
Contents

4 Sampling of Continuous-Time Signals 96
4.1 Periodic sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Analysis of sampling in frequency domain . . . . . . . . . . . . . . . 98
4.3 Reconstruction of a bandlimited signal: Interpolation . . . . . . . . . 103
4.4 Discrete-time processing of continuous signals . . . . . . . . . . . . . 107

4.4.1 Effective (equivalent) continuous system . . . . . . . . . . . . 107
4.4.2 Impulse invariant systems . . . . . . . . . . . . . . . . . . . . 114

4.5 Continuous-time processing of discrete-time signals . . . . . . . . . . 116
4.6 Changing the sampling rate using discrete-time processing . . . . . . 120

4.6.1 Reduction by an integer factor (downsampling or deciamtion) 121
4.6.2 Increasing by an integer factor (upsampling or interpolation) . 127
4.6.3 Changing by non-integer factor (upsampling and downsampling) 133

4.7 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.7.1 Prefiltering to avoid aliasing . . . . . . . . . . . . . . . . . . . 134
4.7.2 Analog to digital (A/D) conversion . . . . . . . . . . . . . . . 137
4.7.3 Analysis of the quantization error . . . . . . . . . . . . . . . . 144
4.7.4 Digital to analog(D/A) conversion . . . . . . . . . . . . . . . . 146

4.8 Application of decimation and interpolation to A/D and D/A . . . . 151

1



Chapter 4

Sampling of Continuous-Time
Signals

4.1 Periodic sampling

Recall: Most of discrete-time signals(i.e. sequences) come from sampling continuous-
time signals...

Figure 4.1: Periodic sampling of xc(t) to yield x[n] = xc(nT ).

T : sampling period(sec)

Ωs
∆
= 2π

T
: sampling frequency(rad/sec)

Figure 4.2: A C/D converter.
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Remarks:

(i) C/D stands for Continouous to Discrete.

(ii) Generally better known A/D (Analog to Digital) converter is an approximation,
since it involes an approximate operation 3: quantization etc..

(iii) C/D operation is NOT invertible in general, but by putting some restrictions
on xc(t), such as bandlimited and so on, we can completely reconstruct xc(t)
from x[n].
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4.2 Analysis of sampling in frequency domain

More detailed representation of C/D conversion is as follows: 1

Figure 4.3: A detailed representation of C/D converter.

Here, the sampling signal s(t) is a train of impulses, i.e.:

s(t) =
∞∑

n=−∞
δ(t− nT )

Figure 4.4: The sampling signal s(t): train of impulses.

Therefore, the sampled signal xs(t) can be expressed as:

xs(t) = xc(t) · s(t)

= xc(t) ·
∞∑

n=−∞
δ(t− nT )

OR
=

∞∑

n=−∞
xc(nT )δ(t− nT )

=
∞∑

n=−∞
x[n]δ(t− nT )

: time domain representation

1Notice that the area of δ(t) is now converted to the magnitude of δ[n].
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We now take the Fourier transform of xs(t), and by the modulation property of F.T.,
we get:

Xs(Ω) =
1

2π
Xc(Ω) ∗ S(Ω)

=
1

2π
Xc(Ω) ∗ 2π

T

∞∑

k=−∞
δ(Ω− kΩs)

=
1

T

∞∑

k=−∞
Xc(Ω− kΩs) (4.1)

(4.2)

: frequency domain representation

Note:

(i) We use the notation Ω(rad/sec) for the frequency of continuous signals, in order
to distinguish it from the discrete frequency ω(rad).

(ii) In above equation, Ωs
∆
= 2π

T
(rad/sec) is the sampling frequency of the C/D

converter.

Graphical Interpretation:

Let a “bandlimited” continuous-time signal xc(t) have the following spectrum:

Figure 4.5: The Fourier transform of a bandlimited signal xc(t).
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Then, the spectrum (i.e. Fourier transform) Xs(Ω) of the sampled signal xs(t) is in
the following form, which is the replica of scaled and shifted Xc(Ω):

1. Case#1: when ΩM ≤ Ωs − ΩM ( i.e. Ωs ≥ 2ΩM)

Figure 4.6: The Fourier transform Xs(Ω) : Ωs ≥ 2ΩM .

2. Case#2: when ΩM > Ωs − ΩM( i.e. Ωs < 2ΩM)

Figure 4.7: The Fourier transform Xs(Ω) : Ωs < 2ΩM .

In this case, the spectrum Xs(Ω) is completely different from that of Xc(Ω),
and it is referred to as “ALIASING”.

=⇒ Only for the first case, i.e. when Ωs ≥ 2ΩM , we can recover (reconstruct) xc(t)
from the sampled signal xs(t) via a low pass filter of which the transfer function H(Ω)
is as follows:

Figure 4.8: The transfer function H(Ω) of the reconstruction filter.

where the cutoff frequency Ωc must satisfy ΩM < Ωc < Ωs − ΩM , and we typically
choose Ωc = Ωs/2.
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Theorem 4.1 NYQUIST SAMPLING THEOREM:

Let xc(t) be a bandlimited signal, i.e.

Xc(Ω) = 0, |Ω| > ΩM

Then, xc(t) is uniquely determined by its samples x[n] = xc(nT ), −∞ < n < ∞,
if:

Ωs ≥ 2 ΩM

where Ωs = 2π
T

is the sampling frequency.

(cf.) We call ΩM and 2ΩM the Nyquist frequency and the Nyquist rate of xc(t)
respectively.

DTFT of x[n] = xc(nT): in terms of Xc(Ω) = F {xc(t)}

Since the sampled signal xs(t) can be represented as follows:

xs(t) =
∞∑

n=−∞
xc(nT )δ(t− nT )

=
∞∑

n=−∞
x[n]δ(t− nT )

By taking the Fourier transform of both sides, we have:

F {xs(t)} = Xs(Ω) ≡
∞∑

n=−∞
x[n]1 · e−jΩnT

∆
= X

(
ejΩT

)

= F {x[n]}ω=ΩT

which renders the following relationship: 2

X
(
ejΩT

)
= Xs(Ω) =

1

T

∞∑

k=−∞
Xc(Ω− kΩs)

where Ωs = 2π
T

(rad/sec).

2Here we quote (4.1), the F.T. of the sampled signal xs(t).
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By applying the change of variable as:

ω = ΩT

we can obtain the following relationship, which represents tha DTFT of the sampled
sequence x[n] in terms of the F.T. of the original continuous signal xc(t):

X
(
ejω

)
=

1

T

∞∑

k=−∞
Xc

(
ω

T
− k

2π

T

)

=
1

T

∞∑

k=−∞
Xc

(
ω − 2πk

T

)

: frequency scaled version of Xs(Ω) via ω = ΩT

(e.g.)

If the continuous frequency is Ω = Ωs(rad/sec), then the corresponding discrete
frequency becomes ω = ΩsT = 2π

T
T = 2π(rad) .

: normalization of frequency axis

Remark: Signal representation in the sampling process:

(1) Time domain:

Figure 4.9: Continuous and sampled signals in time domain.

(2) Frequency domain:

Figure 4.10: Corresponding spectra in frequency domain.
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4.3 Reconstruction of a bandlimited signal: In-
terpolation

Remark:

From the sampling theorem, as long as a sequence x[n] is sampled from xc(t) satisfying
the Nyquist criterion, the original continuous signal xc(t) can be recovered by an ideal
LPF:

Figure 4.11: The block diagram of interpolation: D/C converter.

where the transfer function Hr(Ω) = F(hr(t)) of the reconstruction (ideal lowpass)
filter is as follows:

Figure 4.12: The transfer function of the ideal LPF.

Here, Ωs/2 = π
T

is called the folding frequency, and the cutoff frequency of the recon-
struction filter should meet: 3

ΩM ≤ Ωs < Ωs − ΩM

and WLOG 4 , we usually let Ωc = π
T

= Ωs

2
(rad/sec)

3ΩM represents the maximum frequency in xc(t).
4WLOG: without loss of generality

103



Analysis of D/C in time domain:

Recall that the sampled signal can be represented as:

xs(t) =
∞∑

n=−∞
x[n]δ(t− nT )

: sequence to weighted impulse train

and, since the ideal LPF is an LTI system with impulse response of hr(t)
∆
= L [δ(t)],

we have:

xr(t) =
∞∑

n=−∞
x[n]hr(t− nT )

=
∞∑

n=−∞
x[n] · sinc

(
t− nT

T

)

where 5 6

hr(t) = F−1 {Hr(Ω)}

=
sin

(
πt
T

)

πt
T

∆
= sinc

(
t

T

)

Figure 4.13: The impulse response of the ideal (reconstructing) LPF.

=⇒ We expect xr(t) = xc(t) if the sampling period T satisfies the Nyquist
criterion.

5recall from the Signals and Systems class...
6Note that:

hr(nT ) =
{

1, n = 0
0, n 6= 0
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Interpolation:

Figure 4.14: The interpolation process.

Note: xr(mT ) = xc(mT )

xr(mT ) =
∞∑

n=−∞
xc(nT )hr(mT − nT )

=
∞∑

n=−∞
xc(nT )hr ((m− n)T )

= xc(mT )

which means that the original continuous signal xc(t) and the reconstructed signal
xr(t) exactly match at least at the time instances of integer multiple of the sampling
period T .
In the above deriavtion, we have used the fact:

hr(nT ) =

{
1, n = 0
0, n 6= 0

I/O relationship of D/C in frequency domain:

Figure 4.15: The D/C conversion.
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Recall the interpolation(D/C) formula:

xr(t) =
∞∑

n=−∞
x[n]hr(t− nT )

By taking the Fourier transform, we get:

F [xr(t)]
∆
= Xr(Ω) =

∞∑

n=−∞
x[n]F [hr(t− nT )]

=
∞∑

−∞
x[n]Hr(Ω)e−jΩnT

= Hr(Ω)
∞∑

−∞
x[n]e−jΩnT

= Hr(Ω)F {x[n]}ω=ΩT

= Hr(Ω)X
(
ejΩT

)

i.e.: 7

Xr(Ω) = Hr(Ω) ·X
(
ejΩT

)

recall
= Hr(Ω) ·Xs(Ω)

=⇒ We expect Xr(Ω) = Xc(Ω) if the reconstruction filter Hr(Ω) is an
ideal LPF.

7Notice that Xr(Ω) and Hr(Ω) represent the continuous signal and system respectively, whereas
X

(
ejΩT

)
represents the discrete signal.
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4.4 Discrete-time processing of continuous sig-
nals

4.4.1 Effective (equivalent) continuous system

General block diagram: 8

where Yr(Ω) = Heff(Ω) ·Xc(Ω)

Figure 4.16: A DSP system and its equivalent continuous system.

(cf.)
We assume that C/D and D/C converters have the same sampling period (T ).

Objective: Find Heff(Ω) in terms of H (ejω).

Let

Xc(Ω) = F {xc(t)} , Yr(Ω) = F {yr(t)}

X
(
ejω

)
= F {x[n]} , Y

(
ejω

)
= F {y[n]}

8This is the same as the typical DSP system discussed in Chapter 2.
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First, consider the analog parts( (1) and (3) in above figure):

The input/output relations of the C/D and the D/C converters can be represented
in the frequency domain respectively as follows:

X
(
ejω

)
=

1

T

∞∑

k=−∞
Xc

(
ω

T
− k · 2π

T

)
(4.3)

and

Yr(Ω) = Hr(Ω) · Y
(
ejΩT

)
=





T · Y
(
ejΩT

)
, |Ω| < π

T

0, elsewhere

(4.4)

where we assumed Hr(Ω) is an ideal LPF with gain of T as follows:

Figure 4.17: Hr(Ω) as an ideal LPF.

Now, consider the discrete part( (2) in above figure):

Since the discrete system is an LTI system, we have:

Y
(
ejω

)
= H

(
ejω

)
·X

(
ejω

)
(4.5)

where H (ejω) is the frequency response of the discrete system.

Assuming:

(i) Xc(Ω) = 0, |Ω| ≥ π
T

(bandlimited)

(ii) Hr(Ω) is an ideal LPF with gain of T (reconstruction filter)

(iii) T satisfies the Nyquist criterion, i.e. T < π
ΩM

(sec).
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we have from (4.3), (4.4), and (4.5):

Yr(Ω) = Hr(Ω) · Y
(
ejΩT

)

= Hr(Ω) ·H
(
ejΩT

)
·X

(
ejΩT

)

= Hr(Ω) ·H
(
ejΩT

)
· 1

T

∞∑

k=−∞
Xc

(
Ω− k

2π

T

)

= T ·H
(
ejΩT

)
· 1

T
Xc(Ω)

= H
(
ejΩT

)
·Xc(Ω) where |Ω| < π

T

from which the following relation must hold:

Yr(Ω) = H
(
ejΩT

)
·Xc(Ω) ≡ Heff(Ω) ·Xc(Ω)

where |Ω| < π
T
.

Therefore, an equivalent continuous-time system for the entire DSP system can be
described as follows: 9

Figure 4.18: An equivalent continuous LTI system.

where

Heff(Ω) =





H
(
ejΩT

)
, |Ω| < π

T

0, elsewhere

9Be reminded that H
(
ejΩT

)
is periodic.
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Example 4.1

Consider a discrete LTI system with the frequency response H (ejω) of the fol-
lowing form:

Figure 4.19: The frequency response of a discrete LTI system.

Then, since

Heff(Ω) = H
(
ejΩT

)
, |Ω| < π

T

we have the equivalent continuous LTI system with the following transfer func-
tion:

Heff(Ω) = H
(
ejΩT

)
=





1. |ΩT | ≤ ωc (or |Ω| ≤ ωc

T
)

0, elsewhere

Figure 4.20: The transfer function of the equivalent continuous LTI system.

And the following two systems are equivalent in operation:

Figure 4.21: The equivalent DSP and continuous LTI systems.
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Illustration:

Suppose xc(t) is a bandlimited signal with Xc(Ω) of:

Figure 4.22: The F.T of a bandlimited continous signal xc(t)

and let T be chosen 3: ΩN > ωc

T
= Ωc where ωc is given. 10

(1) Continuous system:

where Ωc
∆
=

ωc

T
and T · ΩN > ωc by assumption

Figure 4.23: The output spectrum Yr(Ω) through continuous system.

10This determines the overall system’s characteristics, i.e. some portions of the input frequencies
are cut off.
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(2) Discrete(DSP) system:

Figure 4.24: The output spectrum Yr(Ω) through DSP system.

Notice that we have the same result !!!

NOTE:
The cut-off frequency of the effective continuous system depends both on ωc and T
(sampling period) via:

Ωc =
ωc

T

=⇒ With a given (fixed) discrete system w/ specific ωc, we can implement
an equivalent continuous system w/ a varying cut-off frequency (Ωc) by
adjusting the sampling period T , i.e. :

Ωc ∝ 1

T
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(e.g.) Choose T 3: T · ΩN < ωc in the previous example, then the equivalent
continuous system becomes:

Figure 4.25: The effective conti-system with different T .

and in this case, we expect:

yr(t) = xc(t)

Assignment: Problem 3.11
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4.4.2 Impulse invariant systems

We are given an analog system with Hc(Ω), and want to design an equivalent discrete
system: 11

Figure 4.26: The concept of the impulse invariant systems.

Objective: Find h[n] in terms of sampled version of hc(t).

Recall that

Hc(Ω) =





H
(
ejΩT

)
, |Ω| < π

T

0, elsewhere

Let ω = ΩT , then we have:

H
(
ejω

)
= Hc

(
ω

T

)
, |ω| < π (period = 2π) (4.6)

11This is converse to the concept discussed in the previous section, i.e. the effective continuous
system.
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Now, let the sampled (T ) version of the impulse response hc(t) be hd[n], i.e. hd[n] =
hc(nT ), then:

Hd

(
ejω

)
=

1

T

∞∑

k=−∞
Hc

(
ω

T
− k

2π

T

)

or

Hd

(
ejω

)
=

1

T
Hc

(
ω

T

)
, |ω| < π (4.7)

Comparing (4.6) and (4.7), we get:

H
(
ejω

)
= T ·Hd

(
ejω

)

and by taking the inverse DTFT, we obtain:

F−1−→ h[n] (= T · hd[n]) = T · hc(nT )

=⇒ The impulse response h[n] of the equivalent discrete system is a scaled,
sampled version of the impulse response hc(t) of the continuous system.

=⇒ h[n] is called the impulse invariant version of the continuous systrem!!!
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4.5 Continuous-time processing of discrete-time
signals

Following discussion are not typically used to implement discrete systems, but its
theoretical analysis provides useful interpretations and insights for discrete systems.....

General block diagram:

where Y
(
ejω

)
= H

(
ejω

)
·X

(
ejω

)

Figure 4.27: A conti-system and its equivalent discrete system.

We assume that:

(i) Xc(Ω) = 0, |Ω| ≥ π
T

(bandlimited) 12

(ii) Hr(Ω) is an ideal LPF with gain of T , and Ωc = π
T
.

12Therefore, Yc(Ω) = 0, |Ω| ≥ π
T as well.
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Then, we have the following input/output relationships for each part of the overall
continuous system:

(1) D/C converter: 13





xc(t) =
∑∞

n=−∞ x[n]sinc
(

t−nT
T

)
: time

Xc(Ω) = T ·X
(
ejΩT

)
, |Ω| < π

T
: frequency

(4.8)

(2) C/D converter: 14





yc(t) =
∑∞

n=−∞ y[n]sinc
(

t−nT
T

)
: time

Y (ejω) = 1
T
Yc

(
ω
T

)
, |ω| < π : frequency

(4.9)

(3) Conti-system:





yc(t) = hc(t) ∗ xc(t) : time

Yc(Ω) = Hc(Ω) ·Xc(Ω) : frequency
(4.10)

Inserting (4.8) and (4.10) into (4.9), we get:

Y
(
ejω

)
=

1

T
Yc

(
ω

T

)

=
1

T
Hc

(
ω

T

)
Xc

(
ω

T

)

=
1

T
Hc

(
ω

T

)
TX

(
ejω

)

= Hc

(
ω

T

)
X

(
ejω

)
, |ω| < π

: equivalent I/O relationship for the discrete system

13Note that Xc(Ω) = Hr(Ω) ·X (
ejΩT

)
, where Hr(Ω) = 0 for |Ω| > π

T .
14In this case, y[n] = yc(nT ) and Y

(
ejω

)
= 1

T

∑∞
k=−∞ Yc

(
ω
T − 2πk

T

)
which is periodic in ω w/

period 2π.
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Therefore, we have:

H
(
ejω

)
= Hc

(
ω

T

)
, |ω| < π periodic (2π)

OR

Hc(Ω) = H
(
ejΩT

)
, |Ω| < π

T

Example 4.2

Consider a discrete system w/ frequency response of:

H
(
ejω

)
= e−jω∆, |ω| < π

Then, the impulse response is:

h[n] = δ[n−∆]

and the i/o of the system can be represented as:

y[n] = x[n−∆]

which is the ideal delay.

Figure 4.28: A DLTI system( e.g. ideal delay).

If ∆ is an integer, y[n] is just a shifted version of x[n], but if ∆ is not an integer,
how do we interprete this? 15

Solution:

In this case, the equivalent continuous system becomes:

Hc(Ω) = H
(
ejΩT

)
= e−jΩδT , |Ω| < π

T

15Notice that x[n−∆] does not have any formal meaning by itself when δ is not an integer.
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Corresponding (continuous) impulse response and the output signals are respec-
tively:

hc(t) = δ(t−∆T )

yc(t) = xc(t−∆T )

and if we take samples of yc(t) with sampling period T (i.e. C/D conversion),
we obtain y[n].

(e.g.) If δ = 1
2
, then:

yc(t) = xc(t− T

2
)

(T )−→ y[n] (: C/D conversion)

Figure 4.29: y[n] sampled from yc(t).

Therefore, we can interprete y[n] = x[n − ∆], where ∆ is not an integer, as a
sampled sequence of xc(t−∆T ) = yc(t)!!!

(Although y[n] = x[n−∆] by itself does not have any meaning.....)
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4.6 Changing the sampling rate using discrete-
time processing

Objective: We want to change the sampling rate from T1 to T2

1. T2 = M · T1 where M is an integer.

2. T2 = 1/L · T1 where L is an integer.

3. T2 = α · T1 where α is a real number.

Ordinary way: 16

Figure 4.30: Changing sampling period from T1 to T2.

Question: How do we get x2[n] directly from x1[n]?

( How is X2 (ejω) related to X1 (ejω) in frequency domain?)

16Note that in this way, we cannot accomplish exact change of sampling rate, since C/D and D/C
are imperfect operations in practice.

120



4.6.1 Reduction by an integer factor (downsampling or de-
ciamtion)

Figure 4.31: Downsampling: Decimation by an integer factor.

(cf.) This system is called the (sampling rate) “compressor” : reampling.

Remark:

Suppose Xc(Ω) = 0, |Ω| > ΩN , then xc(t) can be completely recovered from xd[n]
IF:

2π

T2

=
2π

M · T1

> ΩN

i.e.
π

T1

> M · ΩN

⇒ 2π

T1

> M · (2ΩN)

Therefore, the original sampling rate must be at least M times the Nyquist rate!!!
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Frequency domain relation: {X (ejω) vs. Xd (ejω)}

X
(
ejω

)
=

1

T1

∞∑

k=−∞
Xc

(
ω

T1

− 2πk

T1

)

Xd

(
ejω

)
=

1

T2

∞∑

r=−∞
Xc

(
ω

T2

− 2πr

T2

)

=
1

MT1

∞∑

r=−∞
Xc

(
ω

MT1

− 2πr

MT1

)

Let r = i + k ·M , where 0 ≤ i ≤ M − 1, and −∞ < k < ∞,
then −∞ < r < ∞.

(cf.)

Figure 4.32: Change of integer variable: r = i + kM .

Therefore, we have:

Xd

(
ejω

)
=

1

M

M−1∑

i=0





1

T1

∞∑

k=−∞
Xc

(
ω

MT1

− 2πk

T1

− 2πi

MT1

)



=
1

M

M−1∑

i=0





1

T1

∞∑

k=−∞
Xc

(
ω − 2πi

MT1

− 2πk

T1

)



=
1

M

M−1∑

i=0

X
(
ej ω−2πi

M

)

: M copies of 1
M

X (ejω) frequency scaled by M and shifted by 2πi, (i =
0, 1, 2, . . . , M − 1)
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Example 4.3

Suppose xc(t) is bandlimited by Xc(Ω) =, |Ω| > ΩN , and let the sampling
period T be chosen such that: 17

2π

T
= 4 · ΩN (i.e. T = π

2ΩN
)

Figure 4.33: A bandlimited Xc(Ω) w/ max imum frequency of ΩN .

Figure 4.34: Downsampler by M .

(1) Case of M = 2:

The original sampled sequence x[n] has the followng spectrum:

X
(
ejω

)
=

1

T

∞∑

k=−∞
Xc

(
ω

T
− 2πk

T

)

where ωN = ΩNT = ΩN · π

2ΩN

=
π

2

Figure 4.35: Spectrum X (ejω).

17Notice that the sampling rate is twice the Nyuquist rate, i.e. 2π
T = 2 · (2ΩN ).
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After downsampling(M = 2), the decimated spectrum would be: 18

Xd

(
ejω

)
=

1

M

M−1∑

i=0

X
(
ej ω−2πi

M

)

=
1

2

1∑

i=0

X
(
ej ω−2πi

2

)

=





1
2
X

(
ej ω

2

)
, i = 0

1
2
X

(
ej ω−2π

2

)
, i = 1

Figure 4.36: Spectrum Xd (ejω).

Remark:

Notice that the aliasing does not occurr, since the original sampling rate satis-
fies: 2π

T
≥ M · (2ΩN) = 4ΩN .

General condition to avoid aliasing by downsampling by M :

Ωs =
2π

T
≥ M · (2ΩN)

−→ 2π

T
≥ M · 2 · ωN

T

−→ ωN ≤ π

M

i.e.: The maximum (highest) frequency ωN in x[n] should be less than
π
M

(rad).

18Note that ω
′
= Mω = 2ω in this case.
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(2) Case of M = 3: 19

The original sampled sequence x[n] is the same as before:

X
(
ejω

)
=

1

T

∞∑

k=−∞
Xc

(
ω

T
− 2πk

T

)

where ωN = ΩNT = ΩN · π

2ΩN

=
π

2

Figure 4.37: Spectrum X (ejω).

After downsampling(M = 3), the decimated spectrum would be: 20

Xd

(
ejω

)
=

1

M

M−1∑

i=0

X
(
ej ω−2πi

M

)

=
1

3

2∑

i=0

X
(
ej ω−2πi

3

)

=





1
3
X

(
ej ω

3

)
, i = 0

1
3
X

(
ej ω−2π

3

)
, i = 1

1
3
X

(
ej ω−4π

3

)
, i = 2

Figure 4.38: Spectrum Xd (ejω).

Remark:

Notice that the aliasing does really occurrs!!!

19In this case, aliasing will occur since ωN = π
2 > π

3 = π
M .

20Note that ω
′
= Mω = 3ω in this case.
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Remark:
To avoid the aliasing phenomenon by downsampling, we must sacrifice some portions
of signal bandwidth by low pass filtering:

Since the highest frequency for x[n] is ωN = π
M

(rad), in order to avoid aliasing by
downsampling (M), we first pass x[n] through a LPF with the following frequency
response Hd (ejω):

Figure 4.39: The pre-filter Hd (ejω): period=2π.

Figure 4.40: The block diagram of “decimator”.

Illustration:

Figure 4.41: The spectra of signals during decimation process.
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Note:
Notice that x̃d[n] corresponds to the sampled version of x̃c(t), which is the output of
xc(t) throught a LPF w/ following transfer function, where the cutoff frequency is
ΩM = π

T ·M (rad/sec):

Figure 4.42: The continuous counterpart of x̃d[n].

4.6.2 Increasing by an integer factor (upsampling or inter-
polation)

Figure 4.43: Upsampling: Interpolation by an integer factor.

(cf.) This system is called the (sampling rate) “expander” : i.e., increasing the # of
points(samples) by L.

Illustration:
Let xc(t) be as before, and assume that the sampling rate has been taken 3: 2π

T1
=

2ΩN , i.e. ΩN = π
T1

: which means that the sampling period T1 is chosen just to avoid
aliasing!
Suppose L = 2, then we expect that the desired xi[n] should have the following
spectrum, where:

Xi

(
ejω

)
=

1

T2

∞∑

k=−∞
Xc

(
ω

T2

− 2πk

T2

)

Figure 4.44: The desired interpolated spectrum Xi (e
jω).
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(1) Analysis (frequency domain) :

Let’s define:

xe[n]
∆
=





x
[

n
L

]
, n = k · L

0, n 6= k · L

=
∞∑

k=−∞
x[k]δ[n− k · L]

(cf.) Note that time axis n is scaled bt 1
L

for expansion.

Figure 4.45: Example of expansion for L = 2.

Taking the DTFT of the expanded sequence xe[n], we obtain:

Xe

(
ejω

)
= F {xe[n]} =

∞∑

k=−∞
x[k]e−jωkL

∆
= X

(
ejωL

)

: frequency scaled version of X (ejω)

(compressed by L)

128



Figure 4.46: The spectra for the process of upsampling when L = 2.
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(2) Analysis (time domain) : interpolation

This is for partial verification of xi[n] = xc(T2n) for n = kL:

Figure 4.47: Example of sequence for upsampling when L = 2.

Notice that the impulse response of the discrete LPF is as follows:

hi[n] = F−1
{
Hi

(
ejω

)}
=

1

2π

∫ π

−π
Hi

(
ejω

)
ejωndω

... (assignment)

= sinc
[
n

L

]

Note: Check that hi[n] has the following characteristics:

hi[n] =
sin

(
πn
L

)

πn
L

=





1, n = 0

0, n = k · L

Figure 4.48: The impulse response hi[n] when L = 2.
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Since

xe[n] =
∞∑

k=−∞
x[k]δ[n− kL]

we have:

xi[n] =
∞∑

k=−∞
x[k] · hi[n− kL]

=
∞∑

k=−∞
x[k] · sinc

[
n− kL

L

]

: sinc interpolation

or
=

∞∑

k=−∞
x[k] · sinc

[
k − n

L

]

Remark:

Note that when n = kL (i.e. k = n
L
) we have:

xi[n] = x
[
n

L

]

as we eapected!!!

(cf.) In fact,

xi[n] = xc

(
T1

L
n

)
= xc(T2 · n)

from the analysis in frequency domain in (1).
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Practical consideration (Approximation)

Since ideal LPF cannot be implemented in practice, we replace hi[n] with hlin[n]
defined as:

hlin[n]
∆
=





1− |n|
L

, |n| < L

0, elsewhere

(e.g.) L = 3:

Figure 4.49: The linear approximation of the ideal LPF’s impulse response hi[n].

Then,

xlin[n] =
∞∑

k=−∞
x[k]hlin[n− kL]

: lineal interpolation

⇒ Some errors must naturally occur by using hlin[n] in place of hi[n].

Note:

(i) hlin[n] has the same characteristics as hi[n] such that:

hlin[n] =





1, n = 0

0, n = k · L (since |n| > L)

(ii) The DTFT of hlin[n] is as follows: (proof: assignment)

Hlin

(
ejω

)
=

1

L

{
sin (ωL/2)

sin (ω/2)

}2

Figure 4.50: The linear approximation Hlin (ejω) and Hi (e
jω).
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4.6.3 Changing by non-integer factor (upsampling and down-
sampling)

By combining the decimator and the interpolator, we can achieve any desired sampling
rates, i.e.

where M
L

could be any rational real number

Figure 4.51: Combination of decimator and interpolator.

Remark:

Since Hi (e
jω) and Hd (ejω) are in cascade, we can merge (combine) two LPF’s into

one, i.e.:

Figure 4.52: Combination of decimator and interpolator w/ single LPF.

(i) M > L : downsampling

(ii) M < L : upsampling
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4.7 Practical considerations

Practical restrictions on C/D and D/C:

(1) xc(t) is not precisly bandlimited.

(2) Ideal (analog) filters cannot be realized.

(3) C/D and D/C converters can only be approximated due to limitations on digital
hardwares (i.e. quantization) : replaced by A/D and D/A converters.

4.7.1 Prefiltering to avoid aliasing

Necessity: (two-fold)

(i) xc(t) is not usually bandlimited, i.e. ΩN À Ωs

2
, where ΩN is the maximum

frequency of xc(t) and Ωs is the sampling frequency that is fixed by the given
hardware.

(ii) The existence of wideband additive noise, even though xc(t) is bandlimited.

=⇒ In these situations, we must use a prefilter before C/D conversion to avoid aliasing
phenomenon forcing the frequencies of the input signal less than one-half (1

2
) of the

sampling frequency.

=⇒ called anti-aliasing filter: (ideal)

Haa(Ω) =





1, |Ω| ≤ Ωc ≤ π
T

= Ωs

2

0, |Ω| > Ωc

Remark: In practice, this anti-aliasing filter should also be approximated.
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Figure 4.53: An anti-aliasing filter.

(cf.) Notice that H2(Ω) can further reduce the effect of the noise compared to H1(Ω)
−→ higher SNR!

Example 4.4

Speech signal processing:

Figure 4.54: An anti-aliasing filter for audible signals.

Typically, we have:

xc(t) : 4 ∼ 20KHz

xa(t) : 3 ∼ 4KHz

and xa(t) is usually sufficient for intelligibility.
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Advantage: in addition to anti-aliasing effect

We can reduce the sampling rate from T2 to T1 where T2 ¿ T1

=⇒ we can reduce the number of samples (or data)

=⇒ we can speed up the processing time

=⇒ we can utilize less expensive hardwares

where

T2 <
1

2× 2× 104
(sec)

T1 <
1

2× 4× 103
(sec)

and

T2 ¿ T1

Block diagram:

Figure 4.55: A DSP system including anti-aliasing filter.
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where

Heff (Ω) =





Haa(Ω) ·H
(
ejΩT

)
, |Ω| ≤ π

T

0, |Ω| > π
T

This is because the C/D, DLTI, and D/C parts are equivalent to a continuous system
He(Ω) 3:

He(Ω) = H
(
ejΩT

)
, |Ω| ≤ π

T

(cf.) Therefore, Haa(Ω) should be considered as another design factor for the overall
system.

4.7.2 Analog to digital (A/D) conversion

We must represent each sample of x[n] with finite precision, since we only have limited
number of bits to be used for expressing x[n].

=⇒ quantization

Block diagram: (concept)

Figure 4.56: Process of A/D conversion.
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Illustration:

Figure 4.57: The output of the sample and hold circuit.

=⇒ For every T seconds, each sample is converted into a binary code representing
quantized amplitude. (using a clock of period T )

=⇒ Since A/D conversion is not instantaneous, each sample must be held constant
until the next sample comes along. (necessaty of holding)

=⇒ A/D conversion for each sample must be completed within T seconds.
(speed limit)

(cf.) As T becomes smaller, we need higher speed A/D converting hardware which
will increase the cost!!!
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(1) Analysis of sample and hold: (how to implement)

Figure 4.58: The sample and hold system.

where

ho(t) =





1, 0 < t < T

0, elsewhere

Figure 4.59: The impulse response ho(t) of the holding system.

xo(t) = xs(t) ∗ ho(t)

=

{ ∞∑

n=−∞
x[n]δ(t− nT )

}
∗ ho(t)

=
∞∑

n=−∞
x[n] {δ(t− nT ) ∗ ho(t)}

=
∞∑

n=−∞
x[n]ho(t− nT )

: well matched with xo(t) in illustration
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(2) Mathematical structure of A/D conversion:

Figure 4.60: Detailed procedure of A/D conversion.

(i) Quantizer:

Transforms (or maps) the input sample x[n] into one of a finite set of prescribed
values.

x̂[n] = Q (x[n]) : : called quantized sample

=⇒ Each sample value x[n] should be rounded to the nearest quantization level.

(cf.) We only consider uniformly spaced quatization level.

(ii) Coder:

Represents each quantized sample in a binary codeword.
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Example 4.5

A/D conversion with 3bit machine using 2’s complement code and binary offset
code, where





number of quantization level = 8

(B + 1)bit coder with B = 2 (since 23 = 8)

Figure 4.61: A/D conversion with 3-bit machine.

Notes:

(i) Note that the MSB represents the sign of the amplitude in both of the 2’s
complement code and the binary offset code.

(ii) Xm is called the full scale level of the A/D converter.
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Remarks:

(a) Usually the number of quantization level is a power of 2 (i.e. 2B+1=even num-
ber), and with even number of levels, we cannot have both:

(i) level of zero amplitude

(ii) equal number of positive and negative levels

simultaneously.

=⇒ But as B gets larger, the difference becomes negligible.

(b) Any coding scheme may be used, but we want to use a binary code that permits
us to do arithmetic directly with the codeword.

(i.e. each code represents a scaled(both in sign and magnitude) expression of
the quantized sample.)

=⇒ Typical coding scheme used mostly

: Two’s complement binary number system

x̂B[n] = a0a1a2 . . . . . . aB

where ai = 0, 1 for i = 0, 1, 2, · · · , B, and its scaled associated value is:

−1 ≤ value of x̂B[n] = −a0 · 20 +
B∑

k=1

ak · 2−k < 1

Notice that the value of the summation in above equation is in the range of
[0, 1).

(cf.) The MSB a0 represents the sign of value:

a0 =





0 −→ +

1 −→ −
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(c) Xm is called the full scale level of A/D converter.

(e.g. Xm = 10, 5, or 1 volt )

Corresponding step size ∆ is then:

∆ =
2Xm

2B+1
=

Xm

2B

and the relationship between the codeword (x̂B[n]) and the quantized sample
x̂[n] is:

x̂[n] = Xm · x̂B[n]

Note that since −1 ≤ x̂B[n] < 1, we have:

−Xm ≤ x̂[n] < Xm

i.e.:

=⇒ x̂B[n] is proportional to x̂[n]

=⇒ x̂B[n] is the normalized version of x̂[n]

=⇒ x̂B[n] can be directly used for arithmetic!!!!!

Example 4.6

A/D concersion with 3-bit codeword x̂B[n]:

Figure 4.62: A/D conversion and associated codeword x̂B[n].
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4.7.3 Analysis of the quantization error

During the process of quatization, errors inevitably occurs:

=⇒ called quantization error e[n] 3:

e[n]
∆
= x̂[n]− x[n]

and the quantization error is within the following range:

− ∆

2
< e[n] ≤ ∆

2
(4.11)

Remarks:

(i) (4.11) is valid only when x[n] is within the dynamic range of the A/D converter;

−Xm − ∆

2
< x[n] ≤ Xm − ∆

2

(ii) Otherwise, |e[n]| > ∆
2

and the sample is called to have been clipped.

Mathematical analysis:

The quantization error e[n] is modeled as an additive noise, i.e.

Figure 4.63: Quantization error modeled as an additive noise.
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Remarks:

(1) Normally, e[n] is modeled as a stationary random process 21, where

|e[n]| ≤ ∆

2

(2) The fidelity of quantization is usually measured by the SNR at the output
x̂[n](= x[n] + e[n] = signal + noise), i.e.

SNR
∆
= 10 log10

(
σ2

x

σ2
e

)

where

σ2
x : signal power

σ2
e : noise power

Since we need backgrounds on random (stochastic) processes in order to analyze
the quantization error, we omit detailed analyses here, but refer tyhe final result
as:

σ2
e =

2−2B ·Xm

12

which is the noise power of the (B + 1) bit quantizer w/ full scale level of Xm.

Therefore, the signal-to-noise ration becomes:

SNR = 10 log10

(
12 · 22Bσ2

x

X2
m

)

= 6.02 ·B + 10.8− 20 log10

(
Xm

σx

)

Note:

(a) The higher SNR is equivalent to the less quantization errors.

(b) As the number of bits (B) increases, SNR increases.

(c) σx (rms amplitude of signal) and Xm should be carefully matched to attain high
SNR: IF

(i) σx is too small (σx ¿ Xm) −→ SNR decreases

(ii) σx is too large (σx À Xm) −→ SNR increases, but clipping occurs

i.e. distortion

=⇒ σx should be tuned via amplifier before A/D conversion.

21Refer Appendix A.
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4.7.4 Digital to analog(D/A) conversion

D/A conversion is a physically realizable counterpart to the D/C conversion:

Figure 4.64: The block diagram of D/A conversion.

Since the analog signal xDA(t) from the D/A converter is the output signal of the
zero-order hold system whose impulse response is ho(t) where the input is a impulse
train, we have:

xDA(t) =
∞∑

n=−∞
x̂[n]δ(t− nT ) ∗ ho(t)

=
∞∑

n=−∞
x̂[n]ho(t− nT )

=
∞∑

n=−∞
(x[n] + e[n]) ho(t− nT )

=
∞∑

n=−∞
x[n]ho(t− nT ) +

∞∑

n=−∞
e[n]ho(t− nT )

∆
= xo(t) + eo(t)

: signal component + noise component
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Figure 4.65: The impulse response ho(t) and transfer function Ho(Ω) of zero-order
hold system.

Figure 4.66: An example of xDA(t).

Recall: D/C conversion (interpolation or reconstruction)

Xr(Ω) = Hr(Ω)X
(
ejΩT

)
(4.12)

Figure 4.67: D/C conversion w/ ideal reconstruction filter Hr(Ω).

(cf.) Comparing the ideal reconstruction filter Hr(Ω) with Ho(Ω) above, we can
notice that the above D/A conversion will (or might) cause some serious distortion!!!
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Now, consider:

Xo(Ω) = F {xo(t)} = F
{ ∞∑

n=−∞
x[n]ho(t− nT )

}

=
∞∑

n=−∞
x[n]Ho(Ω)e−jΩnT

= Ho(Ω) ·X
(
ejΩT

)
(4.13)

Comparing (4.12) and (4.13), we see that xDA(t) should be passed through a com-
pensated reconstruction filter H̃r(Ω) defined as:

H̃r(Ω)
∆
=

Hr(Ω)

Ho(Ω)

i.e.:

Figure 4.68: Compenstated D/A conversion.

Then, we have: 22

X̂r(Ω) = XDA(Ω) · H̃r(Ω)

= [Xo(Ω) + Eo(Ω)] · H̃r(Ω)

= Hr(Ω) ·X
(
ejΩT

)
+ Eo(Ω) · Hr(Ω)

Ho(Ω)

∆
= Xr(Ω) + Er(Ω)

F−1

=⇒ x̂r(t) = xr(t) + e(t)

22Refer the equation (4.12), which is: Xr(Ω) = Hr(Ω)X
(
ejΩT

)
.
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Note:

(1) If the sampling period T was chosen to satisfy the Nyquist criterion, then xr(t) ≡
xc(t).

(2) (Why) compensated reconstruction filter: H̃r(Ω) ?

where

Ho(Ω) = F {ho(t)} =
∫ T

0
e−jωtdt = . . . . . . =

sin
(

ΩT
2

)

ΩT
2

· e−j ΩT
2

Figure 4.69: Ideal reconstruction filter Hr(Ω) and the zero-order hold system Ho(Ω).

In order to compensate the non-ideal characteristics of Ho(Ω), we add another
filter H̃r(Ω) such that:

H̃r(Ω) =
Hr(Ω)

Ho(Ω)
=





ΩT 2

2
/ sin

(
ΩT
2

)
· ej ΩT

2 , |Ω| < π
T

0, |Ω| > π
T

Figure 4.70: Compenstated reconstruction filter H̃r(Ω).

(cf.) Phase compensation cannot be realized... (see p.126 of the textbook for
details.)
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Summary;

Considering:

(A) Pre-filtering to avoid aliasing

(B) A/D conversion

(C) Quantization (error)

(D) D/A conversion with compensation

The overall practical system for processing continuous signals with discrete system
should be in the following form:

Figure 4.71: The practical system for processing continuous signals with discrete
system.
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4.8 Application of decimation and interpolation
to A/D and D/A

In theory, the analog filters (Haa(Ω) and Hr(Ω) are required to have very sharp cutoff
characteristics. 23

=⇒ Impractical or very high cost

=⇒ Using decimation and interpolation techniques (in discrete systems), we can
loosen the cutoff characteristics requirement (on continuous system), and
replace the role of continuous filters with discrete counterparts as well.

=⇒ Cost effective system design

Methodology:

(1) High sampling rate (far above Nyquist rate): oversampling

−→ A very simple lowpass filter Haa(Ω) can be used, and it can be inexpensive
for relatively low bandwidth signals due to possible loose specifications on A/D.

(2) Decimation (↓ M)

−→ Computations can be minimized for discrete systems.

(3) Interpolation (↑ L)

−→ A very simple reconstruction filter Hr(Ω) can be used.

Block diagram: 24

Figure 4.72: A cost effective DSP system.

23Continuous(analog) filters contribute the major part of the cost for overall system.
24In D/A, the compensated reconstruction filter(continuous) is incorporated into the interpolation

filter(discrete).
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(cf.) Refer to pp.187 - 188 of the textbook.

Illustration:

Note that T is chosen to be π
T
À ΩN , i.e. oversampling.

Otherwise, if T was chosen 3: π
T

= ΩN , a sharp cutoff for Haa(Ω) would have been
required.

Haa(Ω)

⇓

A/D

⇓

Decimation(↓ M)

⇓

Figure 4.73: An example of cost effective digital signal processing.
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DLTI H
(
ejω

)

⇓

Interpolation(↑ L)

⇓

D/A w/ simple reconstruction filter Hr(Ω)

⇓

⇓

Yr(Ω)

Figure 4.74: An example of cost effective digital signal processing.(continued)
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