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Chapter 3

The Z Transform

3.1 Introduction

Z-transform : Generalization of DTFT

Remarks:

1. Certain conditions are needed for DTFT to be defined for discrete signals (e.g.
absolute summability of x[n]).

⇒ Needs a general transformation for broader class of discrete signals.

2. Laplace transform is a generalization of Fourier transform for continuous signals.

(cf.)

(1) Laplace vs. Fourier transform

(a) X(ω) = F {x(t)} =
∫∞
−∞ x(t)e−jωtdt

(b) X(s) = L{x(t)} =
∫∞
−∞ x(t)e−stdt where s = σ + jω.

Therefore,

X(ω) = X(s)|s=jω

i.e., X(ω) corresponds to the X(s) where σ = 0, which means the sliced version
of the Laplace transform along the axis of σ = 0.
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(2) Z transform vs. DTFT

(a) X(Ejω) = F {x[n]} =
∑∞

n=−∞ x[n]e−jωn

(b) X(z) = Z {x[n]} =
∑∞

n=−∞ x[n]z−n where z = rejω.

Therefore,

X(ejω) = X(z)|z=ejω

i.e., X(ejω) corresponds to the X(z) where r = 1, which means the Z transform
along the unit circle on the complex plane of z.

Figure 3.1: Laplace vs. Fourier transform and Z transform vs. DTFT.
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3.2 Z transform

Definition 3.1 The z transform X(z) of a discrete-time signal x[n] is defined as
follows:

Z {x[n]} ∆
=

∞∑

n=−∞
x[n]z−n d

= X(z) : Bilateral z-transform(two sided)

where z is a complex variable, 1 i.e.

z = Re[z] + jIm[z]

= r · ejω

REMARKS:

X(z) = X(rejω) =
∞∑

n=−∞
x[n]

(
rejω

)−n

=
∞∑

n=−∞

(
x[n]r−n

)
e−jωn

= F
{
x[n]r−n

}

(1) r = 1 −→ X(z) = F {x[n]}

Figure 3.2: A unit circle on z plane.

(2) (a) z = 1 → j → −1 → −j → 1

(b) ω = 0 → π
2
→ π → 3π

2
→ 2π

: implies the periodicity of DTFT w/ period 2π.

1Re[z] = r cos(ω), and Im[z] = r sin(ω).
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(3) Region of concergence(ROC):

X(z) =
∞∑

n=−∞

(
x[n]r−n

)
e−jωn = F

{
x[n]r−n

}

⇒ For the existence of X(z), we need a condition(i.e. absolute summability of
sequence x[n]r−n) as:

∞∑

n=−∞

∣∣∣x[n]r−n
∣∣∣ < ∞

OR
∞∑

n=−∞
|x[n]||z|−n < ∞ ... |z| = r

Therefore, we have

ROC of X(z) = {z|X(z) exists or converges}
= {z|

∞∑

n=−∞
|x[n]||z|−n < ∞}

: composed of circles in terms of |z|

⇒ ROC of X(z) only depends on |z|.
⇒ ROC is compose of circles.

⇒ If the unit circle is within the ROC, then DTFT exists.

Figure 3.3: A typical ROC on the z plane.
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(4) Most important and useful form of z transform: 2

X(z) =
P (z)

Q(z)
, where P (z), Q(z) are polynomials of z

(a) {z|P (z) = 0} : zeros of X(z) : denoted O in z plane.

(b) {z|Q(z) = 0} : poles of X(z) : denoted X in z plane.

Example 3.1

Determine the z transform of an exponential sequence given below: 3

x[n] = anu[n]

Figure 3.4: A right sided exponential sequence x[n] for 0 < a < 1.

Solution:

X(z) =
∞∑

n=−∞
x[n]z−n =

∞∑

n=0

anz−n =
∞∑

n=0

(
az−1

)n

(a)

ROC: |az−1| < 1 ⇒ |z| > |a|
(b)

X(z) =
1

1− az−1
=

z

z − a

2For example, in an LTI system where i/o is related in a linear constant coefficient difference
equation, H(z) = Z{h[n]} is in the following form:

H(z) =
Y (z)
X(z)

.
3Notice that ∃ x[n] only for n ≥ 0, thus a right sided sequence.
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Figure 3.5: The ROC of the z transform for a right sided exponential sequence.

Note:

(a) If |a| < 1 −→ X(ejω) exists. (Recall !!!)

(b) If |a| = 1
e.g. a=1−→ x[n] = u[n], then

X(z) =
1

1− z−1
, |z| > 1

(c) poles: z = a (represented by X)

zeros: z = 0 (represented by O)

Example 3.2

Determine the z transform of an exponential sequence given below: 4

x[n] = −anu[−n− 1]

Figure 3.6: A left sided exponential sequence x[n] for a > 1.

4Notice that ∃ x[n] only for n < 0, thus a left sided sequence.
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Solution:

X(z) =
∞∑

n=−∞
x[n]z−n = −

−1∑

n=−∞
anz−n = −

∞∑

n=1

(
a−1z

)n

(a)

ROC: |a−1z| < 1 ⇒ |z| < |a|

(b)

X(z) =
−a−1z

1− a−1z
=

z

z − a

Figure 3.7: The ROC of the z transform for a left sided exponential sequence.

Note:

(a) If |a| > 1 −→ X(ejω) exists!

(b) Notice that the z transform X(z) is the same as in the previous example,
while the ROC is different.

=⇒ This indicates the necessity of ROC for representing the z trans-
form.

(c) poles: z = a (represented by X)

zeros: z = 0 (represented by O)
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Example 3.3

Determine the z transform of another exponential sequence given below: 5

x[n] =
(

1

2

)n

u[n] +
(
−1

3

)n

u[n]
∆
= x1[n] + x2[n]

Solution:

X(z) =
∞∑

n=−∞
x[n]z−n =

∞∑

n=−∞
x1[n]z−n +

∞∑

n=−∞
x2[n]z−n ∆

= X1(z) + X2(z)

(a) X1(z) =
∞∑

n=0

(
1

2

)n

z−n =
∞∑

n=0

(
1

2
z−1

)n

=
1

1− 1
2
z−1

,

∣∣∣∣
1

2
z−1

∣∣∣∣ < 1 (|z| > 1

2
)

(b) X2(z) =
∞∑

n=0

(
−1

3

)n

z−n =
∞∑

n=0

(
−1

3
z−1

)n

=
1

1 + 1
3
z−1

,

∣∣∣∣
1

3
z−1

∣∣∣∣ < 1 (|z| > 1

3
)

Therefore, the z-transform X(z) of x[n] is as follows:

X(z) = X1(z) + X2(z) =
1

1− 1
2
z−1

+
1

1 + 1
3
z−1

=
2z(z − 1

12
)

(z − 1
2
)(z + 1

3
)

where

ROC =
{
z|

(
|z| > 1

2

)
∩

(
|z| > 1

3

)}
=

{
z||z| > 1

2

}

Figure 3.8: The ROC of the z transform for x[n].

5Notice that ∃ x[n] only for n ≥ 0, thus a right sided sequence.

52



Example 3.4

Determine the z transform of the exponential sequence given below: 6

x[n] =
(
−1

3

)n

u[n]−
(

1

2

)n

u[−n− 1]
∆
= x1[n] + x2[n]

Solution:

(a) X1(z) =
1

1 + 1
3
z−1

, |z| > 1

3

(b) X2(z) =
1

1− 1
2
z−1

, |z| < 1

2

Therefore, the z-transform X(z) of x[n] is as follows:

X(z) = X1(z) + X2(z) =
1

1 + 1
3
z−1

+
1

1− 1
2
z−1

=
2z(z − 1

12
)

(z − 1
2
)(z + 1

3
)

where

ROC =
{
z|

(
|z| > 1

3

)
∩

(
|z| < 1

2

)}
=

{
z|1

3
< |z| < 1

2

}

Figure 3.9: The ROC of the z transform for two sided x[n].

Note:
From the above examples, notice that if x[n] is a (sum of) infinitely long exponential
sequences, then the z-transform X(z) is a rational function of z−1 or z.

6Notice that ∃ x[n] for entire n, i.e. −∞ < n < ∞, thus a two sided sequence.
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Example 3.5

Determine the z transform of a finite duration sequence given below:

x[n] = anu[n]− anu[n−N ]

Figure 3.10: A finite duration sequence x[n].

Solution:

X(z) =
N−1∑

n=0

anz−n =
N−1∑

n=0

(
az−1

)n
=

1− (az−1)
N

1− az−1

=
z − aN

zN−1

z − a

=
1

zN−1
· zN − aN

z − a

(a) ROC:

N−1∑

n=0

∣∣∣az−1
∣∣∣
n

< ∞ −→
∣∣∣az−1

∣∣∣ < ∞

−→ |a|
|z| < ∞

−→ |a| < ∞ and z 6= 0

i.e.−→ entire z plane except z = 0

(b) Poles and zeros:

(i) zeros 7 : zN − aN = 0 −→ zk = aej 2πk
N , k = 1, 2, . . . , N − 1

(ii) poles: z = 0 : (N − 1)st order

7Note that the term (z − a) cencels out in the numerator and the denominator of X(z).
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Figure 3.11: The ROC of the z transform for a finite duration sequence x[n].

Table 3.1: Common z-transform pairs at page 104
: Self study (assignment).
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3.3 Properties of ROC

X(z) =
P (z)

Q(z)

1. ROC is a ring or a disc in the z-plane centered at the origin, i.e.

ROC = {z|0 ≤ rR < |z| < rL < ∞}

2. F {x[n]} exists if and only if ROC contains the unit circle.

3. ROC cannot contain any poles. 8

4. If x[n] is a finite duration sequence, then ROC is the entire z-plane except
possibly at z = 0 or z = ∞.

(cf.) Note that the followings:

|X(z)|
∣∣∣∣∣∣

N2∑

n=N1

x[n]z−n

∣∣∣∣∣∣
≤

N2∑

n=N1

|x[n]| · |z|−n

(i) if n < 0, then |X(z)| → ∞ as z :→ ∞.

(ii) if n ≥ 0, then |X(z)| → ∞ as z :→ 0.

5. If x[n] is a right-sided sequence, then ROC extends outward from the outermost
finite pole to z = ∞.

Figure 3.12: The ROC of a right-sided sequence.

8This is so because if ROC contains a pole, |X(z)| → ∞.
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6. If x[n] is a left-sided sequence, then ROC extends inward from the innermost
non-zero pole to z = 0.

Figure 3.13: The ROC of a left-sided sequence.

7. If x[n] is a two-sided sequence, then ROC consists of a ring bounded by poles.

Figure 3.14: The ROC of a two-sided sequence.

8. ROC must be a connected region( i.e. cannot be disjoint).

Proof(detailed): Assignment(self study)
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Example 3.6

Given a pole-zero diagram with its pole locations as follows:

Figure 3.15: An example of pole-zero diagram.

Then, there ∃ 4 possible cases of ROC depending on which we get different
discrete-time signals.

(a) Right-sided sequence:

Figure 3.16: A pole-zero diagram for a right-sided sequence.

(b) Left-sided sequence:

Figure 3.17: A pole-zero diagram for a left-sided sequence.
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(c) Two-sided sequence: #1

Figure 3.18: A pole-zero diagram for a two-sided sequence.

(d) Two-sided sequence: #2

Figure 3.19: Another pole-zero diagram for a two-sided sequence.

Note:

1. x[n] cannot be a finite duration sequence with the given pole-zero diagram of
X(z).

2. The only case when ∃ the DTFT of x[n] is (3). Why?

59



3.4 The inverse z-transform

EXAMPLE: Analysis of a DLTI system:

Figure 3.20: A DLTI system.

After analyzing DLTI system in z-domain (i.e. finding the output Y (z)), we need to
compute y[n] (i.e. Y (z) → y[n]).

3.4.1 Inspection method

Use of familiar z-transform pairs, where tables of z-transform pairs are quite useful!!!

Example 3.7

Recall the following z-transform pair(either from the table or from the previous
example ...)

anu[n] ←→ 1

1− az−1
, |z| > |a|

Therefore,if we are given that:

X(z) =
1

1− (1
5
)z−1

, |z| > 1

5
|

then by inspection, we get the inverse z-transform easily as:

x[n] =
(

1

5

)n

u[n]

(cf.) If the ROC was |z| < 1
5
, then we know by inspection (from previous

experiences) that:

x[n] = −
(

1

5

)n

u[−n− 1]
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3.4.2 Partial fraction expansion: w/ inspection

Suppose X(z) is in the form of ratio of polynomials in z−1, i.e.:

X(z) =
P (z)

Q(z)
=

∑M
k=0 bkz

−k

∑N
k=0 akz−k

(3.1)

=
b0

a0

∏M
k=1(1− ckz

−1)
∏N

k=1(1− dkz−1)

or
=

b0

a0

zN

zM

∏M
k=1(z − ck)∏N
k=1(z − dk)

(3.2)

=





∑N
k=1

Ak

1−dkz−1 , if M < N

∑M−N
r=0 Brz

−r +
∑N

k=1
Ak

1−dkz−1 , if M ≥ N

where

(i) Br: by long division of the numerator by the denominator

(ii) Ak = (1− dkz
−1)X(z)|z=dk

The inverse z-transform can then be found by:

x[n] =
M−N∑

r=0

Z−1
{
Brz

−r
}

+
N∑

k=1

Z−1
{

Ak

1− dkz−1

}

where

(i) 9

Z−1
{
Brz

−r
}

= Brδ[n− r]

(ii) 10

Z−1
{

Ak

1− dkz−1

}
=





Ak (dk)
n u[n], ROC: |z| > |dk|

−Ak (dk)
n u[−n− 1], ROC: |z| < |dk|

9Note that the z-transform of an unit sample sequence is: Z {δ[n]} ∑∞
n=−∞ δ[n]z−n = 1, and

thus Z {δ[n− n0]}
∑∞

n=−∞ δ[n− n0]z−n = z−n0 .
10This is easily done by inspection!
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Remarks:

1. When X(z) has multiple poles(di) of order s, i.e. if X(z) is in the following
form:

X(z) =
P (z)

Q(z)
=

p(z)

(1− diz−1)sq(z)

Then, the partial fraction expansion of X(z) is in the form given below: 11

X(z) =
M−N∑

r=0

Brz
−r +

N∑

k=1,k 6=i

Ak

1− dkz−1
+

s∑

m=1

Cm

(1− diz−1)m

where 12

Cm =
1

(s−m)!(−di)s−m

{
ds−m

dws−m

[
(1− diw)sX(w−1)

]}

w=d−1
i

, (w
∆
= z−1)

2. X(z) has the same number of poles and zeros(see (3.2)), which is:

# of poles and/or zeros =

{
M, if M > N
N, if M < N

11The first term is only when M > N , and the second term represents the single poles, while the
last term represents the multiple poles in X(z).

12Note that if s = 1, then Cm = Am.
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Example 3.8

Find the inverse z-transform of X(z) given below along with its ROC.

X(z) =
1 + 2z−1 + z−2

1− 3
2
z−1 + 1

2
z−2

=
(1 + z−1)2

(1− z−1)(1− 1
2
z−1)

where its ROC is as follows:

ROC = {z||z| > 1} =⇒ right-sided sequence

Figure 3.21: The ROC of X(z) with its pole-zero locations.

Solution:

Applying the partial fraction method, X(z) must be in the following form:
(M = N = 2)

X(z) = B0 +
A1

1− 1
2
z−1

+
A2

1− z−1

where

(i) B0 = 2 (the ratio of coefficient for z2 or z−2, i.e. the highest order.)

(ii) A1 = X(z)(1− 1
2
z−1)

∣∣∣
z= 1

2

= (1+z−1)2

1−z−1

∣∣∣
z= 1

2

= 9
−1

= −9

(ii) A1 = X(z)(1− z−1)|z=1 = (1+z−1)2

1− 1
2
z−1

∣∣∣∣
z=1

= 9
1
2

= 8

Therefore:

X(z) = 2− 9
1

1− 1
2
z−1

+ 8
1

1− z−1

=⇒ x[n] = 2δ[n]− 9
(

1

2

)n

u[n] + 8u[n] (by inspection)
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Remark: Depending on the ROC, we could have different sequences, i.e.

X(z) = 2− 9
1

1− 1
2
z−1

+ 8
1

1− z−1

(1) ROC = {z||z| > 1}: outside of the unit circle (as in the example above)

x[n] = 2δ[n]− 9
(

1

2

)n

u[n] + 8u[n] : right-sided sequence

Figure 3.22: ROC = {z||z| > 1}: outside of the unit circle.

(2) ROC = {z||z| < 1
2
}: inside of a circle

x[n] = 2δ[n] + 9
(

1

2

)n

u[−n− 1]− 8u[−n− 1] : left-sided sequence

Figure 3.23: ROC = {z||z| < 1
2
}: inside of a circle.

(3) ROC = {z|1
2

< |z| < 1}: in-between two circles

x[n] = 2δ[n]− 9
(

1

2

)n

u[n]− 8u[−n− 1] : two-sided sequence

Figure 3.24: ROC = {z|1
2

< |z| < 1}: in-between two circles.
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3.4.3 Power series expansion

Note that the definition of the z-transform X(z) itself is in the form of a power series,
i.e.

X(z) =
∞∑

n=−∞
x[n]z−n

= . . . . . . + x[−2]z2 + x[−1]z1 + x[0]z0 + x[1]z−1 + x[2]z−2 + . . . . . .

=⇒ Finding x[n] is equivalent to determining the coefficients of z−n in X(z)!!!

Example 3.9

Find the inverse z-transform of X(z) given below, where the ROC is the entire
z-plane except at z = 0.

X(z) =
(1− 1

2
z−1)(1 + z−1)(1− z−1)

z−2

Solution:

Developing the given X(z), we get:

X(z) = z2(1− 1

2
z−1)(1 + z−1)(1− z−1)

= 1 · z2 − 1

2
· z − 1 +

1

2
· z−1

= x[−2] · z2 + x[−1] · z + x[0] + x[1] · z−1

Therefore,

x[n] = δ[n + 2]− 1

2
δ[n + 1]− δ[n] +

1

2
δ[n− 1]

(cf.) Find x[n] using the partial fraction expansion method: assignment
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Example 3.10

Find the inverse z-transform of X(z) given below, where the ROC is the outside
of a circle with radius |a|.

X(z) = log(1 + az−1), ROC = {z||z| > |a|}

Solution:

Developing the given X(z) using the logarithmic series expansion 13, we get:

X(z) =
∞∑

n=1

(−1)n+1anzn

n
, |az−1| < 1 (i.e. |z| > |a|)

∆
=

∞∑

n=−∞
x[n]z−n

Therefore:

x[n] =





(−1)n+1an

n
, n ≥ 1

0, n ≤ 0





=
(−1)n+1an

n
u[n]

(cf.)

Note that x[n] is a right-sided sequence, since the ROC is given as the outside
of a circle.

Example 3.11

Find the inverse z-transform of X(z) given below, which we already have dis-
cussed in previous examples 14 , using the power series expansion method.

X(x) =
1

1− az−1
=

z

z − a

13Logarithmic series: log(1 + x) =
∑∞

n=1
(−1)n+1xn

n , where |x| < 1.
14We know the answer as: x[n] = anu[n] if |z| > |a|, and x[n] = −anu[−n− 1] if |z| < |a|.
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Solution:

There ∃ two possible ROC’s for the given X(z):

(i) ROC: |z| > |a| (i.e. right-sided sequence)

Since x[n] must be a right-sided sequence, X(z) should be expressed as a
series in powers of z−1 (... n ≥ 0)

=⇒ By long division, we get:

X(z) =
1

1− az−1
= . . . . . .

= . . . . . .

=
...

X(z) =
1

1− az−1
= 1 + az−1 + a2z−2 + . . .

= x[0] + x[1]z−1 + x[2]z−2 + . . .

Therefore, we have:

x[n] = anu[n]

(ii) ROC: |z| < |a| (i.e. left-sided sequence)

Since x[n] must be a left-sided sequence, X(z) should be expressed as a
series in powers of z (... n < 0)

=⇒ By long division, we get:

X(z) =
1

−az−1 + 1
= . . . . . .

= . . . . . .

=
...

X(z) =
1

−az−1 + 1
= −a−1z − a−2z2 + a−3z3 + . . .

= x[−1]z + x[−2]z2 + x[−3]z3 + . . .

Therefore, we have:

x[n] = −anu[−n− 1]
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3.5 The z-transform properties

Let

X(z) = Z {x[n]} , ROC = Rx

X1(z) = Z {x1[n]} , ROC = Rx1

X2(z) = Z {x2[n]} , ROC = Rx2

(1) Linearity:

Z {ax1[n] + bx2[n]} = aX1(z) + bX2(z), ROC ⊇ Rx1 ∩Rx2

proof: assignment (trivial)

NOTE:
The fact that ROC ⊇ Rx1∩Rx2 rather than ROC = Rx1∩Rx2 is due to the possible
cancellation of poles in X(z).

Example 3.12

Consider the finite duration sequence x[n] discussed in the previous example:

x[n] = anu[n]− anu[n−N ]

= x1[n]− x2[n]

We already know that the ROC’s each sequence are as follows;





Rx1 : |z| > |a|

Rx2 : |z| > |a|

Rx : entire z-plane except atz = 0
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Figure 3.25: The ROC of a finite duration sequence as Rx ⊃ Rx1 ∩Rx2 .

Note that Rx ⊃ Rx1 ∩ Rx2 , and this results from the cancellation of the term
1− az−1 in the numerator and the denominator of X(z), i.e.





X1(z) = 1
1−az−1

X2(z) =
∑∞

n=N anz−n =
∑∞

n=N (az−1)
n

=
(az−1)

N

1−az−1

Thus;

X(z) = X1(z)−X2(z) =
1− (az−1)

N

1− az−1
=

1− az−1

1− az−1
· q(z)

where the term 1−az−1 cancels out which eliminates the pole located at z = a,
and corresponding ROC extends to the origin.

(2) Time shifting:

Z {x[n− n0]} = X(z)z−n0 , ROC = Rx ± {z = 0 or z = ∞}

proof: assignment (trivial)

NOTE:
The fact that ROC = Rx ±{z = 0 or z = ∞} is due to added term z−n0 by which
z = 0 and z = ∞ arises for n0 < 0 and n0 > 0 respectively.
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Example 3.13

Find the inverse z-transform of the following X(z):

X(z) =
z−1

1− 1
4
z−1

, |z| > 1

4
(right sided sequence)

Solution:

We will use two different appoaches to obtain x[n]:

(a) Ordinary way:

By applying the partial fraction expansion, we get 15

X(z) = −4 +
4

1− 1
4
z−1

Therefore, by inspection we obtain:

x[n] = −4δ[n] + 4
(

1

4

)n

u[n]

= 4
(

1

4

)n

u[n− 1]

=
(

1

4

)n−1

u[n− 1]

(b) Utilizing the time-shift property:

Express X(z) in the following form:

X(z) = z−1 ·
(

1

1− 1
4
z−1

)

Then, x[n] can be obtained as:

x[n] = Z−1

{
1

1− 1
4
z−1

}∣∣∣∣∣
n→n−1

=
(

1

4

)n

u[n]
∣∣∣∣
n→n−1

=
(

1

4

)n−1

u[n− 1]

which is the same result as in (a)!!!

15By partial fraction expansion, X(z) = −4 + A1
1− 1

4 z−1 , where A1 = z−1
∣∣
z= 1

4
= 4.
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(3) Multiplication by an exponential sequence:

Z {x[n]zn
0 } = X

(
z

z0

)
, ROC = Rx · |z0|

proof: assignment

Remarks:

(1) If Rx = {z| rR < |z| < rL}, then the ROC of x[n]zn
0 becomes:

ROC = {z| rR <

∣∣∣∣
z

z0

∣∣∣∣ < rL}

= {z| |z0|rR < |z| < |z0|rL}

(2) Pole-zero locations are also scaled by the factor of z0, i.e. the location z1 in

X(z) becomes the location z0z1 in X
(

z
z0

)
. 16

Special Cases:

(i) If z0 is a positive real number:

Only magnitude changes, which means that pole and/or zero moves in
radial direction!

(ii) If z0 is complex w/ unit magnitude (i.e. z0 = ejω0):

Pole and/or zero rotates by an angle of ω0, which means that frequency
shift occurs! 17

i.e.:

ejω0nx[n]
Z←→ X

(
ejω

ejω0

)
= X

(
ej(ω−ω0)

)

16The term (z − z1) in X(z), whose root is z = z1, is being transformed into a term
(

z
z0
− z1

)
in

X
(

z
z0

)
where corresponding root then becomes z

z0
= z1; that is z = z0z1.

17Recall the frequency shift property of the DTFT, that is ejω0nx[n] F←→ X
(
ej(ω−ω0)

)
if there ∃

X(ejω).
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Example 3.14

Recall that the z-transform of the unit step sequence is as follows:

u[n]
Z←→ 1

1− z−1
, |z| > 1

Then, find the z-transform of the exponentially decaying (or growing) sinusoidal
sequence given below:

x[n] = rn cos(ω0n)u[n]

Solution:

Express x[n] as:

x[n] = rn cos(ω0n)u[n]

=
1

2
(rejω0)nu[n] +

1

2
(re−jω0)nu[n]

∆
= x1[n] + x2[n]

Then, we have:

X1(z) =
1

2
U

(
z

rejω0

)
=

1

2

1

1− rejω0z−1

where corresponding ROC of X1(z) becomes: |z| > 1 · |rejω0| = r.

And

X2(z) =
1

2
U

(
z

re−jω0

)
=

1

2

1

1− re−jω0z−1

where corresponding ROC of X2(z) becomes: |z| > 1 · |re−jω0| = r.

Therefore, the z-transform of x[n] is then,

X(z) = X1(z) + X2(z) =
1− r cos(ω0)z

−1

1− 2r cos(ω0)z−1 + r2z−2
, ROC = {z| |z| > r}
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(4) Convolution of sequences:

Z {x1[n] ∗ x2[n]} = X1(z) ·X2(z), ROC ⊇ Rx1 ∩Rx2

proof: assignment

Remarks:

(1) The fact that ROC ⊇ Rx1 ∩Rx2 rather than ROC = Rx1 ∩Rx2 is again due to
the possible cancellation of poles in X(z).

(2) This property is very useful in the analysis of a DLTI system.

(e.g.)

Figure 3.26: A DLTI system.

y[n] = h[n] ∗ x[n]

Y (z) = H(z)X(z)

where

H(z) =
Y (z)

X(z)
: system function

Example 3.15

Determine the output sequence of the accumulator when the input signal is an
exponentially decaying sequence, i.e.

h[n] = u[n]

x[n] = anu[n], where 0 < a < 1
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Solution:

We can obtain the output y[n] by taking convolution sum b/w h[n] and x[n]
(assignment), which might be very cumbersome to do!!! Instead, we try to get
the output in z-domain:

We already know that

X(z) =
1

1− az−1
, |z| > |a|

H(z) =
1

1− z−1
, |z| > 1

Therefore, from the convolution property of z-transform;

Y (z) = H(z) ·X(z) =
1

1− z−1
· 1

1− az−1
=

z2

(z − a)(z − 1)

where the ROC of Y (z) is

ROC = Ry = {z | |z| > 1}, since |a| < 1

Figure 3.27: The ROC Ry of the output signal w/ its pole-zero locations.

Taking the partial fraction expansion of Y (z), we get;

Y (z) =
1

1− a

(
1

1− z−1
− a

1− az−1

)
, |z| > 1

Therefore, by taking the inverse z-transform of Y (z), we obtain

y[n] = Z−1{Y (z)} =
1

1− a

(
u[n]− an+1u[n]

)
=

1

1− a

(
1− an+1

)
u[n]
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(5) Initial value theorem:

If x[n] = 0 ∀ n < 0, then
x[0] = lim

z→∞X(z)

proof: assignment (problem 3.54 at your testbook)

OTHER PROPERTIES: Self Study

(6) Differentiation of X(z): at p.122

(7) Conjugate of complex sequence: at p.123

(8) Time reversal: at p.123

SUMMARY (Table 3.2): Self Study
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3.6 The inverse z-transform using contour inte-
gration :Formal expression for inverse z-transform

Cauchy Integral Theorem(Formula): 18

1

2πj

∮

C
z−kdz =





1, k = 1

0, k 6= 1





= δ[k − 1]

where C is a CCW(counter clockwise) contour encircling the origin. 19

Figure 3.28: Cauchy residue theorem: integrating z−k over a CCW contour C in
z-plane..

Derivation of inverse z-transform:

¿From the z-transform formula:

X(z) =
∞∑

n=−∞
x[n]z−n

Multiplying zk−1 to both sides and integrating over a CCW contour encircling the
origin within the ROC of X(z), we get:

1

2πj

∮

C
X(z)zk−1dz =

1

2πj

∮

C

∞∑

n=−∞
x[n]z−n+k−1dz

=
∞∑

n=−infty

x[n]
1

2πj

∮

C
z−n+k−1dz

=
∞∑

n=−infty

x[n]
1

2πj

∮

C
z−(n−k+1)dz

=
∞∑

n=−∞
x[n]δ[n− k] (by Cauchy integral theorem)

= x[k]

18Line integral or contour integral
19This will be officially proved using the Residue theorem at later section.
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Therefore, the inverse transform x[n] of X(z) in terms of countour integration can be
expressed in the following formula:

x[n] =
1

2πj

∮

C
X(z)zn−1dz (3.3)

where C is a CCW contour encircling the origin within the ROC.

Remarks:

1. If the integration contour C is taken to be the unit circle (i.e. z = ejω), (3.3)
reduces to be the inverse DTFT, i.e.

x[n] =
1

2πj

∮

C
X(z)zn−1dz

Let:

(i) z = ejω −→ contour C in z-plane becomes an interval ω = [−π, π].

(ii) dz = jejωdω

Therefore,

x[n] =
1

2πj

∫ π

−π
X(ejω)ejωn−jω · jejωdω

=
1

2π

∫ π

−π
X(ejω)ejωndω

: inverse DTFT

2. (3.3) can be evaluated by the Cauchy Residue Theorem, which is:

x[n] =
1

2πj

∮

C
X(z)zn−1dz

=
∑ {residues of X(z)zn−1 at the poles inside C}
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where if the integrand is a rational function of z, i.e.

X(z)zn−1 =
ψ(z)

(z − d0)s

then,

Res
[
X(z)zn−1 at z = d0

]
=

1

(s− 1)!

ds−1ψ(z)

dzs−1

∣∣∣∣∣
z=d0

(cf.) If s = 1 (single pole), then Res [X(z)zn−1 at z = d0] = ψ(d0), assuming
z = d0 is located inside of C.

3. Proof of Cauchy integral theorem:

Applying the Cauchy residue theorem, we get:

1

2πj

∮

C
z−kdz =





0, k ≤ 0 (... no ploes)
1, k = 1 (... single ploe at z = 0)

0, k > 1 (... 1
(k−1)!

dk−1

dzk−1 {(1)} = 0)

= δ[k − 1]

Example 3.16

Find the inverse z-transform of X(z) given below: 20

X(z) =
1

1− az−1
, ROC: |z| > |a|

Solution:

Using the formal expression of the inverse z-transform,

x[n] =
1

2πj

∮

C
X(z)zn−1dz

=
1

2πj

∮

C

zn−1

1− az−1
dz

=
1

2πj

∮

C

zn

z − a
dz

where C is taken to be a circle of radius greater than |a| (i.e. a contour within
ROC encircling the origin).

20We already know from previous examples that Z−1 {X(z)} = x[n] = anu[n].
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Figure 3.29: The integration contour C in z-plane.

(1) n ≥ 0: (a single pole at z = a : inside of C)

x[n] =
∑

[residues of X(z)zn−1 at the poles inside C]

= zn|z=a

= an

(2) n < 0: (multiple poles at z = 0 & a single pole at z = a : inside of C)

x[n] =
∑

[residues of X(z)zn−1 at the poles inside C]

(i) n = −1:

x[−1] =
∑

[residues of X(z)z−2 at the poles inside C]

=
∑ [

residues of 1
z(z−a)

at z = 0 & z = a
]

= −1

a
+

1

a

= 0
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(ii) n = −2:

x[−2] =
∑

[residues of X(z)z−3 at the poles inside C]

=
∑ [

residues of 1
z2(z−a)

at z = 0 & z = a
]

=
1

1!

d

dz

(
1

z − a

)∣∣∣∣∣
z=0

+
1

z2

∣∣∣∣
z=a

=
−1

(z − a)2

∣∣∣∣∣
z=0

+
1

a2

= − 1

a2
+

1

a2

= 0

...

(tedius to carry out!!!)

Likewise, we get x[n] = 0 ∀ n < 0, and therefore:

x[n] = anu[n]

(cf.) For the case of n < 0, let m = −n, thus making m > 0, then: 21

x[n] = x[−m] =
1

2πj

∮

C

1

(z − a)zm
dz

=
∑ [

residues of 1
(z−a)zm at z = a & z = 0

]

=
1

zm

∣∣∣∣
z=a

+
1

(m− 1)!

dm−1

dzm−1

{
1

z − a

}∣∣∣∣
z=0

=
1

am
+

1

(m− 1)!

(−1)m−1(m− 1)!

(z − a)m

∣∣∣∣∣
z=0

=
1

am
+

1

(m− 1)!

(−1)m−1(m− 1)!

(−1)mam

=
1

am
− 1

am

= 0

21Let f(z) = 1
z−a , then f (n)(z) = (−1)nn!

(z−a)n+1 .
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Remark:

The inverse z-transform formula (3.3) is very cumbersome to carry out for the case
when n < 0, since we get multiple poles at z = 0 due to the factor zn−1 in the
integrand(see below).

x[n] =
1

2πj

∮

C
X(z)zn−1dz

This can be avoided by the change of variable technique, i.e. by letting:

z = p−1

we get an equivalent formula of: 22

x[n] =
1

2πj

∮

C
′′ X

(
1

p

)
p−n−1dp

=
∑

Res

[
X

(
1

p

)
p−n−1 at poles inside of C

′′
]

where C
′′

is a CCW circle of radius less tha 1
r
, if C was a CCW circle of radius

greater than r.

Note:

(1) The integration contour is now CCW by exchanging the sign of the integration
and the direction of the contour!!! (i.e. −p−1dp → p−2dp makes the CW
contour C

′
a CCW contour C

′′
)

(2) The above formula for inverse z-transform, on the contrary, will cause multiple
poles at p = 0 when n ≥ 0.

proof: done (refer the footnote below.)

22Note that from z = p−1 we have: dz = −p−2dp, zn−1 = p−n+1, and the CCW contour C on z
becomes a CW(clockwise) contour C

′
on p.
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Example 3.17

Redo the previous example for the case of n < 0.

Solution:

Figure 3.30: The CCW integration contour C
′
on the p plane.

x[n] =
1

2πj

∮

C′
p−n−1

1− ap
dp (C

′
: radius of less than 1

a
)

=
∑

Res

[
p−n−1

1− ap
at poles inside of C

′
]

(NONE)

= 0
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3.7 The complex convolution theorem

: Relative to (or generalization of) the periodic convolution property of DTFT

(cf.) Periodic convolution property of DTFT(Recall from S&S class)
:Windowing theorem or modulation property

Let w[n] = x1[n] · x2[n], then

F {w[n]} = W
(
ejω

)
=

1

2π

∫ π

−π
X1

(
ejΩ

)
X2

(
ej(ω−Ω)

)
dΩ

∆
=

1

2π
X1

(
ejω

)
⊗X2

(
ejω

)

Theorem 3.1 Let w[n] = x1[n] · x2[n], then the z-transform W (z) of w[n] is in the
following form:

W (z) =
1

2πj

∮

C2

X1

(
z

v

)
X2(v)v−1dv

where C2 is a CCW contour within the overlap of ROC Rx2 of X2(v) and ROC of

X1

(
z
v

)
.

OR,

W (z) =
1

2πj

∮

C1

X1(v)X2

(
z

v

)
v−1dv

where C1 is a CCW contour within the overlap of ROC Rx1 of X1(v) and ROC of

X2

(
z
v

)
.
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Derivation:

Since
w[n] = x1[n] · x2[n]

we have:

W (z)
∆
=

∞∑

n=−∞
w[n]z−n =

∞∑

n=−∞
x1[n]x2[n]z−n (3.4)

Here,

x2[n] =
1

2πj

∮

C2

X2(v)vn−1dv (3.5)

where C2 is a CCW contour within Rx2 .

Inserting (3.5) into (3.4), we get:

W (z) =
1

2πj

∞∑

n=−∞
x1[n]

∮

C2

X2(v)
(

z

v

)−n

v−1dv

=
1

2πj

∮

C2

{ ∞∑

n=−∞
x1[n]

(
z

v

)−n
}

X2(v)v−1dv

=
1

2πj

∮

C2

X1

(
z

v

)
X2(v)v−1dv (3.6)

where C2 should bow be a CCW contour within the overalp of ROC of X1

(
z
v

)
and

ROC of X2(v).

Remark:

1. ROC Rw of W (z):

Let

Rx1 : rR1 < |z| < rL1

Rx2 : rR2 < |z| < rL2
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Then, from (3.6), the contour C2 is within regions of:

(i) X2(v) : rR2 < |v| < rL2

(ii) X1

(
z

v

)
: rR1 <

∣∣∣∣
z

v

∣∣∣∣ < rL1

From (ii), we have rR1|v| < |z| < rL1|v|, and combining (i) and (ii) we get the
ROC Rw of W (z) as:

rR1rR2 < |z| < rL1rL2

⇒ We denote it as Rw = Rx1 ·Rx2 , but notice that Rw may actually be larger
than Rx1 ∩Rx2 , depending on possible cancellation of poles.

2. Periodic convolution of DTFT:

In (3.6), let C2 (and/or C1) be the unit circle(s), which means the change of
variable as v = ejΩ , then:

(i) C2 −→ −π ≤ Ω ≤ π

(ii) dv = jejΩdΩ

Also, let z = ejω, then (3.6) becomes the DTFT W (ejω) of w[n]:

W
(
ejω

)
=

1

2πj

∫ π

−π
X1

(
ej(ω−Ω)

)
X2

(
ejΩ

)
e−jΩ · jejΩdΩ

=
1

2πj

∫ π

−π
X1

(
ej(ω−Ω)

)
X2

(
ejΩ

)
dΩ

=
1

2π
X1

(
ejω

)
⊗X2

(
ejω

)

as we expected!!!
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Example 3.18

Let w[n] = x1[n]x2[n] where x1[n] = anu[n] and x2[n] = bnu[n].

Determine the z-transform W (z) of w[n].

Solution:

We already have the following z-transform pairs:

x1[n] = anu[n] ←→ X1(z) =
1

1− az−1
, |z| > |a|

x2[n] = bnu[n] ←→ X2(z) =
1

1− bz−1
, |z| > |b|

From (3.6), the z-transform of w[n] is then:

W (z) =
1

2πj

∮

C2

1

1− a
(

z
v

)−1 ·
1

1− bz−1
v−1dv

=
1

2πj

∮

C2

− z
a(

v − z
a

) · 1

v − b
dv

Notice that:




pole #1 : v = b

pole #2 : v = z
a

and, since C2 MUST be within overlap region of the ROC’s of X2(v) and X1

(
z
v

)
,

each ROC should be as follows;




ROC of X2(v) : |v| > |b|

ROC of X1

(
z
v

)
:

∣∣∣ z
v

∣∣∣ > |a| −→ |v| < |z|
|a|

Note that pole at v = b is inside of C2 whereas pole at v = z
a

is outside of C2.

Therefore, by the Cauchy’s residue theorem, we get:

W (z) = Res

[ − z
a

v − z
a

· 1

v − b
at pole v = b

]

=
− z

a

b− z
a

=
1

1− abz−1
, |z| > |ab|
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(cf.) The ROC Rw of W (z):

Note from the ROC’s of X2(v) and X1

(
z
v

)
, we have:

|b| < |v| < |z|
|a|

→ |z| > |v| · |a| and |v| > |b|
→ |z| > |a| · |b|

Figure 3.31: ROC of X2(v) and X1

(
z
v

)
in v-plane.

Note:

Since w[n] can be put into the following form:

x1[n]x2[n] = anbnu[n] = (ab)nu[n]

we can directly derive the z-transform by a simple inspection as:

W (z) =
1

1− abz−1
, ROC: |z| > |ab|
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3.8 The Parseval’s theorem

Theorem 3.2

∞∑

n=−∞
x1[n]x∗2[n] =

1

2πj

∮

C
X1(v)X∗

2

(
1

v∗

)
v−1dv

where C is a CCW contour within overlap of ROC of X1(v) and ROC of X∗
2

(
1
v∗

)
.

Derivation:

Let y[n] = x1[n]x∗2[n], then from the complex convolution theorem, we have: 23

Y (z) =
∞∑

n=−∞
x1[n]x∗2[n]z−n

=
1

2πj

∮

C
X1(v)X∗

2

(
z∗

v∗

)
v−1dv

Put z = 1 in both sides 24 , then

Y (z)|z=1 =
∞∑

n=−∞
x1[n]x∗2[n] =

1

2πj

∮

C
X1(v)X∗

2

(
1

v∗

)
v−1dv

q.e.d.

23Note that x∗[n] ↔ X∗(z∗); refer to Table 3.2 at p.126 of the textbook.
24Since (i) z = 1 must be inside of Ry, and (ii) ROC is composed of circles ⇒ ROC Ry must

include the unit circle for the Parseval’s theroem to be valid, i.e. Parseval;s theorem can only be
applied to absolutely summable sequences whose DTFT exists.
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Remarks:

(1) If x1[n] = x2[n] = x[n] are real sequences, then the Parseval’s theorem becomes:

∞∑

n=−∞
x2[n] =

1

2πj

∮

C
X(v)X(v−1)v−1dv

and it represents the energy in x[n]:

(i) LHS = energy of x[n] in time domain

(ii) RHS = energy of x[n] in z (or frequency) domain

(2) DTFT equivalent form:

Let v = ejω, then the Parseval’s theorem states:

∞∑

n=−∞
x1[n]x∗2[n] =

1

2πj

∫ π

−π
X1(e

jω)X∗
2

(
(e−jω)∗

)
e−jωjejωdω

=
1

2πj

∫ π

−π
X1(e

jω)X∗
2 (ejω)dω

Example 3.19

Suppose x[n] is a right-sided real sequence with its z-transform given below:

X(z) =
1

1− az−1
· 1

1− bz−1

where 0 < a < b < 1.

Then, determine the energy contained in x[n].

89



Solution:

From the Parseval’s theorem, we have:

∞∑

n=−∞
y[n] ≡

∞∑

n=−∞
x2[n]

=
1

2πj

∮

C
X(v)X(v−1)v−1dv

=
1

2πj

∮

C

1

(1− av−1)(1− bv−1)
· 1

(1− av)(1− bv)
· 1

v
dv

=
1

2πj

∮

C

v2

(v − a)(v − b)
· 1

(1− av)(1− bv)
· 1

v
dv

=
1

2πj

∮

C

v

(v − a)(v − b)
· 1

(1− av)(1− bv)
dv

where C is taken to be the unit circle, since the unit circle must be within Ry(
refer the footnote #24).

(cf.)

(i) ROC of X(v):

Figure 3.32: ROC of X(v).

(ii) ROC of X( 1
v
):

Figure 3.33: ROC of X( 1
v
).
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(iii) The integration contour C in v-plane with ROC Ry:

Figure 3.34: The CCW integration contour C in v-plane with ROC Ry.

Therefore, the energy in x[n] is:

∞∑

n=−∞
x2[n] =

∑
Res

{
v

(v − a)(v − b)(1− av)(1− bv)
at poles inside of C

}

=
∑

Res

{
v

(v − a)(v − b)(1− av)(1− bv)
at v = a and v = b

}

=
a

(a− b)(1− a2)(1− ab)
+

b

(b− a)(1− ab)(1− b2)

=
a(1− b2)− b(1− a2)

(a− b)(1− a2)(1− b2)(1− ab)
(joules)

(cf.) Notice that poles at v = 1
a

and v = 1
b

are outside of the unit circle C.

Remark:

Evaluating the energy of x[n] in time domain would be very difficult, if not
impossible, i.e.:

X(z)
Z−1−→ x[n] −→

∞∑

n=−∞
x2[n]

Assignment: Try the procedure described above.
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3.9 The unilateral z-transform

Definition 3.2 The unilateral z-transform of a sequence x[n] is defined as:

X (z)
∆
=

∞∑

n=0

x[n]z−n

Remark:

(1) So far, we considered the so called “bi-lateral” z-transform:

X(z)
∆
=

∞∑

n=−∞
x[n]z−n

(2) If x[n] = 0 for all n < 0, then X(z) = X (z).

(3) All of the ROC properties of X (z) are the same as those of X(z).

(4) Some of the properties of X (z) are the same, but some are different from those
of X(z).

Example 3.20

Let x[n] = δ[n], then:

(i) X(z) =
∞∑

n=−∞
δ[n]z−n = δ[0]z0 = 1

(ii) X (z) =
∞∑

n=0

δ[n]z−n = δ[0]z0 = 1

=⇒ X(z) = X (z)

92



Example 3.21

Let x[n] = δ[n + 1], then:

(i) X(z) =
∞∑

n=−∞
δ[n + 1]z−n = δ[0]z1 = z

(ii) X (z) =
∞∑

n=0

δ[n + 1]z−n = 0

=⇒ X(z) 6= X (z)

Remark:
The principal use of X (z) is iin analyzing DLTI systems described by a linear

constant coefficient difference equation with non-initial (i.e. n 6= 0) rest conditions.

Let y[n] = x[n−m] where m > 0, then:

Y(z) =
∞∑

n=0

x[n−m]z−n

= x[−m]z0

︸ ︷︷ ︸
n=0

+ x[1−m]z1

︸ ︷︷ ︸
n=1

+ · · ·+ x[−1]z−m+1

︸ ︷︷ ︸
n=m−1

+ x[0]z−m

︸ ︷︷ ︸
n=m

+ x[1]z−m−1

︸ ︷︷ ︸
n=m+1

+ · · ·

=
m∑

k=1

x[k − 1−m]z−k+1 +
∞∑

n=0

x[k −m]z−k

(let k −m = n, then k = m + n)

=
0∑

n=1−m

x[n− 1]z−n−m+1 +
∞∑

n=0

x[n]z−nz−m

=
0∑

n=1−m

x[n− 1]z−n−m+1 + X (z)z−m

(let n− 1 → n)

=
−1∑

n=−m

x[n]z−n−m + X (z)z−m
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OR

Y(z) =
∞∑

n=0

x[n−m]z−n

(let n−m = k)

=
∞∑

k=−m

x[k]z−k−m

=
−1∑

k=−m

x[k]z−k−m +

( ∞∑

k=0

x[k]z−k

)
z−m

(let k → n)

=
−1∑

n=−m

x[n]z−n−m + X (z)z−m

Note:
Notice that the time shift property of X (z) is different from that of X(z)!!!

Example 3.22

Given a DLTI system with the i/o relation of:

y[n]− 1

2
y[n− 1] = x[n] (3.7)

where x[n] = u[n] and with a non-initial rest condition of y[−1] = 1.

Find the output y[n] of the system.

Solution:

We know that:

X(z) = X (z) =
1

1− z−1
, |z| > 1

Taking the unilateral z-transform of (3.7), we get:

Y(z)− 1

2

{
y[−1] + Y(z)z−1

}
=

1

1− z−1
= X (z)
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Solving for Y(z),

Y(z) =
1

1− 1
2
z−1

{
1

2
y[−1] +

1

1− z−1

}

=
1
2

1− 1
2
z−1

+
1

(1− 1
2
z−1)(1− z−1)

=
1

2

1

1− 1
2
z−1

− 1

1− 1
2
z−1

+
2

1− z−1
(by partial fraction)

=
2

1− z−1
− 1

2

1

1− 1
2
z−1

⇒ y[n] = 2u[n]− 1

2

(
1

2

)n

u[n] (by inverse unilateral z-transform)

=

{
1−

(
1

2

)n+1
}

u[n]

(cf.)

(i) y[−1] = 1.

(ii) If there is no non-initial condition (i.e. if y[n] = 0, ∀ n < 0), then:

Y (z)− 1

2
Y (z)z−1 = X(z)

→
(
1− 1

2
z−1

)
Y (z) = X(z)

→ Y (z) =
1

1− 1
2
z−1

· 1

1− z−1
=

−1

1− 1
2
z−1

+
2

1− z−1

→ y[n] =
{
−

(
1

2

)n

+ 2
}

u[n]
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