Contents

4	Sampling of Continuous-Time Signals			96
	4.1	Period	ic sampling	96
	4.2	4.2 Analysis of sampling in frequency domain		98
	4.3			103
	4.4	Discrete-time processing of continuous signals		107
		4.4.1	Effective (equivalent) continuous system	107
		4.4.2	Impulse invariant systems	114
4.5 Continuous-time processing of discrete-time signals		nuous-time processing of discrete-time signals	116	
	4.6	Changing the sampling rate using discrete-time processing		
		4.6.1	Reduction by an integer factor (downsampling or deciamtion)	121
		4.6.2	Increasing by an integer factor (upsampling or interpolation) .	127
		4.6.3	Changing by non-integer factor (upsampling and downsampling)	133
	4.7	Practi	cal considerations	134
		4.7.1	Prefiltering to avoid aliasing	134
		4.7.2	Analog to digital (A/D) conversion $\ldots \ldots \ldots \ldots \ldots \ldots$	137
		4.7.3	Analysis of the quantization error	144
		4.7.4	Digital to $analog(D/A)$ conversion	146
4.8 Application of decimation and interpolation to A/I		Applic	eation of decimation and interpolation to A/D and D/A	151

Chapter 4

Sampling of Continuous-Time Signals

4.1 Periodic sampling

Recall: Most of discrete-time signals(i.e. sequences) come from sampling continuous-time signals...

Figure 4.1: Periodic sampling of $x_c(t)$ to yield $x[n] = x_c(nT)$.

T: sampling period(sec)

 $\Omega_s \stackrel{\Delta}{=} \frac{2\pi}{T}$: sampling frequency(rad/sec)

Figure 4.2: A C/D converter.

Remarks:

- (i) C/D stands for *Continouous to Discrete*.
- (ii) Generally better known A/D (*Analog to Digital*) converter is an approximation, since it involes an approximate operation \ni : **quantization** etc..
- (iii) C/D operation is NOT invertible in general, but by putting some restrictions on $x_c(t)$, such as *bandlimited* and so on, we can completely reconstruct $x_c(t)$ from x[n].

4.2 Analysis of sampling in frequency domain

More detailed representation of C/D conversion is as follows: 1

Figure 4.3: A detailed representation of C/D converter.

Here, the sampling signal s(t) is a train of impulses, i.e.:

$$s(t) = \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

Figure 4.4: The sampling signal s(t): train of impulses.

Therefore, the sampled signal $x_s(t)$ can be expressed as:

$$x_{s}(t) = x_{c}(t) \cdot s(t)$$

$$= x_{c}(t) \cdot \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$OR_{m} \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t - nT)$$

$$= \sum_{n=-\infty}^{\infty} x[n]\delta(t - nT)$$

: time domain representation

¹Notice that the **area** of $\delta(t)$ is now converted to the **magnitude** of $\delta[n]$.

We now take the Fourier transform of $x_s(t)$, and by the modulation property of F.T., we get:

$$X_{s}(\Omega) = \frac{1}{2\pi} X_{c}(\Omega) * S(\Omega)$$

$$= \frac{1}{2\pi} X_{c}(\Omega) * \frac{2\pi}{T} \sum_{k=-\infty}^{\infty} \delta(\Omega - k\Omega_{s})$$

$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(\Omega - k\Omega_{s})$$
(4.1)
(4.2)

: frequency domain representation

Note:

- (i) We use the notation $\Omega(\text{rad/sec})$ for the frequency of continuous signals, in order to distinguish it from the discrete frequency $\omega(\text{rad})$.
- (ii) In above equation, $\Omega_s \stackrel{\Delta}{=} \frac{2\pi}{T} (rad/sec)$ is the sampling frequency of the C/D converter.

Graphical Interpretation:

Let a "bandlimited" continuous-time signal $x_c(t)$ have the following spectrum:

Figure 4.5: The Fourier transform of a bandlimited signal $x_c(t)$.

Then, the spectrum (i.e. Fourier transform) $X_s(\Omega)$ of the sampled signal $x_s(t)$ is in the following form, which is the replica of scaled and shifted $X_c(\Omega)$:

1. Case#1: when $\Omega_M \leq \Omega_s - \Omega_M$ (i.e. $\Omega_s \geq 2\Omega_M$)

Figure 4.6: The Fourier transform $X_s(\Omega)$: $\Omega_s \ge 2\Omega_M$.

2. Case#2: when $\Omega_M > \Omega_s - \Omega_M$ (i.e. $\Omega_s < 2\Omega_M$)

Figure 4.7: The Fourier transform $X_s(\Omega)$: $\Omega_s < 2\Omega_M$.

In this case, the spectrum $X_s(\Omega)$ is completely different from that of $X_c(\Omega)$, and it is referred to as "ALIASING".

 \implies Only for the first case, i.e. when $\Omega_s \ge 2\Omega_M$, we can recover (reconstruct) $x_c(t)$ from the sampled signal $x_s(t)$ via a low pass filter of which the transfer function $H(\Omega)$ is as follows:

Figure 4.8: The transfer function $H(\Omega)$ of the reconstruction filter.

where the cutoff frequency Ω_c must satisfy $\Omega_M < \Omega_c < \Omega_s - \Omega_M$, and we typically choose $\Omega_c = \Omega_s/2$.

Theorem 4.1 NYQUIST SAMPLING THEOREM:

Let $x_c(t)$ be a bandlimited signal, i.e.

$$X_c(\Omega) = 0, \qquad |\Omega| > \Omega_M$$

Then, $x_c(t)$ is uniquely determined by its samples $x[n] = x_c(nT), -\infty < n < \infty$, if:

$$\Omega_s \geq 2 \ \Omega_M$$

where $\Omega_s = \frac{2\pi}{T}$ is the sampling frequency.

(cf.) We call Ω_M and $2\Omega_M$ the Nyquist frequency and the Nyquist rate of $x_c(t)$ respectively.

DTFT of \mathbf{x}[\mathbf{n}] = \mathbf{x}_{\mathbf{c}}(\mathbf{n}\mathbf{T}): in terms of $X_c(\Omega) = \mathcal{F} \{x_c(t)\}$

Since the sampled signal $x_s(t)$ can be represented as follows:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT)$$
$$= \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

By taking the Fourier transform of both sides, we have:

$$\mathcal{F} \{ x_s(t) \} = X_s(\Omega) \equiv \sum_{n=-\infty}^{\infty} x[n] 1 \cdot e^{-j\Omega nT}$$
$$\stackrel{\Delta}{=} X \left(e^{j\Omega T} \right)$$

$$= F\{x[n]\}_{\omega=\Omega T}$$

which renders the following relationship: 2

$$X\left(e^{j\Omega T}\right) = X_s(\Omega) = \frac{1}{T}\sum_{k=-\infty}^{\infty} X_c(\Omega - k\Omega_s)$$

where $\Omega_s = \frac{2\pi}{T} (rad/sec)$.

²Here we quote (4.1), the F.T. of the sampled signal $x_s(t)$.

By applying the change of variable as:

$$\omega = \Omega T$$

we can obtain the following relationship, which represents the DTFT of the sampled sequence x[n] in terms of the F.T. of the original continuous signal $x_c(t)$:

$$X\left(e^{j\omega}\right) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega}{T} - k\frac{2\pi}{T}\right)$$
$$= \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega - 2\pi k}{T}\right)$$

: frequency scaled version of $X_s(\Omega)$ via $\omega = \Omega T$

(e.g.)

If the continuous frequency is $\Omega = \Omega_s(\text{rad/sec})$, then the corresponding discrete frequency becomes $\omega = \Omega_s T = \frac{2\pi}{T}T = 2\pi(\text{rad})$.

: normalization of frequency axis

Remark: Signal representation in the sampling process:

(1) Time domain:

Figure 4.9: Continuous and sampled signals in time domain.

(2) Frequency domain:

Figure 4.10: Corresponding spectra in frequency domain.

4.3 Reconstruction of a bandlimited signal: Interpolation

Remark:

From the sampling theorem, as long as a sequence x[n] is sampled from $x_c(t)$ satisfying the Nyquist criterion, the original continuous signal $x_c(t)$ can be recovered by an ideal LPF:

Figure 4.11: The block diagram of interpolation: D/C converter.

where the transfer function $H_r(\Omega) = \mathcal{F}(h_r(t))$ of the reconstruction (ideal lowpass) filter is as follows:

Figure 4.12: The transfer function of the ideal LPF.

Here, $\Omega_s/2 = \frac{\pi}{T}$ is called the *folding frequency*, and the cutoff frequency of the reconstruction filter should meet: ³

$$\Omega_M \le \Omega_s < \Omega_s - \Omega_M$$

and WLOG 4 , we usually let $\Omega_c=\frac{\pi}{T}=\frac{\Omega_s}{2}(\mathrm{rad/sec})$

 $^{^{3}\}Omega_{M}$ represents the maximum frequency in $x_{c}(t)$.

⁴WLOG: without loss of generality

Recall that the sampled signal can be represented as:

$$x_s(t) = \sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)$$

: sequence to weighted impulse train

and, since the ideal LPF is an LTI system with impulse response of $h_r(t) \stackrel{\Delta}{=} L[\delta(t)]$, we have:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t-nT)$$
$$= \sum_{n=-\infty}^{\infty} x[n] \cdot \operatorname{sinc}\left(\frac{t-nT}{T}\right)$$

where 56

$$h_r(t) = \mathcal{F}^{-1} \{ H_r(\Omega) \}$$
$$= \frac{\sin\left(\frac{\pi t}{T}\right)}{\frac{\pi t}{T}}$$
$$\triangleq \operatorname{sinc}\left(\frac{t}{T}\right)$$

Figure 4.13: The impulse response of the ideal (reconstructing) LPF.

 \implies We expect $x_r(t) = x_c(t)$ if the sampling period T satisfies the Nyquist criterion.

$$h_r(nT) = \begin{cases} 1, & n = 0\\ 0, & n \neq 0 \end{cases}$$

 $^{^5\}mathrm{recall}$ from the Signals and Systems class...

⁶Note that:

Interpolation:

Figure 4.14: The interpolation process.

Note: $x_r(mT) = x_c(mT)$

$$x_r(mT) = \sum_{n=-\infty}^{\infty} x_c(nT)h_r(mT - nT)$$
$$= \sum_{n=-\infty}^{\infty} x_c(nT)h_r((m-n)T)$$
$$= x_c(mT)$$

which means that the original continuous signal $x_c(t)$ and the reconstructed signal $x_r(t)$ exactly match at least at the time instances of integer multiple of the sampling period T.

In the above derivation, we have used the fact:

$$h_r(nT) = \begin{cases} 1, & n=0\\ 0, & n \neq 0 \end{cases}$$

I/O relationship of D/C in frequency domain:

Figure 4.15: The D/C conversion.

Recall the interpolation (D/C) formula:

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n]h_r(t - nT)$$

By taking the Fourier transform, we get:

$$\mathcal{F}[x_r(t)] \stackrel{\Delta}{=} X_r(\Omega) = \sum_{n=-\infty}^{\infty} x[n] \mathcal{F}[h_r(t-nT)]$$
$$= \sum_{-\infty}^{\infty} x[n] H_r(\Omega) e^{-j\Omega nT}$$
$$= H_r(\Omega) \sum_{-\infty}^{\infty} x[n] e^{-j\Omega nT}$$
$$= H_r(\Omega) F\{x[n]\}_{\omega=\Omega T}$$
$$= H_r(\Omega) X(e^{j\Omega T})$$

i.e.: ⁷

$$X_r(\Omega) = H_r(\Omega) \cdot X\left(e^{j\Omega T}\right)$$

recall
$$H_r(\Omega) \cdot X_s(\Omega)$$

 \implies We expect $X_r(\Omega) = X_c(\Omega)$ if the reconstruction filter $H_r(\Omega)$ is an ideal LPF.

 $[\]overline{{}^{7}}$ Notice that $X_r(\Omega)$ and $H_r(\Omega)$ represent the *continuous* signal and system respectively, whereas $X(e^{j\Omega T})$ represents the *discrete* signal.

4.4 Discrete-time processing of continuous signals

4.4.1 Effective (equivalent) continuous system

General block diagram: ⁸

where $Y_r(\Omega) = H_{\text{eff}}(\Omega) \cdot X_c(\Omega)$

Figure 4.16: A DSP system and its equivalent continuous system.

(cf.) We assume that C/D and D/C converters have the same sampling period (T).

Objective: Find $H_{\text{eff}}(\Omega)$ in terms of $H(e^{j\omega})$.

Let

$$X_{c}(\Omega) = \mathcal{F} \{ x_{c}(t) \}, \quad Y_{r}(\Omega) = \mathcal{F} \{ y_{r}(t) \}$$
$$X(e^{j\omega}) = F \{ x[n] \}, \quad Y(e^{j\omega}) = F \{ y[n] \}$$

⁸This is the same as the typical DSP system discussed in Chapter 2.

First, consider the analog parts (1) and (3) in above figure):

The input/output relations of the C/D and the D/C converters can be represented in the frequency domain respectively as follows:

$$X\left(e^{j\omega}\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty} X_c\left(\frac{\omega}{T} - k \cdot \frac{2\pi}{T}\right)$$
(4.3)

and

$$Y_r(\Omega) = H_r(\Omega) \cdot Y\left(e^{j\Omega T}\right) = \begin{cases} T \cdot Y\left(e^{j\Omega T}\right), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{elsewhere} \end{cases}$$
(4.4)

where we assumed $H_r(\Omega)$ is an ideal LPF with gain of T as follows:

Figure 4.17: $H_r(\Omega)$ as an ideal LPF.

Now, consider the discrete part((2) in above figure):

Since the discrete system is an LTI system, we have:

$$Y\left(e^{j\omega}\right) = H\left(e^{j\omega}\right) \cdot X\left(e^{j\omega}\right) \tag{4.5}$$

where $H\left(e^{j\omega}\right)$ is the frequency response of the discrete system.

Assuming:

- (i) $X_c(\Omega) = 0$, $|\Omega| \ge \frac{\pi}{T}$ (bandlimited)
- (ii) $H_r(\Omega)$ is an ideal LPF with gain of T (reconstruction filter)
- (iii) T satisfies the Nyquist criterion, i.e. $T < \frac{\pi}{\Omega_M}$ (sec).

we have from (4.3), (4.4), and (4.5):

$$Y_{r}(\Omega) = H_{r}(\Omega) \cdot Y\left(e^{j\Omega T}\right)$$
$$= H_{r}(\Omega) \cdot H\left(e^{j\Omega T}\right) \cdot X\left(e^{j\Omega T}\right)$$
$$= H_{r}(\Omega) \cdot H\left(e^{j\Omega T}\right) \cdot \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}\left(\Omega - k\frac{2\pi}{T}\right)$$
$$= T \cdot H\left(e^{j\Omega T}\right) \cdot \frac{1}{T} X_{c}(\Omega)$$
$$= H\left(e^{j\Omega T}\right) \cdot X_{c}(\Omega) \quad \text{where } |\Omega| < \frac{\pi}{T}$$

from which the following relation must hold:

$$Y_r(\Omega) = H\left(e^{j\Omega T}\right) \cdot X_c(\Omega) \equiv H_{\text{eff}}(\Omega) \cdot X_c(\Omega)$$

where $|\Omega| < \frac{\pi}{T}$.

Therefore, an equivalent continuous-time system for the entire DSP system can be described as follows: 9

Figure 4.18: An equivalent continuous LTI system.

where

$$H_{\text{eff}}(\Omega) = \begin{cases} H\left(e^{j\Omega T}\right), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{elsewhere} \end{cases}$$

⁹Be reminded that $H(e^{j\Omega T})$ is periodic.

Example 4.1

Consider a discrete LTI system with the frequency response $H\left(e^{j\omega}\right)$ of the following form:

Figure 4.19: The frequency response of a discrete LTI system.

Then, since

$$H_{\text{eff}}(\Omega) = H\left(e^{j\Omega T}\right), \quad |\Omega| < \frac{\pi}{T}$$

we have the equivalent continuous LTI system with the following transfer function:

$$H_{\text{eff}}(\Omega) = H\left(e^{j\Omega T}\right) = \begin{cases} 1. & |\Omega T| \le \omega_c \quad (\text{or } |\Omega| \le \frac{\omega_c}{T}) \\ 0, & \text{elsewhere} \end{cases}$$

Figure 4.20: The transfer function of the equivalent continuous LTI system.

And the following two systems are equivalent in operation:

Figure 4.21: The equivalent DSP and continuous LTI systems.

Illustration:

Suppose $x_c(t)$ is a bandlimited signal with $X_c(\Omega)$ of:

Figure 4.22: The F.T of a bandlimited continous signal $x_c(t)$

and let T be chosen \ni : $\Omega_N > \frac{\omega_c}{T} = \Omega_c$ where ω_c is given. ¹⁰

(1) Continuous system:

where $\Omega_c \stackrel{\Delta}{=} \frac{\omega_c}{T}$ and $T \cdot \Omega_N > \omega_c$ by assumption

Figure 4.23: The output spectrum $Y_r(\Omega)$ through continuous system.

 $^{^{10}}$ This determines the overall system's characteristics, i.e. some portions of the input frequencies are cut off.

(2) Discrete(DSP) system:

Figure 4.24: The output spectrum $Y_r(\Omega)$ through DSP system.

Notice that we have the same result !!!

NOTE:

The cut-off frequency of the effective continuous system depends both on ω_c and T (sampling period) via:

$$\Omega_c = \frac{\omega_c}{T}$$

 \implies With a given (fixed) discrete system w/ specific ω_c , we can implement an equivalent continuous system w/ a varying cut-off frequency (Ω_c) by adjusting the sampling period T, i.e. :

$$\Omega_{c}\propto \frac{1}{T}$$

(e.g.) Choose $T \ni : T \cdot \Omega_N < \omega_c$ in the previous example, then the equivalent continuous system becomes:

Figure 4.25: The effective conti-system with different T.

and in this case, we expect:

$$y_r(t) = x_c(t)$$

Assignment: Problem 3.11

4.4.2 Impulse invariant systems

We are given an analog system with $H_c(\Omega)$, and want to design an equivalent discrete system: ¹¹

Figure 4.26: The concept of the impulse invariant systems.

Objective: Find h[n] in terms of sampled version of $h_c(t)$.

Recall that

$$H_c(\Omega) = \begin{cases} H\left(e^{j\Omega T}\right), & |\Omega| < \frac{\pi}{T} \\ 0, & \text{elsewhere} \end{cases}$$

Let $\omega = \Omega T$, then we have:

$$H\left(e^{j\omega}\right) = H_c\left(\frac{\omega}{T}\right), \quad |\omega| < \pi \quad (\text{period} = 2\pi)$$

$$(4.6)$$

¹¹This is converse to the concept discussed in the previous section, i.e. the effective continuous system.

Now, let the sampled (T) version of the impulse response $h_c(t)$ be $h_d[n]$, i.e. $h_d[n] = h_c(nT)$, then:

$$H_d\left(e^{j\omega}\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty} H_c\left(\frac{\omega}{T} - k\frac{2\pi}{T}\right)$$

or

$$H_d\left(e^{j\omega}\right) = \frac{1}{T}H_c\left(\frac{\omega}{T}\right), \quad |\omega| < \pi \tag{4.7}$$

Comparing (4.6) and (4.7), we get:

$$H\left(e^{j\omega}\right) = T \cdot H_d\left(e^{j\omega}\right)$$

and by taking the inverse DTFT, we obtain:

$$\xrightarrow{F^{-1}} \quad h[n] \left(=T \cdot h_d[n]\right) = T \cdot h_c(nT)$$

 \implies The impulse response h[n] of the equivalent discrete system is a *scaled*, sampled version of the impulse response $h_c(t)$ of the continuous system.

 $\implies h[n]$ is called the impulse invariant version of the continuous systrem!!!

4.5 Continuous-time processing of discrete-time signals

Following discussion are not typically used to implement discrete systems, but its theoretical analysis provides useful interpretations and insights for discrete systems.....

General block diagram:

where
$$Y\left(e^{j\omega}\right) = H\left(e^{j\omega}\right) \cdot X\left(e^{j\omega}\right)$$

Figure 4.27: A conti-system and its equivalent discrete system.

We assume that:

- (i) $X_c(\Omega) = 0$, $|\Omega| \ge \frac{\pi}{T}$ (bandlimited) ¹²
- (ii) $H_r(\Omega)$ is an ideal LPF with gain of T, and $\Omega_c = \frac{\pi}{T}$.

¹²Therefore, $Y_c(\Omega) = 0$, $|\Omega| \ge \frac{\pi}{T}$ as well.

Then, we have the following input/output relationships for each part of the overall continuous system:

(1) D/C converter: 13

$$\begin{cases} x_c(t) = \sum_{n=-\infty}^{\infty} x[n] \operatorname{sinc}\left(\frac{t-nT}{T}\right) & : \text{ time} \\ X_c(\Omega) = T \cdot X\left(e^{j\Omega T}\right), \quad |\Omega| < \frac{\pi}{T} & : \text{ frequency} \end{cases}$$
(4.8)

(2) C/D converter: 14

$$\begin{cases} y_c(t) = \sum_{n=-\infty}^{\infty} y[n] \operatorname{sinc}\left(\frac{t-nT}{T}\right) & : \text{ time} \\ Y\left(e^{j\omega}\right) = \frac{1}{T} Y_c\left(\frac{\omega}{T}\right), \quad |\omega| < \pi & : \text{ frequency} \end{cases}$$
(4.9)

(3) Conti-system:

$$\begin{cases} y_c(t) = h_c(t) * x_c(t) & : \text{ time} \\ Y_c(\Omega) = H_c(\Omega) \cdot X_c(\Omega) & : \text{ frequency} \end{cases}$$
(4.10)

Inserting (4.8) and (4.10) into (4.9), we get:

$$Y\left(e^{j\omega}\right) = \frac{1}{T}Y_{c}\left(\frac{\omega}{T}\right)$$
$$= \frac{1}{T}H_{c}\left(\frac{\omega}{T}\right)X_{c}\left(\frac{\omega}{T}\right)$$
$$= \frac{1}{T}H_{c}\left(\frac{\omega}{T}\right)TX\left(e^{j\omega}\right)$$
$$= H_{c}\left(\frac{\omega}{T}\right)X\left(e^{j\omega}\right), \quad |\omega| < \pi$$

: equivalent I/O relationship for the discrete system

¹³Note that $X_c(\Omega) = H_r(\Omega) \cdot X(e^{j\Omega T})$, where $H_r(\Omega) = 0$ for $|\Omega| > \frac{\pi}{T}$. ¹⁴In this case, $y[n] = y_c(nT)$ and $Y(e^{j\omega}) = \frac{1}{T} \sum_{k=-\infty}^{\infty} Y_c\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$ which is periodic in $\omega \ll/2$ period 2π .

Therefore, we have:

$$H\left(e^{j\omega}\right) = H_c\left(\frac{\omega}{T}\right), \quad |\omega| < \pi \quad \text{periodic } (2\pi)$$

OR

$$H_c(\Omega) = H\left(e^{j\Omega T}\right), \quad |\Omega| < \frac{\pi}{T}$$

Example 4.2

Consider a discrete system w/ frequency response of:

$$H\left(e^{j\omega}\right) = e^{-j\omega\Delta}, \qquad |\omega| < \pi$$

Then, the impulse response is:

$$h[n] = \delta[n - \Delta]$$

and the i/o of the system can be represented as:

$$y[n] = x[n - \Delta]$$

which is the *ideal delay*.

Figure 4.28: A DLTI system(e.g. ideal delay).

If Δ is an integer, y[n] is just a shifted version of x[n], but if Δ is not an integer, how do we interpret this?¹⁵

Solution:

In this case, the equivalent continuous system becomes:

$$H_c(\Omega) = H\left(e^{j\Omega T}\right) = e^{-j\Omega\delta T}, \quad |\Omega| < \frac{\pi}{T}$$

¹⁵Notice that $x[n-\Delta]$ does not have any formal meaning by itself when δ is not an integer.

Corresponding (continuous) impulse response and the output signals are respectively:

$$h_c(t) = \delta(t - \Delta T)$$

 $y_c(t) = x_c(t - \Delta T)$

and if we take samples of $y_c(t)$ with sampling period T(i.e. C/D conversion), we obtain y[n].

(e.g.) If $\delta = \frac{1}{2}$, then:

$$y_c(t) = x_c(t - \frac{T}{2}) \xrightarrow{(T)} y[n]$$
 (: C/D conversion)

Figure 4.29: y[n] sampled from $y_c(t)$.

Therefore, we can interprete $y[n] = x[n - \Delta]$, where Δ is not an integer, as a sampled sequence of $x_c(t - \Delta T) = y_c(t)!!!$

(Although $y[n] = x[n - \Delta]$ by itself does not have any meaning.....)

4.6 Changing the sampling rate using discretetime processing

Objective: We want to change the sampling rate from T_1 to T_2

- 1. $T_2 = M \cdot T_1$ where M is an integer.
- 2. $T_2 = 1/L \cdot T_1$ where L is an integer.
- 3. $T_2 = \alpha \cdot T_1$ where α is a real number.

Ordinary way: ¹⁶

Figure 4.30: Changing sampling period from T_1 to T_2 .

Question: How do we get $x_2[n]$ directly from $x_1[n]$? (How is $X_2(e^{j\omega})$ related to $X_1(e^{j\omega})$ in frequency domain?)

 $^{^{16}\}rm Note$ that in this way, we cannot accomplish exact change of sampling rate, since C/D and D/C are imperfect operations in practice.

4.6.1 Reduction by an integer factor (downsampling or deciamtion)

Figure 4.31: Downsampling: Decimation by an integer factor.

(cf.) This system is called the *(sampling rate)* "compressor" : reampling.

Remark:

Suppose $X_c(\Omega) = 0$, $|\Omega| > \Omega_N$, then $x_c(t)$ can be completely recovered from $x_d[n]$ **IF:**

$$\frac{2\pi}{T_2} = \frac{2\pi}{M \cdot T_1} > \Omega_N$$

i.e. $\frac{\pi}{T_1} > M \cdot \Omega_N$
 $\Rightarrow \quad \frac{2\pi}{T_1} > M \cdot (2\Omega_N)$

Therefore, the original sampling rate must be at least M times the Nyquist rate!!!

Frequency domain relation: $\{X(e^{j\omega}) \text{ vs. } X_d(e^{j\omega})\}$

$$X\left(e^{j\omega}\right) = \frac{1}{T_1} \sum_{k=-\infty}^{\infty} X_c \left(\frac{\omega}{T_1} - \frac{2\pi k}{T_1}\right)$$
$$X_d\left(e^{j\omega}\right) = \frac{1}{T_2} \sum_{r=-\infty}^{\infty} X_c \left(\frac{\omega}{T_2} - \frac{2\pi r}{T_2}\right)$$
$$= \frac{1}{MT_1} \sum_{r=-\infty}^{\infty} X_c \left(\frac{\omega}{MT_1} - \frac{2\pi r}{MT_1}\right)$$

Let $r = i + k \cdot M$, where $0 \le i \le M - 1$, and $-\infty < k < \infty$, then $-\infty < r < \infty$.

(cf.)

Figure 4.32: Change of integer variable: r = i + kM.

Therefore, we have:

$$X_{d}\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} \left\{ \frac{1}{T_{1}} \sum_{k=-\infty}^{\infty} X_{c}\left(\frac{\omega}{MT_{1}} - \frac{2\pi k}{T_{1}} - \frac{2\pi i}{MT_{1}}\right) \right\}$$
$$= \frac{1}{M} \sum_{i=0}^{M-1} \left\{ \frac{1}{T_{1}} \sum_{k=-\infty}^{\infty} X_{c}\left(\frac{\omega - 2\pi i}{MT_{1}} - \frac{2\pi k}{T_{1}}\right) \right\}$$
$$= \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j\frac{\omega - 2\pi i}{M}}\right)$$

: M copies of $\frac{1}{M}X(e^{j\omega})$ frequency scaled by M and shifted by $2\pi i$, $(i = 0, 1, 2, \dots, M-1)$

Example 4.3

Suppose $x_c(t)$ is bandlimited by $X_c(\Omega) =$, $|\Omega| > \Omega_N$, and let the sampling period T be chosen such that: ¹⁷

$$\frac{2\pi}{T} = 4 \cdot \Omega_N$$
 (i.e. $T = \frac{\pi}{2\Omega_N}$)

Figure 4.33: A bandlimited $X_c(\Omega)$ w/ max imum frequency of Ω_N .

Figure 4.34: Downsampler by M.

(1) Case of M = 2:

The original sampled sequence x[n] has the following spectrum:

$$X\left(e^{j\omega}\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty}X_c\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$$

where
$$\omega_N = \Omega_N T = \Omega_N \cdot \frac{\pi}{2\Omega_N} = \frac{\pi}{2}$$

Figure 4.35: Spectrum $X(e^{j\omega})$.

¹⁷Notice that the sampling rate is twice the Nyuquist rate, i.e. $\frac{2\pi}{T} = 2 \cdot (2\Omega_N)$.

After downsampling (M = 2), the decimated spectrum would be: ¹⁸

$$X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j\frac{\omega-2\pi i}{M}}\right)$$
$$= \frac{1}{2} \sum_{i=0}^{1} X\left(e^{j\frac{\omega-2\pi i}{2}}\right)$$
$$= \begin{cases} \frac{1}{2} X\left(e^{j\frac{\omega}{2}}\right), & i=0\\ \frac{1}{2} X\left(e^{j\frac{\omega}{2}}\right), & i=1 \end{cases}$$

Figure 4.36: Spectrum $X_d (e^{j\omega})$.

Remark:

Notice that the aliasing does not occurr, since the original sampling rate satisfies: $\frac{2\pi}{T} \ge M \cdot (2\Omega_N) = 4\Omega_N$.

General condition to avoid aliasing by downsampling by M:

$$\Omega_s = \frac{2\pi}{T} \ge M \cdot (2\Omega_N)$$
$$\longrightarrow \quad \frac{2\pi}{T} \ge M \cdot 2 \cdot \frac{\omega_N}{T}$$
$$\longrightarrow \quad \omega_N \le \frac{\pi}{M}$$

i.e.: The maximum (highest) frequency ω_N in x[n] should be less than $\frac{\pi}{M}$ (rad).

¹⁸Note that $\omega' = M\omega = 2\omega$ in this case.

(2) Case of M = 3: ¹⁹

The original sampled sequence x[n] is the same as before:

$$X\left(e^{j\omega}\right) = \frac{1}{T}\sum_{k=-\infty}^{\infty} X_c\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)$$

where
$$\omega_N = \Omega_N T = \Omega_N \cdot \frac{\pi}{2\Omega_N} = \frac{\pi}{2}$$

Figure 4.37: Spectrum
$$X(e^{j\omega})$$
.

After downsampling (M = 3), the decimated spectrum would be: ²⁰

$$X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j\frac{\omega-2\pi i}{M}}\right)$$
$$= \frac{1}{3} \sum_{i=0}^2 X\left(e^{j\frac{\omega-2\pi i}{3}}\right)$$
$$= \begin{cases} \frac{1}{3} X\left(e^{j\frac{\omega}{3}}\right), & i=0\\ \frac{1}{3} X\left(e^{j\frac{\omega-2\pi}{3}}\right), & i=1\\ \frac{1}{3} X\left(e^{j\frac{\omega-4\pi}{3}}\right), & i=2\end{cases}$$

Figure 4.38: Spectrum $X_d(e^{j\omega})$.

Remark:

Notice that the aliasing does really occurrs!!!

¹⁹In this case, aliasing will occur since $\omega_N = \frac{\pi}{2} > \frac{\pi}{3} = \frac{\pi}{M}$. ²⁰Note that $\omega' = M\omega = 3\omega$ in this case.

Remark:

To avoid the aliasing phenomenon by downsampling, we must sacrifice some portions of signal bandwidth by low pass filtering:

Since the highest frequency for x[n] is $\omega_N = \frac{\pi}{M}$ (rad), in order to avoid aliasing by downsampling (M), we first pass x[n] through a LPF with the following frequency response $H_d(e^{j\omega})$:

Figure 4.39: The pre-filter $H_d(e^{j\omega})$: period= 2π .

Figure 4.40: The block diagram of "decimator".

Illustration:

Figure 4.41: The spectra of signals during decimation process.

Note:

Notice that $\tilde{x}_d[n]$ corresponds to the sampled version of $\tilde{x}_c(t)$, which is the output of $x_c(t)$ throught a LPF w/ following transfer function, where the cutoff frequency is $\Omega_M = \frac{\pi}{T \cdot M}$ (rad/sec):

Figure 4.42: The continuous counterpart of $\tilde{x}_d[n]$.

4.6.2 Increasing by an integer factor (upsampling or interpolation)

Figure 4.43: Upsampling: Interpolation by an integer factor.

(cf.) This system is called the *(sampling rate)* "expander": i.e., increasing the # of points(samples) by L.

Illustration:

Let $x_c(t)$ be as before, and assume that the sampling rate has been taken \ni : $\frac{2\pi}{T_1} = 2\Omega_N$, i.e. $\Omega_N = \frac{\pi}{T_1}$: which means that the sampling period T_1 is chosen just to avoid aliasing!

Suppose L = 2, then we expect that the desired $x_i[n]$ should have the following spectrum, where:

$$X_i\left(e^{j\omega}\right) = \frac{1}{T_2}\sum_{k=-\infty}^{\infty} X_c\left(\frac{\omega}{T_2} - \frac{2\pi k}{T_2}\right)$$

Figure 4.44: The desired interpolated spectrum $X_i(e^{j\omega})$.

(1) Analysis (frequency domain) :

Let's define:

$$x_e[n] \triangleq \begin{cases} x\left[\frac{n}{L}\right], & n = k \cdot L \\ 0, & n \neq k \cdot L \end{cases}$$
$$= \sum_{k=-\infty}^{\infty} x[k]\delta[n-k \cdot L]$$

(cf.) Note that time axis n is scaled bt $\frac{1}{L}$ for expansion.

Figure 4.45: Example of expansion for L = 2.

Taking the DTFT of the expanded sequence $x_e[n]$, we obtain:

$$X_e\left(e^{j\omega}\right) = F\left\{x_e[n]\right\} = \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega kL}$$
$$\stackrel{\Delta}{=} X\left(e^{j\omega L}\right)$$

: frequency scaled version of $X(e^{j\omega})$ (compressed by L)

Figure 4.46: The spectra for the process of upsampling when L = 2.

(2) Analysis (time domain) : interpolation

This is for partial verification of $x_i[n] = x_c(T_2n)$ for n = kL:

Figure 4.47: Example of sequence for upsampling when L = 2.

Notice that the impulse response of the discrete LPF is as follows:

$$h_{i}[n] = F^{-1} \left\{ H_{i}\left(e^{j\omega}\right) \right\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{i}\left(e^{j\omega}\right) e^{j\omega n} d\omega$$

$$\vdots \quad \text{(assignment)}$$

$$=$$
 sinc $\left[\frac{n}{L}\right]$

Note: Check that $h_i[n]$ has the following characteristics:

$$h_i[n] = \frac{\sin\left(\frac{\pi n}{L}\right)}{\frac{\pi n}{L}} = \begin{cases} 1, & n = 0\\ 0, & n = k \cdot L \end{cases}$$

Figure 4.48: The impulse response $h_i[n]$ when L = 2.

Since

$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-kL]$$

we have:

$$x_i[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h_i[n-kL]$$
$$= \sum_{k=-\infty}^{\infty} x[k] \cdot \operatorname{sinc}\left[\frac{n-kL}{L}\right]$$

: sinc interpolation

$$\stackrel{\text{or}}{=} \sum_{k=-\infty}^{\infty} x[k] \cdot \operatorname{sinc}\left[k - \frac{n}{L}\right]$$

Remark:

Note that when n = kL (i.e. $k = \frac{n}{L}$) we have:

$$x_i[n] = x \left[\frac{n}{L}\right]$$

as we eapected!!!

(cf.) In fact,

$$x_i[n] = x_c\left(\frac{T_1}{L}n\right) = x_c(T_2 \cdot n)$$

from the analysis in frequency domain in (1).

Practical consideration (Approximation)

Since ideal LPF cannot be implemented in practice, we replace $h_i[n]$ with $h_{\text{lin}}[n]$ defined as:

$$h_{\text{lin}}[n] \stackrel{\Delta}{=} \begin{cases} 1 - \frac{|n|}{L}, & |n| < L \\ 0, & \text{elsewhere} \end{cases}$$

(e.g.) L = 3:

Figure 4.49: The linear approximation of the ideal LPF's impulse response $h_i[n]$.

Then,

$$x_{\lim}[n] = \sum_{k=-\infty}^{\infty} x[k]h_{\lim}[n-kL]$$

: lineal interpolation

⇒ Some errors must naturally occur by using $h_{\text{lin}}[n]$ in place of $h_i[n]$.

Note:

(i) $h_{\lim}[n]$ has the same characteristics as $h_i[n]$ such that:

$$h_{\text{lin}}[n] = \begin{cases} 1, & n = 0\\ \\ 0, & n = k \cdot L \qquad (\text{since } |n| > L) \end{cases}$$

(ii) The DTFT of $h_{\mbox{lin}}[n]$ is as follows: (proof: assignment)

$$H_{\text{lin}}\left(e^{j\omega}\right) = \frac{1}{L} \left\{\frac{\sin\left(\omega L/2\right)}{\sin\left(\omega/2\right)}\right\}^2$$

Figure 4.50: The linear approximation $H_{\text{lin}}(e^{j\omega})$ and $H_i(e^{j\omega})$.

4.6.3 Changing by non-integer factor (upsampling and downsampling)

By combining the *decimator* and the *interpolator*, we can achieve any desired sampling rates, i.e.

where $\frac{M}{L}$ could be any rational real number

Figure 4.51: Combination of decimator and interpolator.

Remark:

Since $H_i(e^{j\omega})$ and $H_d(e^{j\omega})$ are in cascade, we can merge (combine) two LPF's into one, i.e.:

Figure 4.52: Combination of decimator and interpolator w/ single LPF.

- (i) M > L: downsampling
- (ii) M < L: upsampling

4.7 Practical considerations

Practical restrictions on C/D and D/C:

- (1) $x_c(t)$ is not precisely bandlimited.
- (2) Ideal (analog) filters cannot be realized.
- (3) C/D and D/C converters can only be approximated due to limitations on digital hardwares (i.e. quantization) : replaced by A/D and D/A converters.

4.7.1 Prefiltering to avoid aliasing

Necessity: (two-fold)

- (i) $x_c(t)$ is not usually bandlimited, i.e. $\Omega_N \gg \frac{\Omega_s}{2}$, where Ω_N is the maximum frequency of $x_c(t)$ and Ω_s is the sampling frequency that is fixed by the given hardware.
- (ii) The existence of wideband additive noise, even though $x_c(t)$ is bandlimited.

 \implies In these situations, we must use a prefilter before C/D conversion to avoid aliasing phenomenon forcing the frequencies of the input signal less than one-half $(\frac{1}{2})$ of the sampling frequency.

 \implies called **anti-aliasing filter**: (*ideal*)

$$H_{aa}(\Omega) = \begin{cases} 1, & |\Omega| \le \Omega_c \le \frac{\pi}{T} = \frac{\Omega_s}{2} \\ 0, & |\Omega| > \Omega_c \end{cases}$$

Remark: In practice, this anti-aliasing filter should also be approximated.

Figure 4.53: An anti-aliasing filter.

(cf.) Notice that $H_2(\Omega)$ can further reduce the effect of the noise compared to $H_1(\Omega)$ \longrightarrow higher SNR!

Example 4.4

Speech signal processing:

Figure 4.54: An anti-aliasing filter for audible signals.

Typically, we have:

 $x_c(t)$: $4 \sim 20 \text{KHz}$

 $x_a(t)$: $3 \sim 4 \text{KHz}$

and $x_a(t)$ is usually sufficient for intelligibility.

Advantage: in addition to anti-aliasing effect We can reduce the sampling rate from T_2 to T_1 where $T_2 \ll T_1$ \implies we can reduce the number of samples (or data) \implies we can speed up the processing time \implies we can utilize less expensive hardwares

where

$$T_2 < \frac{1}{2 \times 2 \times 10^4} (\mathrm{sec})$$

$$T_1 < \frac{1}{2 \times 4 \times 10^3} (\text{sec})$$

and

 $T_2 \ll T_1$

Block diagram:

Figure 4.55: A DSP system including anti-aliasing filter.

where

$$H_{eff}(\Omega) = \begin{cases} H_{aa}(\Omega) \cdot H\left(e^{j\Omega T}\right), & |\Omega| \leq \frac{\pi}{T} \\ 0, & |\Omega| > \frac{\pi}{T} \end{cases}$$

This is because the C/D, DLTI, and D/C parts are equivalent to a continuous system $H_e(\Omega) \ni$:

$$H_e(\Omega) = H\left(e^{j\Omega T}\right), \quad |\Omega| \le \frac{\pi}{T}$$

(cf.) Therefore, $H_{aa}(\Omega)$ should be considered as another design factor for the overall system.

4.7.2 Analog to digital (A/D) conversion

We must represent each sample of x[n] with finite precision, since we only have limited number of bits to be used for expressing x[n].

\implies quantization

Block diagram: (concept)

Figure 4.56: Process of A/D conversion.

Illustration:

Figure 4.57: The output of the sample and hold circuit.

- \implies For every T seconds, each sample is converted into a binary code representing quantized amplitude. (using a clock of period T)
- \implies Since A/D conversion is not instantaneous, each sample must be held constant until the next sample comes along. (necessaty of holding)
- \implies A/D conversion for each sample must be completed within T seconds. (speed limit)

(cf.) As T becomes smaller, we need higher speed A/D converting hardware which will increase the cost!!!

Figure 4.58: The sample and hold system.

where

$$h_o(t) = \begin{cases} 1, & 0 < t < T \\ \\ 0, & \text{elsewhere} \end{cases}$$

Figure 4.59: The impulse response $h_o(t)$ of the holding system.

$$x_o(t) = x_s(t) * h_o(t)$$

= $\left\{\sum_{n=-\infty}^{\infty} x[n]\delta(t-nT)\right\} * h_o(t)$
= $\sum_{n=-\infty}^{\infty} x[n] \left\{\delta(t-nT) * h_o(t)\right\}$
= $\sum_{n=-\infty}^{\infty} x[n]h_o(t-nT)$

: well matched with $x_o(t)$ in illustration

Figure 4.60: Detailed procedure of A/D conversion.

(i) Quantizer:

Transforms (or maps) the input sample x[n] into one of a *finite set* of prescribed values.

 $\hat{x}[n] = Q(x[n]):$: called *quantized sample*

 \implies Each sample value x[n] should be rounded to the nearest quantization level.

(cf.) We only consider uniformly spaced quatization level.

(ii) Coder:

Represents each quantized sample in a binary codeword.

Example 4.5

A/D conversion with 3bit machine using 2's complement code and binary offset code, where

 $\left\{ \begin{array}{l} \mbox{number of quantization level} = 8 \\ (B+1)\mbox{bit coder with } B = 2 \ \ (\mbox{since } 2^3 = 8) \end{array} \right.$

Figure 4.61: A/D conversion with 3-bit machine.

Notes:

- (i) Note that the MSB represents the *sign* of the amplitude in both of the 2's complement code and the binary offset code.
- (ii) X_m is called the *full scale level* of the A/D converter.

Remarks:

- (a) Usually the number of quantization level is a power of 2 (i.e. $2^{B+1} = even num-ber$), and with even number of levels, we cannot have both:
 - (i) level of zero amplitude
 - (ii) equal number of positive and negative levels

simultaneously.

 \implies But as B gets larger, the difference becomes negligible.

(b) Any coding scheme may be used, but we want to use a binary code that permits us to do *arithmetic* directly with the codeword.

(i.e. each code represents a *scaled*(both in sign and magnitude) expression of the quantized sample.)

 \implies Typical coding scheme used mostly

: Two's complement binary number system

$$\hat{x}_B[n] = a_0 a_1 a_2 \dots a_B$$

where $a_i = 0, 1$ for $i = 0, 1, 2, \dots, B$, and its *scaled* associated value is:

$$-1 \leq \text{value of } \hat{x}_B[n] = -a_0 \cdot 2^0 + \sum_{k=1}^B a_k \cdot 2^{-k} < 1$$

Notice that the value of the summation in above equation is in the range of [0, 1).

(cf.) The MSB a_0 represents the sign of value:

$$a_0 = \begin{cases} 0 & \longrightarrow & + \\ \\ 1 & \longrightarrow & - \end{cases}$$

(c) X_m is called the *full scale level* of A/D converter. (e.g. $X_m = 10, 5, \text{ or } 1 \text{ volt }$)

Corresponding step size Δ is then:

$$\Delta = \frac{2X_m}{2^{B+1}} = \frac{X_m}{2^B}$$

and the relationship between the codeword $(\hat{x}_B[n])$ and the quantized sample $\hat{x}[n]$ is:

$$\hat{x}[n] = X_m \cdot \hat{x}_B[n]$$

Note that since $-1 \leq \hat{x}_B[n] < 1$, we have:

$$-X_m \le \hat{x}[n] < X_m$$

i.e.:

 $\implies \hat{x}_B[n]$ is proportional to $\hat{x}[n]$

 $\implies \hat{x}_B[n]$ is the normalized version of $\hat{x}[n]$

 $\implies \hat{x}_B[n]$ can be directly used for arithmetic!!!!!

Example 4.6

A/D concersion with 3-bit codeword $\hat{x}_B[n]$:

Figure 4.62: A/D conversion and associated codeword $\hat{x}_B[n]$.

4.7.3 Analysis of the quantization error

During the process of quatization, errors inevitably occurs:

 \implies called quantization error $e[n] \ni$:

$$e[n] \stackrel{\Delta}{=} \hat{x}[n] - x[n]$$

and the quantization error is within the following range:

$$-\frac{\Delta}{2} < e[n] \le \frac{\Delta}{2} \tag{4.11}$$

Remarks:

(i) (4.11) is valid only when x[n] is within the dynamic range of the A/D converter;

$$-X_m - \frac{\Delta}{2} < x[n] \le X_m - \frac{\Delta}{2}$$

(ii) Otherwise, $|e[n]| > \frac{\Delta}{2}$ and the sample is called to have been **clipped**.

Mathematical analysis:

The quantization error e[n] is modeled as an additive noise, i.e.

Figure 4.63: Quantization error modeled as an additive noise.

Remarks:

(1) Normally, e[n] is modeled as a stationary random process ²¹, where

$$|e[n]| \le \frac{\Delta}{2}$$

(2) The fidelity of quantization is usually measured by the SNR at the output $\hat{x}[n](=x[n] + e[n] = \text{signal} + \text{noise})$, i.e.

$$\text{SNR} \stackrel{\Delta}{=} 10 \log_{10} \left(\frac{\sigma_x^2}{\sigma_e^2} \right)$$

where

$$\sigma_x^2$$
: signal power
 σ_e^2 : noise power

Since we need backgrounds on random (stochastic) processes in order to analyze the quantization error, we *omit* detailed analyses here, but refer type final result as:

$$\sigma_e^2 = \frac{2^{-2B} \cdot X_m}{12}$$

which is the noise power of the (B + 1) bit quantizer w/ full scale level of X_m . Therefore, the signal-to-noise ration becomes:

SNR =
$$10 \log_{10} \left(\frac{12 \cdot 2^{2B} \sigma_x^2}{X_m^2} \right)$$

= $6.02 \cdot B + 10.8 - 20 \log_{10} \left(\frac{X_m}{\sigma_x} \right)$

Note:

- (a) The higher SNR is equivalent to the less quantization errors.
- (b) As the number of bits (B) increases, SNR increases.
- (c) σ_x (rms amplitude of signal) and X_m should be carefully matched to attain high SNR: **IF**
 - (i) σ_x is too small $(\sigma_x \ll X_m) \longrightarrow \text{SNR}$ decreases
 - (ii) σ_x is too large $(\sigma_x \gg X_m) \longrightarrow$ SNR increases, but clipping occurs i.e. distortion

 $\implies \sigma_x$ should be tuned via amplifier before A/D conversion.

 $^{^{21}\}mathrm{Refer}$ Appendix A.

4.7.4 Digital to analog(D/A) conversion

D/A conversion is a physically realizable counterpart to the D/C conversion:

Figure 4.64: The block diagram of D/A conversion.

Since the analog signal $x_{DA}(t)$ from the D/A converter is the output signal of the zero-order hold system whose impulse response is $h_o(t)$ where the input is a impulse train, we have:

$$\begin{aligned} x_{DA}(t) &= \sum_{n=-\infty}^{\infty} \hat{x}[n]\delta(t-nT) * h_o(t) \\ &= \sum_{n=-\infty}^{\infty} \hat{x}[n]h_o(t-nT) \\ &= \sum_{n=-\infty}^{\infty} (x[n] + e[n])h_o(t-nT) \\ &= \sum_{n=-\infty}^{\infty} x[n]h_o(t-nT) + \sum_{n=-\infty}^{\infty} e[n]h_o(t-nT) \\ &\triangleq x_o(t) + e_o(t) \end{aligned}$$

: signal component + noise component

Figure 4.65: The impulse response $h_o(t)$ and transfer function $H_o(\Omega)$ of zero-order hold system.

Figure 4.66: An example of $x_{DA}(t)$.

Recall: D/C conversion (interpolation or reconstruction)

$$X_r(\Omega) = H_r(\Omega) X\left(e^{j\Omega T}\right)$$
(4.12)

Figure 4.67: D/C conversion w/ ideal reconstruction filter $H_r(\Omega)$.

(cf.) Comparing the ideal reconstruction filter $H_r(\Omega)$ with $H_o(\Omega)$ above, we can notice that the above D/A conversion will (or might) cause some serious distortion!!!

Now, consider:

$$X_{o}(\Omega) = \mathcal{F} \{ x_{o}(t) \} = \mathcal{F} \left\{ \sum_{n=-\infty}^{\infty} x[n]h_{o}(t-nT) \right\}$$
$$= \sum_{n=-\infty}^{\infty} x[n]H_{o}(\Omega)e^{-j\Omega nT}$$
$$= H_{o}(\Omega) \cdot X \left(e^{j\Omega T} \right)$$
(4.13)

Comparing (4.12) and (4.13), we see that $x_{DA}(t)$ should be passed through a *compensated reconstruction filter* $\tilde{H}_r(\Omega)$ defined as:

$$\widetilde{H}_r(\Omega) \stackrel{\Delta}{=} \frac{H_r(\Omega)}{H_o(\Omega)}$$

i.e.:

Figure 4.68: Compenstated D/A conversion.

Then, we have: 22

$$\hat{X}_{r}(\Omega) = X_{DA}(\Omega) \cdot \tilde{H}_{r}(\Omega)$$

$$= [X_{o}(\Omega) + E_{o}(\Omega)] \cdot \tilde{H}_{r}(\Omega)$$

$$= H_{r}(\Omega) \cdot X \left(e^{j\Omega T}\right) + E_{o}(\Omega) \cdot \frac{H_{r}(\Omega)}{H_{o}(\Omega)}$$

$$\stackrel{\Phi}{=} X_{r}(\Omega) + E_{r}(\Omega)$$

$$\stackrel{\mathcal{F}^{-1}}{\Longrightarrow} \hat{x}_{r}(t) = x_{r}(t) + e(t)$$

²²Refer the equation (4.12), which is: $X_r(\Omega) = H_r(\Omega) X(e^{j\Omega T}).$

Note:

- (1) If the sampling period T was chosen to satisfy the Nyquist criterion, then $x_r(t) \equiv x_c(t)$.
- (2) (Why) compensated reconstruction filter: $\tilde{H}_r(\Omega)$?

where

$$H_o(\Omega) = \mathcal{F}\left\{h_o(t)\right\} = \int_0^T e^{-j\omega t} dt = \dots = \frac{\sin\left(\frac{\Omega T}{2}\right)}{\frac{\Omega T}{2}} \cdot e^{-j\frac{\Omega T}{2}}$$

Figure 4.69: Ideal reconstruction filter $H_r(\Omega)$ and the zero-order hold system $H_o(\Omega)$.

In order to compensate the non-ideal characteristics of $H_o(\Omega)$, we add another filter $\tilde{H}_r(\Omega)$ such that:

$$\tilde{H}_r(\Omega) = \frac{H_r(\Omega)}{H_o(\Omega)} = \begin{cases} \frac{\Omega T^2}{2} / \sin\left(\frac{\Omega T}{2}\right) \cdot e^{j\frac{\Omega T}{2}}, & |\Omega| < \frac{\pi}{T} \\ 0, & |\Omega| > \frac{\pi}{T} \end{cases}$$

Figure 4.70: Compensated reconstruction filter $\tilde{H}_r(\Omega)$.

(cf.) Phase compensation cannot be realized... (see p.126 of the textbook for details.)

Summary;

Considering:

- (A) Pre-filtering to avoid aliasing
- (B) A/D conversion
- (C) Quantization (error)
- (D) D/A conversion with compensation

The overall *practical system* for processing continuous signals with discrete system should be in the following form:

Figure 4.71: The practical system for processing continuous signals with discrete system.

4.8 Application of decimation and interpolation to A/D and D/A

In theory, the analog filters $(H_{aa}(\Omega) \text{ and } H_r(\Omega) \text{ are required to have very sharp cutoff characteristics.}^{23}$

- \implies Impractical or very high cost
- \implies Using decimation and interpolation techniques (in discrete systems), we can loosen the cutoff characteristics requirement (on continuous system), and replace the role of continuous filters with discrete counterparts as well.
- \implies Cost effective system design

Methodology:

(1) High sampling rate (far above Nyquist rate): oversampling

 \longrightarrow A very simple lowpass filter $H_{aa}(\Omega)$ can be used, and it can be inexpensive for relatively low bandwidth signals due to possible loose specifications on A/D.

(2) Decimation $(\downarrow M)$

 \longrightarrow Computations can be minimized for discrete systems.

(3) Interpolation $(\uparrow L)$

 \longrightarrow A very simple reconstruction filter $H_r(\Omega)$ can be used.

Block diagram: ²⁴

Figure 4.72: A cost effective DSP system.

 $^{^{23}}$ Continuous(analog) filters contribute the major part of the cost for overall system.

 $^{^{24} \}mathrm{In}$ D/A, the compensated reconstruction filter (continuous) is incorporated into the interpolation filter (discrete).

(cf.) Refer to pp.187 - 188 of the textbook.

Illustration:

Note that T is chosen to be $\frac{\pi}{T} \gg \Omega_N$, i.e. oversampling. Otherwise, if T was chosen \ni : $\frac{\pi}{T} = \Omega_N$, a sharp cutoff for $H_{aa}(\Omega)$ would have been required.

 $H_{aa}(\Omega)$ \downarrow A/D \downarrow Decimation(\downarrow M)

₩

Figure 4.73: An example of cost effective digital signal processing.

DLTI
$$H\left(e^{j\omega}\right)$$
 \Downarrow

Interpolation ($\uparrow L$)

₩

D/A w/ simple reconstruction filter $H_r(\Omega)$

₩

 $\Downarrow Y_r(\Omega)$

Figure 4.74: An example of cost effective digital signal processing.(continued)