\Rightarrow ROC of $X(z)$ only depends on $|z|$.
\Rightarrow ROC is compose of circles.
\Rightarrow If the unit circle is within the ROC, then DTFT exists.

Figure 3.3: A typical ROC on the z plane.
(4) Most important and useful form of z transform: ${ }^{2}$

$$
X(z)=\frac{P(z)}{Q(z)}, \quad \text { where } P(z), Q(z) \text { are polynomials of } z
$$

(a) $\{z \mid P(z)=0\}$: zeros of $X(z)$: denoted O in z plane.
(b) $\{z \mid Q(z)=0\}$: poles of $X(z)$: denoted X in z plane.

Example 3.1

Determine the z transform of an exponential sequence given below: ${ }^{3}$

$$
x[n]=a^{n} u[n]
$$

Figure 3.4: A right sided exponential sequence $x[n]$ for $0<a<1$.

Solution:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

(a)

$$
\text { ROC: }\left|a z^{-1}\right|<1 \Rightarrow|z|>|a|
$$

(b)

$$
X(z)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

[^1]Figure 3.5: The ROC of the z transform for a right sided exponential sequence.

Note:

(a) If $|a|<1 \longrightarrow X\left(e^{j \omega}\right)$ exists. (Recall !!!)
(b) If $|a|=1 \quad \xrightarrow{\text { e.g. } a=1} \quad x[n]=u[n], \quad$ then

$$
X(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

(c) poles: $z=a$ (represented by X)
zeros: $z=0 \quad$ (represented by O)

Example 3.2

Determine the z transform of an exponential sequence given below: ${ }^{4}$

$$
x[n]=-a^{n} u[-n-1]
$$

Figure 3.6: A left sided exponential sequence $x[n]$ for $a>1$.

[^2]
Solution:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=-\sum_{n=-\infty}^{-1} a^{n} z^{-n}=-\sum_{n=1}^{\infty}\left(a^{-1} z\right)^{n}
$$

(a)

$$
\text { ROC: }\left|a^{-1} z\right|<1 \quad \Rightarrow \quad|z|<|a|
$$

(b)

$$
X(z)=\frac{-a^{-1} z}{1-a^{-1} z}=\frac{z}{z-a}
$$

Figure 3.7: The ROC of the z transform for a left sided exponential sequence.

Note:

(a) If $|a|>1 \longrightarrow X\left(e^{j \omega}\right)$ exists!
(b) Notice that the z transform $X(z)$ is the same as in the previous example, while the ROC is different.
\Longrightarrow This indicates the necessity of ROC for representing the z transform.
(c) poles: $z=a$ (represented by X)
zeros: $z=0 \quad$ (represented by O)

Example 3.3

Determine the z transform of another exponential sequence given below: ${ }^{5}$

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]+\left(-\frac{1}{3}\right)^{n} u[n] \stackrel{\Delta}{=} x_{1}[n]+x_{2}[n]
$$

Solution:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}=\sum_{n=-\infty}^{\infty} x_{1}[n] z^{-n}+\sum_{n=-\infty}^{\infty} x_{2}[n] z^{-n} \triangleq X_{1}(z)+X_{2}(z)
$$

(a) $X_{1}(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(\frac{1}{2} z^{-1}\right)^{n}=\frac{1}{1-\frac{1}{2} z^{-1}},\left|\frac{1}{2} z^{-1}\right|<1\left(|z|>\frac{1}{2}\right)$
(b) $X_{2}(z)=\sum_{n=0}^{\infty}\left(-\frac{1}{3}\right)^{n} z^{-n}=\sum_{n=0}^{\infty}\left(-\frac{1}{3} z^{-1}\right)^{n}=\frac{1}{1+\frac{1}{3} z^{-1}},\left|\frac{1}{3} z^{-1}\right|<1\left(|z|>\frac{1}{3}\right)$

Therefore, the z -transform $X(z)$ of $x[n]$ is as follows:

$$
X(z)=X_{1}(z)+X_{2}(z)=\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{1}{1+\frac{1}{3} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)}
$$

where

$$
\operatorname{ROC}=\left\{z \left\lvert\,\left(|z|>\frac{1}{2}\right) \cap\left(|z|>\frac{1}{3}\right)\right.\right\}=\left\{z| | z \left\lvert\,>\frac{1}{2}\right.\right\}
$$

Figure 3.8: The ROC of the z transform for $x[n]$.

[^3]
Example 3.4

Determine the z transform of the exponential sequence given below: ${ }^{6}$

$$
x[n]=\left(-\frac{1}{3}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[-n-1] \triangleq x_{1}[n]+x_{2}[n]
$$

Solution:

$$
\begin{array}{ll}
\text { (a) } X_{1}(z)=\frac{1}{1+\frac{1}{3} z^{-1}}, & |z|>\frac{1}{3} \\
\text { (b) } X_{2}(z)=\frac{1}{1-\frac{1}{2} z^{-1}}, & |z|<\frac{1}{2}
\end{array}
$$

Therefore, the z-transform $X(z)$ of $x[n]$ is as follows:

$$
X(z)=X_{1}(z)+X_{2}(z)=\frac{1}{1+\frac{1}{3} z^{-1}}+\frac{1}{1-\frac{1}{2} z^{-1}}=\frac{2 z\left(z-\frac{1}{12}\right)}{\left(z-\frac{1}{2}\right)\left(z+\frac{1}{3}\right)}
$$

where

$$
\mathrm{ROC}=\left\{z \left\lvert\,\left(|z|>\frac{1}{3}\right) \cap\left(|z|<\frac{1}{2}\right)\right.\right\}=\left\{z\left|\frac{1}{3}<|z|<\frac{1}{2}\right\}\right.
$$

Figure 3.9: The ROC of the z transform for two sided $x[n]$.

Note:

From the above examples, notice that if $x[n]$ is a (sum of) infinitely long exponential sequences, then the z-transform $X(z)$ is a rational function of z^{-1} or z.

[^4]
Example 3.5

Determine the z transform of a finite duration sequence given below:

$$
x[n]=a^{n} u[n]-a^{n} u[n-N]
$$

Figure 3.10: A finite duration sequence $x[n]$.

Solution:

$$
\begin{aligned}
X(z)=\sum_{n=0}^{N-1} a^{n} z^{-n}=\sum_{n=0}^{N-1}\left(a z^{-1}\right)^{n} & =\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}} \\
& =\frac{z-\frac{a^{N}}{z^{N-1}}}{z-a} \\
& =\frac{1}{z^{N-1}} \cdot \frac{z^{N}-a^{N}}{z-a}
\end{aligned}
$$

(a) ROC:

$$
\begin{aligned}
\sum_{n=0}^{N-1}\left|a z^{-1}\right|^{n}<\infty & \longrightarrow\left|a z^{-1}\right|<\infty \\
& \longrightarrow \frac{|a|}{|z|}<\infty \\
& \longrightarrow|a|<\infty \text { and } z \neq 0 \\
& \xrightarrow{\text { i.e. }} \quad \text { entire } z \text { plane except } z=0
\end{aligned}
$$

(b) Poles and zeros:
(i) zeros ${ }^{7}: z^{N}-a^{N}=0 \longrightarrow \quad z_{k}=a e^{j \frac{2 \pi k}{N}}, \quad k=1,2, \ldots, N-1$
(ii) poles: $z=0 \quad:(N-1)$ st order

[^5]Figure 3.11: The ROC of the z transform for a finite duration sequence $x[n]$.

Table 3.1: Common z-transform pairs at page 104
: Self study (assignment).

3.3 Properties of ROC

$$
X(z)=\frac{P(z)}{Q(z)}
$$

1. ROC is a ring or a disc in the z-plane centered at the origin, i.e.

$$
\mathrm{ROC}=\left\{z\left|0 \leq r_{R}<|z|<r_{L}<\infty\right\}\right.
$$

2. $F\{x[n]\}$ exists if and only if ROC contains the unit circle.
3. ROC cannot contain any poles. ${ }^{8}$
4. If $x[n]$ is a finite duration sequence, then ROC is the entire z-plane except possibly at $z=0$ or $z=\infty$.
(cf.) Note that the followings:

$$
|X(z)|\left|\sum_{n=N_{1}}^{N_{2}} x[n] z^{-n}\right| \leq \sum_{n=N_{1}}^{N_{2}}|x[n]| \cdot|z|^{-n}
$$

(i) if $n<0$, then $|X(z)| \rightarrow \infty$ as $z: \rightarrow \infty$.
(ii) if $n \geq 0$, then $|X(z)| \rightarrow \infty$ as $z: \rightarrow 0$.
5. If $x[n]$ is a right-sided sequence, then ROC extends outward from the outermost finite pole to $z=\infty$.

Figure 3.12: The ROC of a right-sided sequence.

[^6]6. If $x[n]$ is a left-sided sequence, then ROC extends inward from the innermost non-zero pole to $z=0$.

Figure 3.13: The ROC of a left-sided sequence.
7. If $x[n]$ is a two-sided sequence, then ROC consists of a ring bounded by poles.

Figure 3.14: The ROC of a two-sided sequence.
8. ROC must be a connected region(i.e. cannot be disjoint).

Proof(detailed): Assignment(self study)

Example 3.6

Given a pole-zero diagram with its pole locations as follows:

Figure 3.15: An example of pole-zero diagram.

Then, there $\exists 4$ possible cases of ROC depending on which we get different discrete-time signals.
(a) Right-sided sequence:

Figure 3.16: A pole-zero diagram for a right-sided sequence.
(b) Left-sided sequence:

Figure 3.17: A pole-zero diagram for a left-sided sequence.
(c) Two-sided sequence: \#1

Figure 3.18: A pole-zero diagram for a two-sided sequence.
(d) Two-sided sequence: \#2

Figure 3.19: Another pole-zero diagram for a two-sided sequence.

Note:

1. $x[n]$ cannot be a finite duration sequence with the given pole-zero diagram of $X(z)$.
2. The only case when \exists the DTFT of $x[n]$ is (3). Why?

3.4 The inverse z-transform

EXAMPLE: Analysis of a DLTI system:

Figure 3.20: A DLTI system.

After analyzing DLTI system in z-domain (i.e. finding the output $Y(z)$), we need to compute $y[n]$ (i.e. $Y(z) \rightarrow y[n]$).

3.4.1 Inspection method

Use of familiar z-transform pairs, where tables of z -transform pairs are quite useful!!!

Example 3.7

Recall the following z-transform pair(either from the table or from the previous example ...)

$$
a^{n} u[n] \longleftrightarrow \frac{1}{1-a z^{-1}},|z|>|a|
$$

Therefore, if we are given that:

$$
X(z)=\frac{1}{1-\left(\frac{1}{5}\right) z^{-1}}, \left.\quad|z|>\frac{1}{5} \right\rvert\,
$$

then by inspection, we get the inverse z-transform easily as:

$$
x[n]=\left(\frac{1}{5}\right)^{n} u[n]
$$

(cf.) If the ROC was $|z|<\frac{1}{5}$, then we know by inspection (from previous experiences) that:

$$
x[n]=-\left(\frac{1}{5}\right)^{n} u[-n-1]
$$

3.4.2 Partial fraction expansion: w/ inspection

Suppose $X(z)$ is in the form of ratio of polynomials in z^{-1}, i.e.:

$$
\begin{align*}
X(z)=\frac{P(z)}{Q(z)} & =\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}} \tag{3.1}\\
& =\frac{b_{0}}{a_{0}} \frac{\prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)} \\
& \stackrel{\text { or }}{=} \frac{b_{0}}{a_{0}} \frac{z^{N}}{z^{M}} \frac{\prod_{k=1}^{M}\left(z-c_{k}\right)}{\prod_{k=1}^{N}\left(z-d_{k}\right)} \tag{3.2}\\
& = \begin{cases}\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}, & \text { if } M<N \\
\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}, & \text { if } M \geq N\end{cases}
\end{align*}
$$

where
(i) B_{r} : by long division of the numerator by the denominator
(ii) $A_{k}=\left.\left(1-d_{k} z^{-1}\right) X(z)\right|_{z=d_{k}}$

The inverse z -transform can then be found by:

$$
x[n]=\sum_{r=0}^{M-N} \mathcal{Z}^{-1}\left\{B_{r} z^{-r}\right\}+\sum_{k=1}^{N} \mathcal{Z}^{-1}\left\{\frac{A_{k}}{1-d_{k} z^{-1}}\right\}
$$

where
(i) ${ }^{9}$

$$
\mathcal{Z}^{-1}\left\{B_{r} z^{-r}\right\}=B_{r} \delta[n-r]
$$

(ii) ${ }^{10}$

$$
\mathcal{Z}^{-1}\left\{\frac{A_{k}}{1-d_{k} z^{-1}}\right\}= \begin{cases}A_{k}\left(d_{k}\right)^{n} u[n], & \text { ROC: }|z|>\left|d_{k}\right| \\ -A_{k}\left(d_{k}\right)^{n} u[-n-1], & \text { ROC: }|z|<\left|d_{k}\right|\end{cases}
$$

[^7]
Remarks:

1. When $X(z)$ has multiple poles $\left(d_{i}\right)$ of order s, i.e. if $X(z)$ is in the following form:

$$
X(z)=\frac{P(z)}{Q(z)}=\frac{p(z)}{\left(1-d_{i} z^{-1}\right)^{s} q(z)}
$$

Then, the partial fraction expansion of $X(z)$ is in the form given below: ${ }^{11}$

$$
X(z)=\sum_{r=0}^{M-N} B_{r} z^{-r}+\sum_{k=1, k \neq i}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}+\sum_{m=1}^{s} \frac{C_{m}}{\left(1-d_{i} z^{-1}\right)^{m}}
$$

where ${ }^{12}$

$$
C_{m}=\frac{1}{(s-m)!\left(-d_{i}\right)^{s-m}}\left\{\frac{d^{s-m}}{d w^{s-m}}\left[\left(1-d_{i} w\right)^{s} X\left(w^{-1}\right)\right]\right\}_{w=d_{i}^{-1}}, \quad\left(w \triangleq z^{-1}\right)
$$

2. $X(z)$ has the same number of poles and zeros(see (3.2)), which is:

$$
\text { \# of poles and/or zeros }= \begin{cases}M, & \text { if } M>N \\ N, & \text { if } M<N\end{cases}
$$

[^8]
Example 3.8

Find the inverse z -transform of $X(z)$ given below along with its ROC.

$$
X(z)=\frac{1+2 z^{-1}+z^{-2}}{1-\frac{3}{2} z^{-1}+\frac{1}{2} z^{-2}}=\frac{\left(1+z^{-1}\right)^{2}}{\left(1-z^{-1}\right)\left(1-\frac{1}{2} z^{-1}\right)}
$$

where its ROC is as follows:

$$
\mathrm{ROC}=\{z \| z \mid>1\} \quad \Longrightarrow \quad \text { right-sided sequence }
$$

Figure 3.21: The ROC of $X(z)$ with its pole-zero locations.

Solution:

Applying the partial fraction method, $X(z)$ must be in the following form: ($M=N=2$)

$$
X(z)=B_{0}+\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-z^{-1}}
$$

where
(i) $B_{0}=2$ (the ratio of coefficient for z^{2} or z^{-2}, i.e. the highest order.)
(ii) $A_{1}=\left.X(z)\left(1-\frac{1}{2} z^{-1}\right)\right|_{z=\frac{1}{2}}=\left.\frac{\left(1+z^{-1}\right)^{2}}{1-z^{-1}}\right|_{z=\frac{1}{2}}=\frac{9}{-1}=-9$
(ii) $A_{1}=\left.X(z)\left(1-z^{-1}\right)\right|_{z=1}=\left.\frac{\left(1+z^{-1}\right)^{2}}{1-\frac{1}{2} z^{-1}}\right|_{z=1}=\frac{9}{\frac{1}{2}}=8$

Therefore:

$$
\begin{aligned}
X(z) & =2-9 \frac{1}{1-\frac{1}{2} z^{-1}}+8 \frac{1}{1-z^{-1}} \\
\Longrightarrow x[n] & =2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]+8 u[n] \quad \text { (by inspection) }
\end{aligned}
$$

Remark: Depending on the ROC, we could have different sequences, i.e.

$$
X(z)=2-9 \frac{1}{1-\frac{1}{2} z^{-1}}+8 \frac{1}{1-z^{-1}}
$$

(1) $\mathrm{ROC}=\{z| | z \mid>1\}$: outside of the unit circle (as in the example above)

$$
x[n]=2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]+8 u[n] \quad: \text { right-sided sequence }
$$

Figure 3.22: $\operatorname{ROC}=\{z| | z \mid>1\}$: outside of the unit circle.
(2) $\operatorname{ROC}=\left\{z| | z \left\lvert\,<\frac{1}{2}\right.\right\}$: inside of a circle

$$
x[n]=2 \delta[n]+9\left(\frac{1}{2}\right)^{n} u[-n-1]-8 u[-n-1] \quad: \text { left-sided sequence }
$$

Figure 3.23: $\mathrm{ROC}=\left\{z| | z \left\lvert\,<\frac{1}{2}\right.\right\}$: inside of a circle.
(3) ROC $=\left\{z\left|\frac{1}{2}<|z|<1\right\}\right.$: in-between two circles

$$
x[n]=2 \delta[n]-9\left(\frac{1}{2}\right)^{n} u[n]-8 u[-n-1] \quad: \text { two-sided sequence }
$$

Figure 3.24: $\mathrm{ROC}=\left\{z\left|\frac{1}{2}<|z|<1\right\}\right.$: in-between two circles.

3.4.3 Power series expansion

Note that the definition of the z -transform $X(z)$ itself is in the form of a power series, i.e.

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
& =\ldots \ldots+x[-2] z^{2}+x[-1] z^{1}+x[0] z^{0}+x[1] z^{-1}+x[2] z^{-2}+\ldots \ldots
\end{aligned}
$$

\Longrightarrow Finding $x[n]$ is equivalent to determining the coefficients of z^{-n} in $X(z)!!!$

Example 3.9

Find the inverse z-transform of $X(z)$ given below, where the ROC is the entire z-plane except at $z=0$.

$$
X(z)=\frac{\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)\left(1-z^{-1}\right)}{z^{-2}}
$$

Solution:

Developing the given $X(z)$, we get:

$$
\begin{aligned}
X(z) & =z^{2}\left(1-\frac{1}{2} z^{-1}\right)\left(1+z^{-1}\right)\left(1-z^{-1}\right) \\
& =1 \cdot z^{2}-\frac{1}{2} \cdot z-1+\frac{1}{2} \cdot z^{-1} \\
& =x[-2] \cdot z^{2}+x[-1] \cdot z+x[0]+x[1] \cdot z^{-1}
\end{aligned}
$$

Therefore,

$$
x[n]=\delta[n+2]-\frac{1}{2} \delta[n+1]-\delta[n]+\frac{1}{2} \delta[n-1]
$$

(cf.) Find $x[n]$ using the partial fraction expansion method: assignment

Example 3.10

Find the inverse z-transform of $X(z)$ given below, where the ROC is the outside of a circle with radius $|a|$.

$$
X(z)=\log \left(1+a z^{-1}\right), \quad \mathrm{ROC}=\{z| | z|>|a|\}
$$

Solution:

Developing the given $X(z)$ using the logarithmic series expansion ${ }^{13}$, we get:

$$
\begin{aligned}
X(z) & \left.=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} a^{n} z^{n}}{n}, \quad\left|a z^{-1}\right|<1 \text { (i.e. }|z|>|a|\right) \\
& \triangleq \sum_{n=-\infty}^{\infty} x[n] z^{-n}
\end{aligned}
$$

Therefore:

$$
x[n]=\left\{\begin{array}{ll}
\frac{(-1)^{n+1} a^{n}}{n}, & n \geq 1 \\
0, & n \leq 0
\end{array}\right\}=\frac{(-1)^{n+1} a^{n}}{n} u[n]
$$

(cf.)
Note that $x[n]$ is a right-sided sequence, since the ROC is given as the outside of a circle.

Example 3.11

Find the inverse z-transform of $X(z)$ given below, which we already have discussed in previous examples ${ }^{14}$, using the power series expansion method.

$$
X(x)=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}
$$

[^9]
Solution:

There \exists two possible ROC's for the given $X(z)$:
(i) ROC: $|z|>|a|$ (i.e. right-sided sequence)

Since $x[n]$ must be a right-sided sequence, $X(z)$ should be expressed as a series in powers of $z^{-1}(\because n \geq 0)$
\Longrightarrow By long division, we get:

$$
\left.\begin{array}{c}
X(z)=\frac{1}{1-a z^{-1}}
\end{array}=\ldots \ldots \cdot\right\} \begin{aligned}
& =\ldots \ldots \\
& =\quad \vdots \\
X(z)=\frac{1}{1-a z^{-1}} & =1+a z^{-1}+a^{2} z^{-2}+\ldots \\
& =x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots
\end{aligned}
$$

Therefore, we have:

$$
x[n]=a^{n} u[n]
$$

(ii) ROC: $|z|<|a|$ (i.e. left-sided sequence)

Since $x[n]$ must be a left-sided sequence, $X(z)$ should be expressed as a series in powers of $z(\because n<0)$
\Longrightarrow By long division, we get:

$$
\begin{gathered}
X(z)=\frac{1}{-a z^{-1}+1}=\ldots \ldots \\
\\
=\ldots \ldots \\
\\
=\quad \vdots \\
X(z)=\frac{1}{-a z^{-1}+1}=-a^{-1} z-a^{-2} z^{2}+a^{-3} z^{3}+\ldots \\
\\
=x[-1] z+x[-2] z^{2}+x[-3] z^{3}+\ldots
\end{gathered}
$$

Therefore, we have:

$$
x[n]=-a^{n} u[-n-1]
$$

3.5 The z-transform properties

Let

$$
\begin{aligned}
X(z) & =\mathcal{Z}\{x[n]\}, & & \mathrm{ROC}=R_{x} \\
X_{1}(z) & =\mathcal{Z}\left\{x_{1}[n]\right\}, & & \mathrm{ROC}=R_{x_{1}} \\
X_{2}(z) & =\mathcal{Z}\left\{x_{2}[n]\right\}, & & \text { ROC }=R_{x_{2}}
\end{aligned}
$$

(1) Linearity:

$$
\mathcal{Z}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a X_{1}(z)+b X_{2}(z), \quad \mathrm{ROC} \supseteq R_{x_{1}} \cap R_{x_{2}}
$$

proof: assignment (trivial)

NOTE:

The fact that $\mathrm{ROC} \supseteq R_{x_{1}} \cap R_{x_{2}}$ rather than $\mathrm{ROC}=R_{x_{1}} \cap R_{x_{2}}$ is due to the possible cancellation of poles in $X(z)$.

Example 3.12

Consider the finite duration sequence $x[n]$ discussed in the previous example:

$$
\begin{aligned}
x[n] & =a^{n} u[n]-a^{n} u[n-N] \\
& =x_{1}[n]-x_{2}[n]
\end{aligned}
$$

We already know that the ROC's each sequence are as follows;

$$
\begin{cases}R_{x_{1}}: & |z|>|a| \\ R_{x_{2}}: & |z|>|a| \\ R_{x}: & \text { entire z-plane except at } z=0\end{cases}
$$

Figure 3.25: The ROC of a finite duration sequence as $R_{x} \supset R_{x_{1}} \cap R_{x_{2}}$.

Note that $R_{x} \supset R_{x_{1}} \cap R_{x_{2}}$, and this results from the cancellation of the term $1-a z^{-1}$ in the numerator and the denominator of $X(z)$, i.e.

$$
\left\{\begin{array}{l}
X_{1}(z)=\frac{1}{1-a z^{-1}} \\
X_{2}(z)=\sum_{n=N}^{\infty} a^{n} z^{-n}=\sum_{n=N}^{\infty}\left(a z^{-1}\right)^{n}=\frac{\left(a z^{-1}\right)^{N}}{1-a z^{-1}}
\end{array}\right.
$$

Thus;

$$
X(z)=X_{1}(z)-X_{2}(z)=\frac{1-\left(a z^{-1}\right)^{N}}{1-a z^{-1}}=\frac{1-a z^{-1}}{1-a z^{-1}} \cdot q(z)
$$

where the term $1-a z^{-1}$ cancels out which eliminates the pole located at $z=a$, and corresponding ROC extends to the origin.

(2) Time shifting:

$$
\mathcal{Z}\left\{x\left[n-n_{0}\right]\right\}=X(z) z^{-n_{0}}, \quad \mathrm{ROC}=R_{x} \pm\{z=0 \text { or } z=\infty\}
$$

proof: assignment (trivial)

NOTE:
The fact that $\mathrm{ROC}=R_{x} \pm\{z=0$ or $z=\infty\}$ is due to added term $z^{-n_{0}}$ by which $z=0$ and $z=\infty$ arises for $n_{0}<0$ and $n_{0}>0$ respectively.

Example 3.13

Find the inverse z -transform of the following $X(z)$:

$$
X(z)=\frac{z^{-1}}{1-\frac{1}{4} z^{-1}}, \quad|z|>\frac{1}{4} \quad \text { (right sided sequence) }
$$

Solution:

We will use two different appoaches to obtain $x[n]$:
(a) Ordinary way:

By applying the partial fraction expansion, we get ${ }^{15}$

$$
X(z)=-4+\frac{4}{1-\frac{1}{4} z^{-1}}
$$

Therefore, by inspection we obtain:

$$
\begin{aligned}
x[n] & =-4 \delta[n]+4\left(\frac{1}{4}\right)^{n} u[n] \\
& =4\left(\frac{1}{4}\right)^{n} u[n-1] \\
& =\left(\frac{1}{4}\right)^{n-1} u[n-1]
\end{aligned}
$$

(b) Utilizing the time-shift property:

Express $X(z)$ in the following form:

$$
X(z)=z^{-1} \cdot\left(\frac{1}{1-\frac{1}{4} z^{-1}}\right)
$$

Then, $x[n]$ can be obtained as:

$$
\begin{aligned}
x[n] & =\left.\mathcal{Z}^{-1}\left\{\frac{1}{1-\frac{1}{4} z^{-1}}\right\}\right|_{n \rightarrow n-1} \\
& =\left.\left(\frac{1}{4}\right)^{n} u[n]\right|_{n \rightarrow n-1} \\
& =\left(\frac{1}{4}\right)^{n-1} u[n-1]
\end{aligned}
$$

which is the same result as in (a)!!!

[^10]
(3) Multiplication by an exponential sequence:

$$
\mathcal{Z}\left\{x[n] z_{0}^{n}\right\}=X\left(\frac{z}{z_{0}}\right), \quad \mathrm{ROC}=R_{x} \cdot\left|z_{0}\right|
$$

proof: assignment

Remarks:

(1) If $R_{x}=\left\{z\left|r_{R}<|z|<r_{L}\right\}\right.$, then the ROC of $x[n] z_{0}^{n}$ becomes:

$$
\begin{aligned}
\mathrm{ROC} & =\left\{z\left|r_{R}<\left|\frac{z}{z_{0}}\right|<r_{L}\right\}\right. \\
& =\left\{z| | z_{0}\left|r_{R}<|z|<\left|z_{0}\right| r_{L}\right\}\right.
\end{aligned}
$$

(2) Pole-zero locations are also scaled by the factor of z_{0}, i.e. the location z_{1} in $X(z)$ becomes the location $z_{0} z_{1}$ in $X\left(\frac{z}{z_{0}}\right) .{ }^{16}$

Special Cases:

(i) If z_{0} is a positive real number:

Only magnitude changes, which means that pole and/or zero moves in radial direction!
(ii) If z_{0} is complex $w /$ unit magnitude (i.e. $z_{0}=e^{j \omega_{0}}$):

Pole and/or zero rotates by an angle of ω_{0}, which means that frequency shift occurs! ${ }^{17}$
i.e.:

$$
e^{j \omega_{0} n} x[n] \quad \stackrel{\mathcal{Z}}{\longleftrightarrow} X\left(\frac{e^{j \omega}}{e^{j \omega_{0}}}\right)=X\left(e^{j\left(\omega-\omega_{0}\right)}\right)
$$

[^11]
Example 3.14

Recall that the z-transform of the unit step sequence is as follows:

$$
u[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} \frac{1}{1-z^{-1}}, \quad|z|>1
$$

Then, find the z-transform of the exponentially decaying (or growing) sinusoidal sequence given below:

$$
x[n]=r^{n} \cos \left(\omega_{0} n\right) u[n]
$$

Solution:

Express $x[n]$ as:

$$
\begin{aligned}
x[n] & =r^{n} \cos \left(\omega_{0} n\right) u[n] \\
& =\frac{1}{2}\left(r e^{j \omega_{0}}\right)^{n} u[n]+\frac{1}{2}\left(r e^{-j \omega_{0}}\right)^{n} u[n] \\
& \triangleq x_{1}[n]+x_{2}[n]
\end{aligned}
$$

Then, we have:

$$
X_{1}(z)=\frac{1}{2} U\left(\frac{z}{r e^{j \omega_{0}}}\right)=\frac{1}{2} \frac{1}{1-r e^{j \omega_{0}} z^{-1}}
$$

where corresponding ROC of $X_{1}(z)$ becomes: $|z|>1 \cdot\left|r e^{j \omega_{0}}\right|=r$.
And

$$
X_{2}(z)=\frac{1}{2} U\left(\frac{z}{r e^{-j \omega_{0}}}\right)=\frac{1}{2} \frac{1}{1-r e^{-j \omega_{0}} z^{-1}}
$$

where corresponding ROC of $X_{2}(z)$ becomes: $|z|>1 \cdot\left|r e^{-j \omega_{0}}\right|=r$.

Therefore, the z-transform of $x[n]$ is then,

$$
X(z)=X_{1}(z)+X_{2}(z)=\frac{1-r \cos \left(\omega_{0}\right) z^{-1}}{1-2 r \cos \left(\omega_{0}\right) z^{-1}+r^{2} z^{-2}}, \quad \mathrm{ROC}=\{z| | z \mid>r\}
$$

(4) Convolution of sequences:

$$
\mathcal{Z}\left\{x_{1}[n] * x_{2}[n]\right\}=X_{1}(z) \cdot X_{2}(z), \quad \operatorname{ROC} \supseteq R_{x_{1}} \cap R_{x_{2}}
$$

proof: assignment

Remarks:

(1) The fact that $\mathrm{ROC} \supseteq R_{x_{1}} \cap R_{x_{2}}$ rather than $\mathrm{ROC}=R_{x_{1}} \cap R_{x_{2}}$ is again due to the possible cancellation of poles in $X(z)$.
(2) This property is very useful in the analysis of a DLTI system.
(e.g.)

Figure 3.26: A DLTI system.

$$
\begin{aligned}
& y[n]=h[n] * x[n] \\
& Y(z)=H(z) X(z)
\end{aligned}
$$

where

$$
H(z)=\frac{Y(z)}{X(z)} \quad \text { : system function }
$$

Example 3.15

Determine the output sequence of the accumulator when the input signal is an exponentially decaying sequence, i.e.

$$
\begin{gathered}
h[n]=u[n] \\
x[n]=a^{n} u[n], \quad \text { where } 0<a<1
\end{gathered}
$$

Solution:

We can obtain the output $y[n]$ by taking convolution sum $\mathrm{b} / \mathrm{w} h[n]$ and $x[n]$ (assignment), which might be very cumbersome to do!!! Instead, we try to get the output in z-domain:
We already know that

$$
\begin{gathered}
X(z)=\frac{1}{1-a z^{-1}}, \quad|z|>|a| \\
H(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
\end{gathered}
$$

Therefore, from the convolution property of z-transform;

$$
Y(z)=H(z) \cdot X(z)=\frac{1}{1-z^{-1}} \cdot \frac{1}{1-a z^{-1}}=\frac{z^{2}}{(z-a)(z-1)}
$$

where the ROC of $Y(z)$ is

$$
\mathrm{ROC}=R_{y}=\{z| | z \mid>1\}, \text { since }|a|<1
$$

Figure 3.27: The ROC R_{y} of the output signal w/ its pole-zero locations.

Taking the partial fraction expansion of $Y(z)$, we get;

$$
Y(z)=\frac{1}{1-a}\left(\frac{1}{1-z^{-1}}-\frac{a}{1-a z^{-1}}\right), \quad|z|>1
$$

Therefore, by taking the inverse z-transform of $Y(z)$, we obtain

$$
y[n]=\mathcal{Z}^{-1}\{Y(z)\}=\frac{1}{1-a}\left(u[n]-a^{n+1} u[n]\right)=\frac{1}{1-a}\left(1-a^{n+1}\right) u[n]
$$

(5) Initial value theorem:

If $x[n]=0 \quad \forall n<0$, then

$$
x[0]=\lim _{z \rightarrow \infty} X(z)
$$

proof: assignment (problem 3.54 at your testbook)

OTHER PROPERTIES: Self Study
(6) Differentiation of $X(z)$: at p. 122
(7) Conjugate of complex sequence: at p. 123
(8) Time reversal: at p. 123

SUMMARY (Table 3.2): Self Study

3.6 The inverse z-transform using contour integration :Formal expression for inverse z-transform

Cauchy Integral Theorem(Formula): ${ }^{18}$

$$
\frac{1}{2 \pi j} \oint_{C} z^{-k} d z=\left\{\begin{array}{ll}
1, & k=1 \\
0, & k \neq 1
\end{array}\right\}=\delta[k-1]
$$

where C is a CCW (counter clockwise) contour encircling the origin. ${ }^{19}$

Figure 3.28: Cauchy residue theorem: integrating z^{-k} over a CCW contour C in z-plane..

Derivation of inverse z-transform:

¿From the z-transform formula:

$$
X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

Multiplying z^{k-1} to both sides and integrating over a CCW contour encircling the origin within the ROC of $X(z)$, we get:

$$
\begin{aligned}
\frac{1}{2 \pi j} \oint_{C} X(z) z^{k-1} d z & =\frac{1}{2 \pi j} \oint_{C} \sum_{n=-\infty}^{\infty} x[n] z^{-n+k-1} d z \\
& =\sum_{n=-i n f t y}^{\infty} x[n] \frac{1}{2 \pi j} \oint_{C} z^{-n+k-1} d z \\
& =\sum_{n=-i n f t y}^{\infty} x[n] \frac{1}{2 \pi j} \oint_{C} z^{-(n-k+1)} d z \\
& =\sum_{n=-\infty}^{\infty} x[n] \delta[n-k] \quad \text { (by Cauchy integral theorem) } \\
& =x[k]
\end{aligned}
$$

[^12]Therefore, the inverse transform $x[n]$ of $X(z)$ in terms of countour integration can be expressed in the following formula:

$$
\begin{equation*}
x[n]=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z \tag{3.3}
\end{equation*}
$$

where C is a CCW contour encircling the origin within the ROC.

Remarks:

1. If the integration contour C is taken to be the unit circle (i.e. $z=e^{j \omega}$), (3.3) reduces to be the inverse DTFT, i.e.

$$
x[n]=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

Let:
(i) $z=e^{j \omega} \quad \longrightarrow \quad$ contour C in z-plane becomes an interval $\omega=[-\pi, \pi]$.
(ii) $d z=j e^{j \omega} d \omega$

Therefore,

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi j} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n-j \omega} \cdot j e^{j \omega} d \omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
\end{aligned}
$$

: inverse DTFT
2. (3.3) can be evaluated by the Cauchy Residue Theorem, which is:

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z \\
& =\sum\left\{\text { residues of } X(z) z^{n-1} \text { at the poles inside } C\right\}
\end{aligned}
$$

where if the integrand is a rational function of z, i.e.

$$
X(z) z^{n-1}=\frac{\psi(z)}{\left(z-d_{0}\right)^{s}}
$$

then,

$$
\operatorname{Res}\left[X(z) z^{n-1} \text { at } z=d_{0}\right]=\left.\frac{1}{(s-1)!} \frac{d^{s-1} \psi(z)}{d z^{s-1}}\right|_{z=d_{0}}
$$

(cf.) If $s=1$ (single pole), then $\operatorname{Res}\left[X(z) z^{n-1}\right.$ at $\left.z=d_{0}\right]=\psi\left(d_{0}\right)$, assuming $z=d_{0}$ is located inside of C.

3. Proof of Cauchy integral theorem:

Applying the Cauchy residue theorem, we get:

$$
\begin{aligned}
\frac{1}{2 \pi j} \oint_{C} z^{-k} d z & =\left\{\begin{array}{lll}
0, & k \leq 0 & (\because \text { no ploes }) \\
1, & k=1 \\
0, & k>1 & (\because \text { single ploe at } z=0) \\
\left(\because \frac{1}{(k-1)!} \frac{d^{k-1}}{d z^{k-1}}\{(1)\}=0\right)
\end{array}\right. \\
& =\delta[k-1]
\end{aligned}
$$

Example 3.16

Find the inverse z-transform of $X(z)$ given below: ${ }^{20}$

$$
X(z)=\frac{1}{1-a z^{-1}}, \quad \text { ROC: }|z|>|a|
$$

Solution:

Using the formal expression of the inverse z-transform,

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z \\
& =\frac{1}{2 \pi j} \oint_{C} \frac{z^{n-1}}{1-a z^{-1}} d z \\
& =\frac{1}{2 \pi j} \oint_{C} \frac{z^{n}}{z-a} d z
\end{aligned}
$$

where C is taken to be a circle of radius greater than $|a|$ (i.e. a contour within $R O C$ encircling the origin).

[^13]Figure 3.29: The integration contour C in z-plane.
(1) $n \geq 0$: (a single pole at $z=a$: inside of C)

$$
\begin{aligned}
x[n] & =\sum\left[\text { residues of } X(z) z^{n-1} \text { at the poles inside } C\right] \\
& =\left.z^{n}\right|_{z=a} \\
& =a^{n}
\end{aligned}
$$

(2) $n<0$: (multiple poles at $z=0 \&$ a single pole at $z=a$: inside of C)

$$
x[n]=\sum\left[\text { residues of } X(z) z^{n-1} \text { at the poles inside } C\right]
$$

(i) $n=-1$:

$$
\begin{aligned}
x[-1] & =\sum\left[\text { residues of } X(z) z^{-2} \text { at the poles inside } C\right] \\
& =\sum\left[\text { residues of } \frac{1}{z(z-a)} \text { at } z=0 \& z=a\right] \\
& =-\frac{1}{a}+\frac{1}{a} \\
& =0
\end{aligned}
$$

(ii) $n=-2$:

$$
\begin{aligned}
x[-2] & =\sum\left[\text { residues of } X(z) z^{-3} \text { at the poles inside } C\right] \\
& =\sum\left[\text { residues of } \frac{1}{z^{2}(z-a)} \text { at } z=0 \& z=a\right] \\
& =\left.\frac{1}{1!} \frac{d}{d z}\left(\frac{1}{z-a}\right)\right|_{z=0}+\left.\frac{1}{z^{2}}\right|_{z=a} \\
& =\left.\frac{-1}{(z-a)^{2}}\right|_{z=0}+\frac{1}{a^{2}} \\
& =-\frac{1}{a^{2}}+\frac{1}{a^{2}} \\
& =0
\end{aligned}
$$

(tedius to carry out!!!)

Likewise, we get $x[n]=0 \forall n<0$, and therefore:

$$
x[n]=a^{n} u[n]
$$

(cf.) For the case of $n<0$, let $m=-n$, thus making $m>0$, then: ${ }^{21}$

$$
\begin{aligned}
x[n]=x[-m] & =\frac{1}{2 \pi j} \oint_{C} \frac{1}{(z-a) z^{m}} d z \\
& =\sum\left[\text { residues of } \frac{1}{(z-a) z^{m}} \text { at } z=a \& z=0\right] \\
& =\left.\frac{1}{z^{m}}\right|_{z=a}+\left.\frac{1}{(m-1)!} \frac{d^{m-1}}{d z^{m-1}}\left\{\frac{1}{z-a}\right\}\right|_{z=0} \\
& =\frac{1}{a^{m}}+\left.\frac{1}{(m-1)!} \frac{(-1)^{m-1}(m-1)!}{(z-a)^{m}}\right|_{z=0} \\
& =\frac{1}{a^{m}}+\frac{1}{(m-1)!} \frac{(-1)^{m-1}(m-1)!}{(-1)^{m} a^{m}} \\
& =\frac{1}{a^{m}}-\frac{1}{a^{m}} \\
& =0
\end{aligned}
$$

[^14]
Remark:

The inverse z-transform formula (3.3) is very cumbersome to carry out for the case when $n<0$, since we get multiple poles at $z=0$ due to the factor z^{n-1} in the integrand(see below).

$$
x[n]=\frac{1}{2 \pi j} \oint_{C} X(z) z^{n-1} d z
$$

This can be avoided by the change of variable technique, i.e. by letting:

$$
z=p^{-1}
$$

we get an equivalent formula of: ${ }^{22}$

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi j} \oint_{C^{\prime \prime}} X\left(\frac{1}{p}\right) p^{-n-1} d p \\
& =\sum \operatorname{Res}\left[X\left(\frac{1}{p}\right) p^{-n-1} \text { at poles inside of } C^{\prime \prime}\right]
\end{aligned}
$$

where $C^{\prime \prime}$ is a CCW circle of radius less tha $\frac{1}{r}$, if C was a CCW circle of radius greater than r.

Note:
(1) The integration contour is now CCW by exchanging the sign of the integration and the direction of the contour!!! (i.e. $-p^{-1} d p \rightarrow p^{-2} d p$ makes the CW contour C^{\prime} a CCW contour $C^{\prime \prime}$)
(2) The above formula for inverse z -transform, on the contrary, will cause multiple poles at $p=0$ when $n \geq 0$.
proof: done (refer the footnote below.)

[^15]
Example 3.17

Redo the previous example for the case of $n<0$.

Solution:

Figure 3.30: The CCW integration contour C^{\prime} on the p plane.

$$
\begin{aligned}
x[n] & =\frac{1}{2 \pi j} \oint_{C^{\prime}} \frac{p^{-n-1}}{1-a p} d p \quad\left(C^{\prime}: \text { radius of less than } \frac{1}{a}\right) \\
& =\sum \operatorname{Res}\left[\frac{p^{-n-1}}{1-a p} \text { at poles inside of } C^{\prime}\right] \quad(\mathrm{NONE}) \\
& =0
\end{aligned}
$$

3.7 The complex convolution theorem

: Relative to (or generalization of) the periodic convolution property of DTFT
(cf.) Periodic convolution property of DTFT(Recall from S\&S class)
:Windowing theorem or modulation property
Let $w[n]=x_{1}[n] \cdot x_{2}[n]$, then

$$
\begin{aligned}
\mathrm{F}\{w[n]\}=W\left(e^{j \omega}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} X_{1}\left(e^{j \Omega}\right) X_{2}\left(e^{j(\omega-\Omega)}\right) d \Omega \\
& \triangleq \frac{1}{2 \pi} X_{1}\left(e^{j \omega}\right) \otimes X_{2}\left(e^{j \omega}\right)
\end{aligned}
$$

Theorem 3.1 Let $w[n]=x_{1}[n] \cdot x_{2}[n]$, then the z-transform $W(z)$ of $w[n]$ is in the following form:

$$
W(z)=\frac{1}{2 \pi j} \oint_{C_{2}} X_{1}\left(\frac{z}{v}\right) X_{2}(v) v^{-1} d v
$$

where C_{2} is a CCW contour within the overlap of ROC $R_{x_{2}}$ of $X_{2}(v)$ and ROC of $X_{1}\left(\frac{z}{v}\right)$.

OR,

$$
W(z)=\frac{1}{2 \pi j} \oint_{C_{1}} X_{1}(v) X_{2}\left(\frac{z}{v}\right) v^{-1} d v
$$

where C_{1} is a CCW contour within the overlap of ROC $R_{x_{1}}$ of $X_{1}(v)$ and ROC of $X_{2}\left(\frac{z}{v}\right)$.

Derivation:

Since

$$
w[n]=x_{1}[n] \cdot x_{2}[n]
$$

we have:

$$
\begin{equation*}
W(z) \triangleq \sum_{n=-\infty}^{\infty} w[n] z^{-n}=\sum_{n=-\infty}^{\infty} x_{1}[n] x_{2}[n] z^{-n} \tag{3.4}
\end{equation*}
$$

Here,

$$
\begin{equation*}
x_{2}[n]=\frac{1}{2 \pi j} \oint_{C_{2}} X_{2}(v) v^{n-1} d v \tag{3.5}
\end{equation*}
$$

where C_{2} is a CCW contour within $R_{x_{2}}$.

Inserting (3.5) into (3.4), we get:

$$
\begin{align*}
W(z) & =\frac{1}{2 \pi j} \sum_{n=-\infty}^{\infty} x_{1}[n] \oint_{C_{2}} X_{2}(v)\left(\frac{z}{v}\right)^{-n} v^{-1} d v \\
& =\frac{1}{2 \pi j} \oint_{C_{2}}\left\{\sum_{n=-\infty}^{\infty} x_{1}[n]\left(\frac{z}{v}\right)^{-n}\right\} X_{2}(v) v^{-1} d v \\
& =\frac{1}{2 \pi j} \oint_{C_{2}} X_{1}\left(\frac{z}{v}\right) X_{2}(v) v^{-1} d v \tag{3.6}
\end{align*}
$$

where C_{2} should bow be a CCW contour within the overalp of ROC of $X_{1}\left(\frac{z}{v}\right)$ and ROC of $X_{2}(v)$.

Remark:

1. $\operatorname{ROC} R_{w}$ of $W(z)$:

Let

$$
\begin{array}{ll}
R_{x_{1}}: & r_{R_{1}}<|z|<r_{L_{1}} \\
R_{x_{2}}: & r_{R_{2}}<|z|<r_{L_{2}}
\end{array}
$$

Then, from (3.6), the contour C_{2} is within regions of:

$$
\begin{array}{ll}
\text { (i) } X_{2}(v): & r_{R_{2}}<|v|<r_{L_{2}} \\
\text { (ii) } X_{1}\left(\frac{z}{v}\right): & r_{R_{1}}<\left|\frac{z}{v}\right|<r_{L_{1}}
\end{array}
$$

From (ii), we have $r_{R_{1}}|v|<|z|<r_{L_{1}}|v|$, and combining (i) and (ii) we get the ROC R_{w} of $W(z)$ as:

$$
r_{R_{1}} r_{R_{2}}<|z|<r_{L_{1}} r_{L_{2}}
$$

\Rightarrow We denote it as $R_{w}=R_{x_{1}} \cdot R_{x_{2}}$, but notice that R_{w} may actually be larger than $R_{x_{1}} \cap R_{x_{2}}$, depending on possible cancellation of poles.

2. Periodic convolution of DTFT:

In (3.6), let C_{2} (and/or C_{1}) be the unit circle(s), which means the change of variable as $v=e^{j \Omega}$, then:
(i) $C_{2} \quad \longrightarrow \quad-\pi \leq \Omega \leq \pi$
(ii) $d v=j e^{j \Omega} d \Omega$

Also, let $z=e^{j \omega}$, then (3.6) becomes the DTFT $W\left(e^{j \omega}\right)$ of $w[n]$:

$$
\begin{aligned}
W\left(e^{j \omega}\right) & =\frac{1}{2 \pi j} \int_{-\pi}^{\pi} X_{1}\left(e^{j(\omega-\Omega)}\right) X_{2}\left(e^{j \Omega}\right) e^{-j \Omega} \cdot j e^{j \Omega} d \Omega \\
& =\frac{1}{2 \pi j} \int_{-\pi}^{\pi} X_{1}\left(e^{j(\omega-\Omega)}\right) X_{2}\left(e^{j \Omega}\right) d \Omega \\
& =\frac{1}{2 \pi} X_{1}\left(e^{j \omega}\right) \otimes X_{2}\left(e^{j \omega}\right)
\end{aligned}
$$

as we expected!!!

Example 3.18

Let $w[n]=x_{1}[n] x_{2}[n]$ where $x_{1}[n]=a^{n} u[n]$ and $x_{2}[n]=b^{n} u[n]$.
Determine the z-transform $W(z)$ of $w[n]$.

Solution:

We already have the following z-transform pairs:

$$
\begin{array}{lll}
x_{1}[n]=a^{n} u[n] & \longleftrightarrow & X_{1}(z)=\frac{1}{1-a z^{-1}}, \quad|z|>|a| \\
x_{2}[n]=b^{n} u[n] & \longleftrightarrow & X_{2}(z)=\frac{1}{1-b z^{-1}}, \quad|z|>|b|
\end{array}
$$

From (3.6), the z-transform of $w[n]$ is then:

$$
\begin{aligned}
W(z) & =\frac{1}{2 \pi j} \oint_{C_{2}} \frac{1}{1-a\left(\frac{z}{v}\right)^{-1}} \cdot \frac{1}{1-b z^{-1}} v^{-1} d v \\
& =\frac{1}{2 \pi j} \oint_{C_{2}} \frac{-\frac{z}{a}}{\left(v-\frac{z}{a}\right)} \cdot \frac{1}{v-b} d v
\end{aligned}
$$

Notice that:

$$
\begin{cases}\text { pole } \# 1: & v=b \\ \text { pole } \# 2: & v=\frac{z}{a}\end{cases}
$$

and, since C_{2} MUST be within overlap region of the ROC's of $X_{2}(v)$ and $X_{1}\left(\frac{z}{v}\right)$, each ROC should be as follows;

$$
\left\{\begin{array}{l}
\operatorname{ROC} \text { of } X_{2}(v):|v|>|b| \\
\operatorname{ROC} \text { of } X_{1}\left(\frac{z}{v}\right):\left|\frac{z}{v}\right|>|a| \longrightarrow|v|<\frac{|z|}{|a|}
\end{array}\right.
$$

Note that pole at $v=b$ is inside of C_{2} whereas pole at $v=\frac{z}{a}$ is outside of C_{2}. Therefore, by the Cauchy's residue theorem, we get:

$$
\begin{aligned}
W(z) & =\operatorname{Res}\left[\frac{-\frac{z}{a}}{v-\frac{z}{a}} \cdot \frac{1}{v-b} \text { at pole } v=b\right] \\
& =\frac{-\frac{z}{a}}{b-\frac{z}{a}} \\
& =\frac{1}{1-a b z^{-1}}, \quad|z|>|a b|
\end{aligned}
$$

(cf.) The ROC R_{w} of $W(z)$:
Note from the ROC's of $X_{2}(v)$ and $X_{1}\left(\frac{z}{v}\right)$, we have:

$$
\begin{aligned}
&|b|<|v|<\frac{|z|}{|a|} \\
& \rightarrow \quad|z|>|v| \cdot|a| \text { and }|v|>|b| \\
& \rightarrow \quad|z|>|a| \cdot|b|
\end{aligned}
$$

Figure 3.31: ROC of $X_{2}(v)$ and $X_{1}\left(\frac{z}{v}\right)$ in v-plane.

Note:

Since $w[n]$ can be put into the following form:

$$
x_{1}[n] x_{2}[n]=a^{n} b^{n} u[n]=(a b)^{n} u[n]
$$

we can directly derive the z -transform by a simple inspection as:

$$
W(z)=\frac{1}{1-a b z^{-1}}, \quad \operatorname{ROC}:|z|>|a b|
$$

3.8 The Parseval's theorem

Theorem 3.2

$$
\sum_{n=-\infty}^{\infty} x_{1}[n] x_{2}^{*}[n]=\frac{1}{2 \pi j} \oint_{C} X_{1}(v) X_{2}^{*}\left(\frac{1}{v^{*}}\right) v^{-1} d v
$$

where C is a CCW contour within overlap of ROC of $X_{1}(v)$ and ROC of $X_{2}^{*}\left(\frac{1}{v^{*}}\right)$.

Derivation:

Let $y[n]=x_{1}[n] x_{2}^{*}[n]$, then from the complex convolution theorem, we have: ${ }^{23}$

$$
\begin{aligned}
Y(z) & =\sum_{n=-\infty}^{\infty} x_{1}[n] x_{2}^{*}[n] z^{-n} \\
& =\frac{1}{2 \pi j} \oint_{C} X_{1}(v) X_{2}^{*}\left(\frac{z^{*}}{v^{*}}\right) v^{-1} d v
\end{aligned}
$$

Put $z=1$ in both sides ${ }^{24}$, then

$$
\left.Y(z)\right|_{z=1}=\sum_{n=-\infty}^{\infty} x_{1}[n] x_{2}^{*}[n]=\frac{1}{2 \pi j} \oint_{C} X_{1}(v) X_{2}^{*}\left(\frac{1}{v^{*}}\right) v^{-1} d v
$$

q.e.d.

[^16]
Remarks

(1) If $x_{1}[n]=x_{2}[n]=x[n]$ are real sequences, then the Parseval's theorem becomes:

$$
\sum_{n=-\infty}^{\infty} x^{2}[n]=\frac{1}{2 \pi j} \oint_{C} X(v) X\left(v^{-1}\right) v^{-1} d v
$$

and it represents the energy in $x[n]$:
(i) LHS $=$ energy of $x[n]$ in time domain
(ii) $\mathrm{RHS}=$ energy of $x[n]$ in z (or frequency) domain
(2) DTFT equivalent form:

Let $v=e^{j \omega}$, then the Parseval's theorem states:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} x_{1}[n] x_{2}^{*}[n] & =\frac{1}{2 \pi j} \int_{-\pi}^{\pi} X_{1}\left(e^{j \omega}\right) X_{2}^{*}\left(\left(e^{-j \omega}\right)^{*}\right) e^{-j \omega} j e^{j \omega} d \omega \\
& =\frac{1}{2 \pi j} \int_{-\pi}^{\pi} X_{1}\left(e^{j \omega}\right) X_{2}^{*}\left(e^{j \omega}\right) d \omega
\end{aligned}
$$

Example 3.19

Suppose $x[n]$ is a right-sided real sequence with its z-transform given below:

$$
X(z)=\frac{1}{1-a z^{-1}} \cdot \frac{1}{1-b z^{-1}}
$$

where $0<a<b<1$.
Then, determine the energy contained in $x[n]$.

Solution:

From the Parseval's theorem, we have:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} y[n] & \equiv \sum_{n=-\infty}^{\infty} x^{2}[n] \\
& =\frac{1}{2 \pi j} \oint_{C} X(v) X\left(v^{-1}\right) v^{-1} d v \\
& =\frac{1}{2 \pi j} \oint_{C} \frac{1}{\left(1-a v^{-1}\right)\left(1-b v^{-1}\right)} \cdot \frac{1}{(1-a v)(1-b v)} \cdot \frac{1}{v} d v \\
& =\frac{1}{2 \pi j} \oint_{C} \frac{v^{2}}{(v-a)(v-b)} \cdot \frac{1}{(1-a v)(1-b v)} \cdot \frac{1}{v} d v \\
& =\frac{1}{2 \pi j} \oint_{C} \frac{v}{(v-a)(v-b)} \cdot \frac{1}{(1-a v)(1-b v)} d v
\end{aligned}
$$

where C is taken to be the unit circle, since the unit circle must be within $R_{y}($ refer the footnote \#24).
(cf.)
(i) ROC of $X(v)$:

Figure 3.32: ROC of $X(v)$.
(ii) ROC of $X\left(\frac{1}{v}\right)$:

Figure 3.33: ROC of $X\left(\frac{1}{v}\right)$.
(iii) The integration contour C in v-plane with ROC R_{y} :

Figure 3.34: The CCW integration contour C in v-plane with ROC R_{y}.

Therefore, the energy in $x[n]$ is:

$$
\begin{aligned}
\sum_{n=-\infty}^{\infty} x^{2}[n] & =\sum \operatorname{Res}\left\{\frac{v}{(v-a)(v-b)(1-a v)(1-b v)} \text { at poles inside of } C\right\} \\
& =\sum \operatorname{Res}\left\{\frac{v}{(v-a)(v-b)(1-a v)(1-b v)} \text { at } v=a \text { and } v=b\right\} \\
& =\frac{a}{(a-b)\left(1-a^{2}\right)(1-a b)}+\frac{b}{(b-a)(1-a b)\left(1-b^{2}\right)} \\
& =\frac{a\left(1-b^{2}\right)-b\left(1-a^{2}\right)}{(a-b)\left(1-a^{2}\right)\left(1-b^{2}\right)(1-a b)} \quad \text { (joules) }
\end{aligned}
$$

(cf.) Notice that poles at $v=\frac{1}{a}$ and $v=\frac{1}{b}$ are outside of the unit circle C.

Remark:

Evaluating the energy of $x[n]$ in time domain would be very difficult, if not impossible, i.e.:

$$
X(z) \xrightarrow{Z^{-1}} x[n] \longrightarrow \sum_{n=-\infty}^{\infty} x^{2}[n]
$$

Assignment: Try the procedure described above.

3.9 The unilateral z-transform

Definition 3.2 The unilateral z-transform of a sequence $x[n]$ is defined as:

$$
\mathcal{X}(z) \triangleq \sum_{\mathbf{n}=\mathbf{0}}^{\infty} x[n] z^{-n}
$$

Remark:

(1) So far, we considered the so called "bi-lateral" z-transform:

$$
X(z) \triangleq \sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

(2) If $x[n]=0$ for all $n<0$, then $X(z)=\mathcal{X}(z)$.
(3) All of the $R O C$ properties of $\mathcal{X}(z)$ are the same as those of $X(z)$.
(4) Some of the properties of $\mathcal{X}(z)$ are the same, but some are different from those of $X(z)$.

Example 3.20

Let $x[n]=\delta[n]$, then:
(i) $X(z)=\sum_{n=-\infty}^{\infty} \delta[n] z^{-n}=\delta[0] z^{0}=1$
(ii) $\mathcal{X}(z)=\sum_{n=0}^{\infty} \delta[n] z^{-n}=\delta[0] z^{0}=1$

$$
\Longrightarrow X(z)=\mathcal{X}(z)
$$

Example 3.21

Let $x[n]=\delta[n+1]$, then:
(i) $X(z)=\sum_{n=-\infty}^{\infty} \delta[n+1] z^{-n}=\delta[0] z^{1}=z$
(ii) $\mathcal{X}(z)=\sum_{n=0}^{\infty} \delta[n+1] z^{-n}=0$

$$
\Longrightarrow X(z) \neq \mathcal{X}(z)
$$

Remark:

The principal use of $\mathcal{X}(z)$ is iin analyzing DLTI systems described by a linear constant coefficient difference equation with non-initial (i.e. $n \neq 0$) rest conditions.

Let $y[n]=x[n-m]$ where $m>0$, then:

$$
\begin{aligned}
\mathcal{Y}(z)= & \sum_{n=0}^{\infty} x[n-m] z^{-n} \\
= & \underbrace{x[-m] z^{0}}_{n=0}+\underbrace{x[1-m] z^{1}}_{n=1}+\cdots+\underbrace{x[-1] z^{-m+1}}_{n=m-1}+\underbrace{x[0] z^{-m}}_{n=m}+\underbrace{x[1] z^{-m-1}}_{n=m+1}+\cdots \\
= & \sum_{k=1}^{m} x[k-1-m] z^{-k+1}+\sum_{n=0}^{\infty} x[k-m] z^{-k} \\
& (\text { let } k-m=n, \text { then } k=m+n) \\
= & \sum_{n=1-m}^{0} x[n-1] z^{-n-m+1}+\sum_{n=0}^{\infty} x[n] z^{-n} z^{-m} \\
= & \sum_{n=1-m}^{0} x[n-1] z^{-n-m+1}+\mathcal{X}(z) z^{-m} \\
& (\text { let } n-1 \rightarrow n) \\
= & \sum_{n=-m}^{-1} x[n] z^{-n-m}+\mathcal{X}(z) z^{-m}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{Y}(z)= & \sum_{n=0}^{\infty} x[n-m] z^{-n} \\
& (\operatorname{let} n-m=k) \\
= & \sum_{k=-m}^{\infty} x[k] z^{-k-m} \\
= & \sum_{k=-m}^{-1} x[k] z^{-k-m}+\left(\sum_{k=0}^{\infty} x[k] z^{-k}\right) z^{-m} \\
& (\operatorname{let} k \rightarrow n) \\
= & \sum_{n=-m}^{-1} x[n] z^{-n-m}+\mathcal{X}(z) z^{-m}
\end{aligned}
$$

Note:

Notice that the time shift property of $\mathcal{X}(z)$ is different from that of $X(z)!!!$

Example 3.22

Given a DLTI system with the i/o relation of:

$$
\begin{equation*}
y[n]-\frac{1}{2} y[n-1]=x[n] \tag{3.7}
\end{equation*}
$$

where $x[n]=u[n]$ and with a non-initial rest condition of $y[-1]=1$.
Find the output $y[n]$ of the system.

Solution:

We know that:

$$
X(z)=\mathcal{X}(z)=\frac{1}{1-z^{-1}}, \quad|z|>1
$$

Taking the unilateral z-transform of (3.7), we get:

$$
\mathcal{Y}(z)-\frac{1}{2}\left\{y[-1]+\mathcal{Y}(z) z^{-1}\right\}=\frac{1}{1-z^{-1}}=\mathcal{X}(z)
$$

Solving for $\mathcal{Y}(z)$,

$$
\begin{aligned}
\mathcal{Y}(z) & =\frac{1}{1-\frac{1}{2} z^{-1}}\left\{\frac{1}{2} y[-1]+\frac{1}{1-z^{-1}}\right\} \\
& =\frac{\frac{1}{2}}{1-\frac{1}{2} z^{-1}}+\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)} \\
& =\frac{1}{2} \frac{1}{1-\frac{1}{2} z^{-1}}-\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{2}{1-z^{-1}} \quad \text { (by partial fraction) } \\
& =\frac{2}{1-z^{-1}}-\frac{1}{2} \frac{1}{1-\frac{1}{2} z^{-1}} \\
\Rightarrow y[n] & =2 u[n]-\frac{1}{2}\left(\frac{1}{2}\right)^{n} u[n] \quad \text { (by inverse unilateral z-transform) } \\
& =\left\{1-\left(\frac{1}{2}\right)^{n+1}\right\} u[n]
\end{aligned}
$$

(cf.)
(i) $y[-1]=1$.
(ii) If there is no non-initial condition (i.e. if $y[n]=0, \forall n<0$), then:

$$
\begin{aligned}
& Y(z)-\frac{1}{2} Y(z) z^{-1}=X(z) \\
\rightarrow & \left(1-\frac{1}{2} z^{-1}\right) Y(z)=X(z) \\
\rightarrow & Y(z)=\frac{1}{1-\frac{1}{2} z^{-1}} \cdot \frac{1}{1-z^{-1}}=\frac{-1}{1-\frac{1}{2} z^{-1}}+\frac{2}{1-z^{-1}} \\
\rightarrow & y[n]=\left\{-\left(\frac{1}{2}\right)^{n}+2\right\} u[n]
\end{aligned}
$$

[^0]: ${ }^{1} \operatorname{Re}[z]=r \cos (\omega)$, and $\operatorname{Im}[z]=r \sin (\omega)$.

[^1]: ${ }^{2}$ For example, in an LTI system where i/o is related in a linear constant coefficient difference equation, $H(z)=\mathcal{Z}\{h[n]\}$ is in the following form:

 $$
 H(z)=\frac{Y(z)}{X(z)}
 $$

 ${ }^{3}$ Notice that $\exists x[n]$ only for $n \geq 0$, thus a right sided sequence.

[^2]: ${ }^{4}$ Notice that $\exists x[n]$ only for $n<0$, thus a left sided sequence.

[^3]: ${ }^{5}$ Notice that $\exists x[n]$ only for $n \geq 0$, thus a right sided sequence.

[^4]: ${ }^{6}$ Notice that $\exists x[n]$ for entire n, i.e. $-\infty<n<\infty$, thus a two sided sequence.

[^5]: ${ }^{7}$ Note that the term $(z-a)$ cencels out in the numerator and the denominator of $X(z)$.

[^6]: ${ }^{8}$ This is so because if ROC contains a pole, $|X(z)| \rightarrow \infty$.

[^7]: ${ }^{9}$ Note that the z-transform of an unit sample sequence is: $\mathcal{Z}\{\delta[n]\} \quad \sum_{n=-\infty}^{\infty} \delta[n] z^{-n}=1$, and thus $\mathcal{Z}\left\{\delta\left[n-n_{0}\right]\right\} \sum_{n=-\infty}^{\infty} \delta\left[n-n_{0}\right] z^{-n}=z^{-n_{0}}$.
 ${ }^{10}$ This is easily done by inspection!

[^8]: ${ }^{11}$ The first term is only when $M>N$, and the second term represents the single poles, while the last term represents the multiple poles in $X(z)$.
 ${ }^{12}$ Note that if $s=1$, then $C_{m}=A_{m}$.

[^9]: ${ }^{13}$ Logarithmic series: $\log (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}$, where $|x|<1$.
 ${ }^{14}$ We know the answer as: $x[n]=a^{n} u[n]$ if $|z|^{n}>|a|$, and $x[n]=-a^{n} u[-n-1]$ if $|z|<|a|$.

[^10]: ${ }^{15}$ By partial fraction expansion, $X(z)=-4+\frac{A_{1}}{1-\frac{1}{4} z^{-1}}$, where $A_{1}=\left.z^{-1}\right|_{z=\frac{1}{4}}=4$.

[^11]: ${ }^{16}$ The term $\left(z-z_{1}\right)$ in $X(z)$, whose root is $z=z_{1}$, is being transformed into a term $\left(\frac{z}{z_{0}}-z_{1}\right)$ in $X\left(\frac{z}{z_{0}}\right)$ where corresponding root then becomes $\frac{z}{z_{0}}=z_{1}$; that is $z=z_{0} z_{1}$.
 ${ }^{17}$ Recall the frequency shift property of the DTFT, that is $e^{j \omega_{0} n} x[n] \stackrel{F}{\longleftrightarrow} X\left(e^{j\left(\omega-\omega_{0}\right)}\right)$ if there \exists $X\left(e^{j \omega}\right)$.

[^12]: ${ }^{18}$ Line integral or contour integral
 ${ }^{19}$ This will be officially proved using the Residue theorem at later section.

[^13]: ${ }^{20}$ We already know from previous examples that $\mathcal{Z}^{-1}\{X(z)\}=x[n]=a^{n} u[n]$.

[^14]: ${ }^{21}$ Let $f(z)=\frac{1}{z-a}$, then $f^{(n)}(z)=\frac{(-1)^{n} n!}{(z-a)^{n+1}}$.

[^15]: ${ }^{22}$ Note that from $z=p^{-1}$ we have: $d z=-p^{-2} d p, z^{n-1}=p^{-n+1}$, and the CCW contour C on z becomes a CW(clockwise) contour C^{\prime} on p.

[^16]: ${ }^{23}$ Note that $x *[n] \leftrightarrow X^{*}\left(z^{*}\right)$; refer to Table 3.2 at p. 126 of the textbook.
 ${ }^{24}$ Since (i) $z=1$ must be inside of R_{y}, and (ii) ROC is composed of circles \Rightarrow ROC R_{y} must include the unit circle for the Parseval's theroem to be valid, i.e. Parseval;s theorem can only be applied to absolutely summable sequences whose DTFT exists.

