Contents

5	Transform Analysis of DLTI Systems			154
	5.1	Intro	luction	154
	5.2	The frequency response of DLTI systems		155
		5.2.1	Ideal frequency selective filters	156
		5.2.2	Phase distortion and delay	158
		5.2.3	Group delay	160
	5.3 System function described by linear constant coefficient differen		m function described by linear constant coefficient difference equa-	
		tion		161
		5.3.1	Stability and causality	162
		5.3.2	Inverse systems	166
		5.3.3	Impulse response for rational system function	170
	5.4 Frequency response for rational system functions		ency response for rational system functions	173
		5.4.1	System characteristics	173
		5.4.2	Frequency response of a single pole or zero	179
		5.4.3	Geometric interpretations on the factor $1 - re^{j\theta}e^{-j\omega}$	182

Chapter 5

Transform Analysis of DLTI Systems

5.1 Introduction

Objective: Analysis of DLTI systems using DTFT and Z-transforms:

Figure 5.1: A DLTI system.

Input/output relationship:

1. Time domain:

$$y[n] = h[n] * x[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$

2. Frequency domain and Z-domain:

$$Y(e^{j\omega}) = H(e^{j\omega}) \cdot X(e^{j\omega})$$
$$Y(z) = H(z) \cdot X(z)$$

where

$$H(e^{j\omega}) = F\{h[n]\} : frequency \ response \ of \ system$$
$$H(z) = Z\{h[n]\} : system \ function \ of \ system$$

5.2 The frequency response of DLTI systems

$$H\left(e^{j\omega}\right) = F\left\{h[n]\right\}$$

The input/output relationship in terms of DTFT for a DLTI system is given by:

$$Y\left(e^{j\omega}\right) = H\left(e^{j\omega}\right) \cdot X\left(e^{j\omega}\right)$$
(5.1)

where

$$H\left(e^{j\omega}\right) = \left|H\left(e^{j\omega}\right)\right|e^{j\Phi_H(e^{j\omega})}$$

and we call:

- (i) $|H(e^{j\omega})|$: magnitude response (or gain)
- (ii) $\Phi_H(e^{j\omega})$: phase response

The i/o relationship in (5.1) can be re-written as:

$$Y(e^{j\omega}) = H(e^{j\omega}) \cdot X(e^{j\omega})$$
$$= |H(e^{j\omega})| e^{j\Phi_H(e^{j\omega})} \cdot |X(e^{j\omega})| e^{j\Phi_X(e^{j\omega})}$$
$$= |H(e^{j\omega})| \cdot |X(e^{j\omega})| e^{j[\Phi_H(e^{j\omega}) + \Phi_H(e^{j\omega})]}$$
$$\triangleq |Y(e^{j\omega})| e^{j\Phi_Y(e^{j\omega})}$$

Therefore, we have the magnitude and phase spectra of the output as:

$$\left|Y\left(e^{j\omega}\right)\right| = \left|H\left(e^{j\omega}\right)\right| \cdot \left|X\left(e^{j\omega}\right)\right|$$
$$\Phi_Y(e^{j\omega}) = \Phi_H(e^{j\omega}) + \Phi_H(e^{j\omega})$$

(A) Ideal LPF:

Figure 5.2: The frequency response of an ideal LPF: $H_{lp}(e^{j\omega})$.

$$H_{lp}(e^{j\omega}) = \begin{cases} 1, & |\omega| < \omega_c \\\\ 0, & \omega_c < |\omega| \le \pi \end{cases}$$

: period = 2π

The impulse response of an ideal LPF is then:

$$h_{lp}[n] = F^{-1} \left\{ H_{lp}(e^{j\omega}) \right\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{lp}(e^{j\omega}) e^{j\omega n} d\omega$$

: (assignment)

 $= \frac{\sin(\omega_c n)}{\pi n}$: for $-\infty < n < \infty$

156

(B) Ideal HPF:

Figure 5.3: The frequency response of an ideal HPF: $H_{hp}(e^{j\omega})$.

$$H_{hp}(e^{j\omega}) = \begin{cases} 0, & |\omega| < \omega_c \\ \\ 1, & \omega_c < |\omega| \le \pi \end{cases}$$

: period = 2π

The impulse response of an ideal HPF is then:

$$h_{hp}[n] = F^{-1} \left\{ H_{hp}(e^{j\omega}) \right\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{hp}(e^{j\omega}) e^{j\omega n} d\omega$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[1 - H_{lp}(e^{j\omega}) \right] e^{j\omega n} d\omega$$
$$= \delta[n] - h_{lp}[n]$$
$$= \delta[n] - \frac{\sin(\omega_c n)}{\pi n}$$
$$: \text{ for } -\infty < n < \infty$$

Remarks:

- (1) Ideal filters above $(h_{lp}[n] \text{ and } h_{hp}[n])$ are non-causal, i.e. $h[n] \neq 0 \quad \forall n$. : physically unrealizable
- (2) Phase response $\Phi_H(e^{j\omega})$ are assumed to be zero $\forall \omega$.
- \implies To make filters to be causal, we have shift the impulse response h[n], and in doing so, non-zero phase response will be introduced...¹

5.2.2 Phase distortion and delay

Consider an ideal delay system : $(n_d \text{ samples delay})$

Figure 5.4: Ideal delay system.

$$h_{id}[n] = \delta[n - n_d]$$

The frequency response of the ideal delay system is then:

$$H_{id}(e^{j\omega}) = F\{h_{id}[n]\} = \sum_{n=-\infty}^{\infty} \delta[n-n_d]e^{-j\omega n}$$
$$= e^{-j\omega n_d}$$

where

(i) $|H_{id}(e^{j\omega})| = 1$ (ii) $\Phi_{H_{id}}(e^{j\omega}) = -\omega \cdot n_d, \qquad |\omega| < \pi$

Notice that the system has a **linear phase** characteristics !!!

 $^{^1\}mathrm{Recall}$ Signals & Systems class for continuous ideal filters.

Figure 5.5: Magnitude and phase responses of an deal delay system $(n_d = 3)$.

Remarks:

- (1) Linear phase response of a system introduces a *simple delay* on the output sequence
 - \implies considered as a mild (or inconsequential) form of a phase distortion
 - : willing to accept
 - \implies always can be compensated by introducing another delay in other parts of the overall system.
- (2) Introducing (ideal) delay on ideal filters, system can be made *approximately* causal, i.e.

(e.g.)

$$H_{lp}(e^{j\omega}) = \begin{cases} e^{-j\omega n_d}, & |\omega| < \omega_c \\ \\ 0, & \text{otherwise} \end{cases}$$

Corresponding impulse response is then:

$$h_{lp}[n] = \frac{\sin[\omega_c(n-n_d)]}{\pi(n-n_d)}$$

(cf.) We can never make ideal filters exactly causal!

5.2.3 Group delay

:Measure of the linearity of phase

Definition 5.1 The group delay $\tau(\omega)$ of a DLTI system with frequency response $H(e^{j\omega})$ is defined by:

$$\begin{aligned} \tau(\omega) &= \operatorname{grd}\left[H(e^{j\omega})\right] \\ &\triangleq -\frac{d}{d\omega}\left\{\operatorname{arg}\left[H(e^{j\omega})\right]\right\} \end{aligned}$$

: negative slope of phase response at ω

where

$$\arg\left[H(e^{j\omega})\right] = \Phi_H(e^{j\omega}), \text{ for } 0 < \omega < \pi$$

Note:

- (1) If $\tau(\omega) = \text{constant}$, the system has a linear phase, i.e. an ideal delay, and there does not exists any significant distortion at the output.
- (2) Deviation of $\tau(\omega)$ away from a constant represents the degree of non-linearity of the phase.

Example 5.1

Ideal delay system:

$$H_{id}(e^{j\omega}) = e^{-j\omega n_d}$$

$$\implies \arg \left[H_{id}(e^{j\omega}) \right] = -\omega n_d, \quad 0 < \omega < \pi$$
$$\implies \tau(\omega) = -\frac{d}{d\omega} \left\{ -\omega n_d \right\} = n_d : \text{ constant}$$

5.3 System function described by linear constant coefficient difference equation

Consider a DLTI system with input/output relation described by:

Figure 5.6: DLTI system.

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
(5.2)

Taking the Z-transform of (5.2), we get: ²

$$\sum_{k=0}^{N} a_k Y(z) z^{-k} = \sum_{k=0}^{M} b_k X(z) z^{-k}$$
$$\implies \left(\sum_{k=0}^{N} a_k z^{-k}\right) Y(z) = \left(\sum_{k=0}^{M} b_k z^{-k}\right) X(z)$$

The system function H(z) is then given by:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$
(5.3)

$$\stackrel{\text{or}}{=} \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})} \quad : \text{ factored form}$$
(5.4)

Remarks:

- (1) poles : z = 0 and $\{z = d_k\}_{k=1}^N$ zeros : z = 0 and $\{z = c_k\}_{k=1}^M$
- (2) coeff. in numerator of (5.3) comes from RHS of (5.2): coeff. of x[n-k]. coeff. in denominator of (5.3) comes from LHS of (5.2): coeff. of y[n-k].

²Notice that we have applied the linearity and the time shift properties of the Z-transform.

Example 5.2

Given the system function of a DLTI system as:

$$H(z) = \frac{(1+z^{-1})^2}{(1-\frac{1}{2}z^{-1})(1+\frac{3}{4}z^{-1})}$$
$$= \frac{1+2z^{-1}+z^{-2}}{1+\frac{1}{4}z^{-1}-\frac{3}{8}z^{-2}}$$
$$= \frac{Y(z)}{X(z)}$$

$$\implies \left(1 + \frac{1}{4}z^{-1} - \frac{3}{8}z^{-2}\right)Y(z) = \left(1 + 2z^{-1} + z^{-2}\right)X(z)$$

$$\stackrel{Z^{-1}}{\implies} y[n] + \frac{1}{4}y[n-1] - \frac{3}{8}y[n-2] = x[n] + 2x[n-1] + x[n-2]$$

: Linear comstant coeff. difference equation of the system.

5.3.1 Stability and causality

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

 $\implies X(z)$ and Y(z) should have overlapping region of ROC for H(z) to be valid.

- $\stackrel{\text{but}}{\Longrightarrow} \text{ ROC of } H(z) \text{ is not specified yet. } (R_H)$
- \implies Depending on R_H , different forms of impulse response h[n] are possible. (even if the system function H(z) is same.)

Restriction of H(z):

- (1) If the system is to be **causal**, then h[n] must be a right sided sequence, and thus R_H must be outside of the outermost pole.
- (2) If the system is to be **stable**, then h[n] must be absolutely summable, i.e.

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

$$\implies \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| < \infty \text{ for } |z| = 1$$
$$\implies \text{since } \sum_{n=-\infty}^{\infty} h[n]z^{-n} < \sum_{n=-\infty}^{\infty} |h[n]z^{-n}| < \infty,$$
$$H(z) \text{ for } |z| = 1 \text{ must converge}$$

 \implies unit circle must be within R_H

Example 5.3

Consider a DLTI system with the input/output relationship of:

$$y[n] - \frac{5}{2}y[n-1] + y[n-2] = x[n]$$

Then the system function is:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \frac{5}{2}z^{-1} + z^{-2}} = \frac{1}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})}$$
$$= \frac{-\frac{1}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{\frac{4}{3}}{1 - 2z^{-1}}$$

Figure 5.7: Pole-zero diagram of the given DLTI system.

(1) R_H : |z| > 2:

Figure 5.8: R_H : |z| > 2.

The impulse response h[n] is a right-sided sequence, and thus:

$$h[n] = \left\{ -\frac{1}{3} \left(\frac{1}{2}\right)^n + \frac{4}{3} (2)^n \right\} u[n]$$

(i) causal

(ii) unstable (since the unit circle is not in $R_{H}.)\ ^{3}$

(2) $R_H: |z| < \frac{1}{2}:$

Figure 5.9: R_H : $|z| < \frac{1}{2}$.

The impulse response h[n] is a left-sided sequence, and thus:

$$h[n] = \left\{\frac{1}{3}\left(\frac{1}{2}\right)^n - \frac{4}{3}(2)^n\right\}u[-n-1]$$

- (i) non-causal
- (ii) unstable (since the unit circle is not in R_{H} .) ⁴

³Note that term $\frac{4}{3}(2)^n$ is unstable, since $n \ge 0$. ⁴Note that term $\frac{1}{3}(\frac{1}{2})^n$ is unstable, since $n \le -1$.

(3) $R_H: \frac{1}{2} < |z| < 2:$

Figure 5.10:
$$R_H: \frac{1}{2} < |z| < 2.$$

The impulse response h[n] is a two-sided sequence, and thus:

$$h[n] = -\frac{1}{3} \left(\frac{1}{2}\right)^n u[n] - \frac{4}{3} (2)^n u[-n-1]$$

- (i) non-causal (since it is an infinite sequence)
- (ii) stable (since the unit circle is inside of $R_{H.}$)

Remark:

For a DLTI system to be both bf causal and **stable**;

- \implies ROC of H(z) must be outside of the outermost pole. (causality) & unit circle must be inside the ROC of H(z). (stability)
- \implies All of the poles in H(z) must be inside of the unit circle !!!

5.3.2 Inverse systems

Recall that the inverse system of a DLTI system (h[n]) is defined as another DLTI system with impulse response $h_i[n] \ni :$

$$h[n] * h_i[n] = \delta[n]$$

$$\stackrel{Z}{\Longrightarrow} H(z)H_i(z) = 1$$

$$\implies H_i(z) = \frac{1}{H(z)}$$

If the DTFT $H(e^{j\omega})$ exists, then the frequency response of the inverse system $H_i(e^{j\omega})$ is given by:

$$H_i(e^{j\omega}) = \frac{1}{H(e^{j\omega})}$$

Note:

(1) $\log_{10} |H_i(e^{j\omega})| = -\log_{10} |H(e^{j\omega})|$: log magnitude (2) $\Phi_{H_i}(e^{j\omega}) = -\Phi_H(e^{j\omega})$: phase response (3) $\tau_i(\omega) = -\tau(\omega)$: group delay

(cf.) Not all DLTI systems have their inverse systems, i.e. if $H(e^{j\omega}) = 0$ for some ω , e.g. ideal LPF, then there does NOT $\exists H_i(e^{j\omega})$.

Let

$$H(z) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$

then

$$H_i(z) = \left(\frac{a_0}{b_0}\right) \frac{\prod_{k=1}^N (1 - d_k z^{-1})}{\prod_{k=1}^M (1 - c_k z^{-1})}$$

Remarks:

- (1) Poles (seros) of H(z) become zeros (poles) of $H_i(z)$.
- (2) Since $H(z)H_i(z) = 1$, the ROC of H(z) and ROC of $H_i(z)$ must have overlap region.

Example 5.4

Let $^{\rm 5}$

$$H(z) = \frac{1 - 0.5z^{-1}}{1 - 0.9z^{-1}}, \qquad \text{ROC}(R_H) : |z| > 0.9$$

Find the impulse response of the inverse system.

Solution:

The transfer function of the inverse system is:

$$H_i(z) = \frac{1}{H(z)} = \frac{1 - 0.9z^{-1}}{1 - 0.5z^{-1}} \quad \text{ROC}(R_{H_i})?$$

Figure 5.11: Pole-zero diagram of H(z) and $H_i(z)$.

⁵Corresponding impulse response is $h[n] = (0.9)^n u[n] - (0.5)(0.9)^{n-1} u[n-1]$, since it is r.s.s..

Among two possible cases (|z| > 0.5 or |z| < 0.5) for the ROC R_{H_i} of $H_i(z)$, only |z| > 0.5 overlaps with the ROC R_H of H(z).

$$\implies \text{ROC } R_{H_i} : |z| > 0.5.$$
$$\implies h_i[n] = (0.5)^n u[n] - 0.9(-.5)^{n-1} u[n-1]$$

 \implies The inverse system is both *causal* and *stable*, since the unit circle $\ni R_{H_i}$.

Example 5.5

$$H(z) = \frac{-0.5 + z^{-1}}{1 - 0.9z^{-1}}, \qquad |z| > 0.9$$

Solution:

The transfer function of the inverse system is:

$$H_i(z) = \frac{1 - 0.9z^{-1}}{-0.5 + z^{-1}} = \frac{-2 + 1.8z^{-1}}{1 - 2z^{-1}}$$

Figure 5.12: Pole-zero diagram of $H_i(z)$ with two possible ROC's.

(i) ROC R_{H_i} : |z| > 2 $h_i[n] = -2(2)^n u[n] + 1.8(2)^{n-1} u[n-1]$: causal and unstable

(ii) ROC
$$R_{H_i}$$
 : $|z| < 2$

$$h_i[n] = 2(2)^n u[-n-1] - 1.8(2)^{n-1} u[-n]$$
 : non-causal and stable

Remarks:

(1) Let H(z) be a causal system with zeros $\{c_k\}_{k=1}^M$, then $H_i(z)$ is also causal iff the ROC of $H_i(z)$ is given by: ⁶

 $|z| > \max_k |c_k|$

(2) For $H_i(z)$ to be *stable* system as well, the unit circle must be within the ROC, and thus:

 $\max_k |c_k| < 1$

i.e. all of the poles $\{c_k\}_{k=1}^M$ of $H_i(z)$ are inside of the unit circle.

FACT:

A DLTI system H(z) and its inverse system $H_i(z)$ are both **causal and stable** if and only if all of the zeros ⁷ and poles ⁸ of H(z) are inside the unit circle.

⁶Note that $\{c_k\}_{k=1}^M$ correspond to the poles of $H_i(z)$.

⁷For $H_i(z)$.

⁸For H(z).

5.3.3 Impulse response for rational system function

Recall that the system function for a DLTI system described by a linear, constant coefficient difference equation is given by:

$$H(z) = \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k z^{-1})}{\prod_{k=1}^{N} (1 - d_k z^{-1})}$$
$$= \sum_{r=0}^{M-N} B_r z^{-r} + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$
(5.5)
(if $M \ge N$)

Assuming the system is causal, the impulse response is then:

$$h[n] = \sum_{r=0}^{M-N} B_r \delta[n-r] + \sum_{k=1}^{N} A_k (d_k)^n u[n]$$

Remark:

(1) In (5.5), if at least one non-zero pole (d_k) is NOT canceled by a zero (d_k) , ⁹ then the impulse response h[n] will be of *infinite length*.

 \implies called an infinite inpulse response (IIR) system.

(2) In (5.5), if N = 0 (i.e. all of non-zero poles at d_k are canceled, and there \exists NO pole except at z = 0), then h[n] is of *finite length*.

 \implies called a finite inpulse response (FIR) system, i.e.

$$H(z) = \sum_{k=0}^{M} b_k z^{-k}$$

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k] = \begin{cases} b_k, & 0 \le n \le M \\ 0, & \text{elsewhere} \end{cases}$$

$$y[n] = h[n] * x[n] = \sum_{k=0}^{M} b_k \delta[n-k] * x[n] = \sum_{k=0}^{M} b_k x[n-k] \equiv \sum_{k=0}^{M} h[k] x[n-k]$$

⁹That is, at least one term in the form of $A_k(d_k)^n u[n]$ remains.

Example 5.6

Given a causal system with I/O relation of:

$$y[n] - ay[n-1] = x[n]$$

Taking the Z-transform, we get:

$$Y(z)(1 - az^{-1}) = X(z)$$

Therefore, the system function becomes;

$$H(z) = \frac{1}{1 - az^{-1}}$$

Taking the inverse Z-transform, we get the inpulse response h[n] as:

$$h[n] = a^n u[n]$$

Figure 5.13: The impulse response of an IIR system.

Figure 5.14: Pole-zero diagram of H(z) with ROC for h[n] to be causal.

(cf.)

- (i) For the system to be stable as well, it should be |a| < 1.
- (ii) Notice that h[n] is of infinite length.

Example 5.7

Consider a FIR system as follows:

$$h[n] = \begin{cases} a^n, & 0 \le n \le M \\ 0, & \text{otherwise} \end{cases}$$

Taking the Z-transform, we get the system function as:

$$H(z) = \sum_{n=0}^{M} a^n z^{-n} = \sum_{n=0}^{M} \left(az^{-1}\right)^n = \frac{1 - (az^{-1})^{M+1}}{1 - az^{-1}}$$
$$= \frac{z - \frac{a^{M+1}}{z^M}}{z - a}$$
$$= \frac{1}{z^M} \frac{z^{M+1} - a^{M+1}}{z - a}$$
$$\equiv \frac{Y(z)}{X(Z)}$$

Figure 5.15: Pole-zero diagram of H(z) for the case of M = 7.

Expressing in terms of X(z) and Y(z), we have:

$$(1 - az^{-1})Y(z) = \left(1 - a^{M+1}z^{-(M+1)}\right)X(z)$$

Taking the inverse Z-transform, we get:

$$y[n] - ay[n-1] = x[n] - a^{M+1}x[n-M-1]$$
(5.6)

Or, using the given impulse response h[n] and computing the convolution sum, we get another expression of the output sequence as:

$$y[n] = \sum_{k=0}^{M} h[k]x[n-k] = \sum_{k=0}^{M} a^{k}x[n-k]$$
(5.7)

Recall:

The representation of a DLTI system with constant coefficient linear difference equation is *NOT unique*. (refer (5.6) and (5.7).)

5.4 Frequency response for rational system functions

Consider a DLTI system with input/output relationship described by a linear constant coefficient difference equation:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

Then, the frequency response of the system is:

$$H\left(e^{j\omega}\right) = \frac{\sum_{k=0}^{M} b_k e^{-j\omega k}}{\sum_{k=0}^{N} a_k e^{-j\omega k}}$$

$$\stackrel{\text{or}}{=} \left(\frac{b_0}{a_0}\right) \frac{\prod_{k=1}^{M} (1 - c_k e^{-j\omega})}{\prod_{k=1}^{N} (1 - d_k e^{-j\omega})}$$
(5.8)

5.4.1 System characteristics

(1) Magnitude response: (log magnitude in dB)¹⁰

From (5.8), we have:

 $20 \log_{10} \left| H(e^{j\omega}) \right| = \text{gain in dB}$

$$= 20\log_{10}\left|\frac{b_0}{a_0}\right| + \sum_{k=1}^{M} 20\log_{10}\left|1 - c_k e^{-j\omega}\right| - \sum_{k=1}^{N} 20\log_{10}\left|1 - d_k e^{-j\omega}\right|$$

 $^{^{10}\}mathrm{dB} = \mathrm{decibel.}$

Remarks:

(a) If $|H(e^{j\omega})| < 1$, then $20 \log_{10} |H(e^{j\omega})| < 0$, and thus $-20 \log_{10} |H(e^{j\omega})| < 0$ corresponds to the *attenuation*, i.e.:

attenuation in dB =
$$-20 \log_{10} |H(e^{j\omega})|$$

= $-$ gain in dB

(b) Another advantage of log magnitude:

The magnitude of the ourput in a DLTI system can be expressed in a simple summation form rather than in a multiplicative form, i.e.: 11

$$|Y(e^{j\omega})| = |H(e^{j\omega})| \cdot |X(e^{j\omega})|$$
$$\longrightarrow 20 \log_{10} |Y(e^{j\omega})| = 20 \log_{10} |H(e^{j\omega})| + 20 \log_{10} |X(e^{j\omega})|$$

(2) Phase response:

From (5.8), we also have: ¹²

$$\Phi_H(e^{j\omega}) = \text{phase}\left(\frac{b_0}{a_0}\right) + \sum_{k=1}^M \text{phase}\left(1 - c_k e^{-j\omega}\right) - \sum_{k=1}^N \text{phase}\left(1 - d_k e^{-j\omega}\right)$$

(3) Group delay:

The group delay of the system function is:

$$\operatorname{grd} \left[H(e^{j\omega}) \right] = -\frac{d}{d\omega} \left\{ \arg \left[H(e^{j\omega}) \right] \right\}$$

$$= -\sum_{k=1}^{M} \frac{d}{d\omega} \left\{ \arg \left(1 - c_k e^{-j\omega} \right) \right\} + \sum_{k=1}^{N} \frac{d}{d\omega} \left\{ \arg \left(1 - d_k e^{-j\omega} \right) \right\}$$

$$= \sum_{k=1}^{M} \frac{|c_k|^2 - \operatorname{Re} \left\{ c_k e^{-j\omega} \right\}}{1 + |c_k|^2 - 2\operatorname{Re} \left\{ c_k e^{-j\omega} \right\}} - \sum_{k=1}^{N} \frac{|d_k|^2 - \operatorname{Re} \left\{ d_k e^{-j\omega} \right\}}{1 + |d_k|^2 - 2\operatorname{Re} \left\{ d_k e^{-j\omega} \right\}}$$

 $^{^{11}(}cf.)$ Inverse system.

¹²Here, the term phase $(1 - c_k e^{-j\omega})$ is due to zero and has positive effect, whereas the term phase $(1 - d_k e^{-j\omega})$ is due to pole and has negative effect.

Check: assignment ¹³

Hint: ¹⁴
$$\frac{d}{dx} \left[\arctan\{f(x)\} \right] = \frac{1}{1+f^2(x)} \frac{df}{dx}.$$

First, let us define abbreviated notation as follows:

$$\arg \left(1 - \alpha_k e^{-j\omega}\right) = \arg \left[1 - \operatorname{Re} \left\{\alpha_k e^{-j\omega}\right\} - j\operatorname{Im} \left\{\alpha_k e^{-j\omega}\right\}\right]$$
$$\stackrel{\text{let}}{=} \arg \left[1 - \operatorname{Re} - j\operatorname{Im}\right]$$
$$= \tan^{-1} \left[\frac{-\operatorname{Im}}{1 - \operatorname{Re}}\right]$$
(5.9)

where

$$\alpha_{k}e^{-j\omega} = (\alpha_{R} + j\alpha_{I})(\cos(\omega) - j\sin(\omega))$$
$$= [\alpha_{R}\cos(\omega) + \alpha_{I}\sin(\omega)] + j[\alpha_{I}\cos(\omega) - \alpha_{R}\sin(\omega)]$$
$$= \operatorname{Re}\left\{\alpha_{k}e^{-j\omega}\right\} + j\operatorname{Im}\left\{\alpha_{k}e^{-j\omega}\right\}$$

From which we get:

$$\frac{d}{d\omega} \left[\operatorname{Re} \left\{ \alpha_k e^{-j\omega} \right\} \right] = -\alpha_R \sin(\omega) + \alpha_I \cos(\omega) \equiv \operatorname{Im} \left\{ \alpha_k e^{-j\omega} \right\}$$
(5.10)

$$\frac{d}{d\omega} \left[\operatorname{Im} \left\{ \alpha_k e^{-j\omega} \right\} \right] = -\alpha_R \sin(\omega) - \alpha_I \cos(\omega) \equiv -\operatorname{Re} \left\{ \alpha_k e^{-j\omega} \right\}$$
(5.11)

¹³The textbook has some typo error on this equation. ¹⁴Let $y = \tan^{-1}(x) \longrightarrow \tan(y) = x \longrightarrow \sec^2(y)dy = dx \longrightarrow \frac{dy}{dx} = \frac{1}{\sec^2(y)} = \frac{1}{1 + \tan^2(y)} = \frac{1}{1 + x^2}$.

Plugging (5.10) and (5.11) into (5.9), we have:

$$grd \left(1 - \alpha_{k}e^{-j\omega}\right) = -\frac{d}{d\omega} \left\{ \arg \left(1 - \alpha_{k}e^{-j\omega}\right) \right\} \\ = -\frac{d}{d\omega} \left\{ \tan^{-1} \left[\frac{-Im}{1 - Re}\right] \right\} \\ = -\left\{ \frac{1}{1 + \frac{Im^{2}}{(1 - Re)^{2}}} \cdot \frac{Re(1 - Re) + Im(-Im)}{(1 - Re)^{2}} \right\} \\ = -\left\{ \frac{(1 - Re)^{2}}{(1 - Re)^{2} + Im^{2}} \cdot \frac{Re - (Re^{2} + Im^{2})}{(1 - Re)^{2}} \right\} \\ = -\frac{Re - (Re^{2} + Im^{2})}{1 - 2Re + (Re^{2} + Im^{2})} \\ = -\frac{Re \left\{ \alpha_{k}e^{-j\omega} \right\} - |\alpha_{k}|^{2}}{1 - 2Re \left\{ \alpha_{k}e^{-j\omega} \right\} + |\alpha_{k}|^{2}}$$

Note:

The (1) log magnitude, (2) phase response, and the (3) group delay are all in the form of **summation** by the contributions from each pole and zero of the system function !

Remarks:

(a) Recall that the principal value (between $-\pi$ and π) of the phase response $\Phi_H(e^{j\omega})$ is denoted by ARG $[H(e^{j\omega})]$, i.e.:

$$-\pi < \operatorname{ARG}\left[H(e^{j\omega})\right] \le \pi$$

- $\implies \Phi_H(e^{j\omega}) = \operatorname{ARG} \left[H(e^{j\omega}) \right] + 2\pi r(\omega)$ where $r(\omega)$ is an integer dependence on the frequency ω , and it could be *discontinuous*.
- \implies Typically, the phase response of a system is represented by ARG $[H(e^{j\omega})]$.

Example 5.8

Recall that:

$$\arg \left[H(e^{j\omega}) \right] \stackrel{\Delta}{=} \Phi_H(e^{j\omega}) \text{ for } 0 < \omega \leq \pi$$

Figure 5.16: Comparison between $\arg[H(e^{j\omega})]$ and $\operatorname{ARG}[H(e^{j\omega})]$ w/ corresponding $r(\omega)$.

(b) From the phase response characteristics, we have: ¹⁵

$$\operatorname{ARG}\left[H(e^{j\omega})\right]$$

$$= \operatorname{ARG}\left(\frac{b_0}{a_0}\right)\sum_{k=1}^M \operatorname{ARG}\left(1 - c_k e^{-j\omega}\right) - \sum_{k=1}^N \operatorname{ARG}\left(1 - d_k e^{-j\omega}\right) + 2\pi r(\omega)$$

OR

ARG
$$\left[H(e^{j\omega})\right] = \tan^{-1}\left\{\frac{H_I(e^{j\omega})}{H_R(e^{j\omega})}\right\}$$
 : principal value

where
$$H(e^{j\omega}) = H_R(e^{j\omega}) + jH_I(e^{j\omega})$$

(c) The group delay of the system:

$$\operatorname{grd}\left[H(e^{j\omega})\right] = -\frac{d}{d\omega}\left\{\operatorname{arg}\left[H(e^{j\omega})\right]\right\}$$
$$= -\frac{d}{d\omega}\left\{\operatorname{ARG}\left[H(e^{j\omega})\right]\right\}$$

: except for dixcontinuities (i.e., impulses)

(d) Note that the log magnitude, phase, and group delay of the system are represented as a sum of contributions from each pole and zero of the system function.

¹⁵Here, the term $2\pi r(\omega)$ is included in order to make $-\pi < \text{ARG}\left[H(e^{j\omega})\right] \le \pi$.

5.4.2 Frequency response of a single pole or zero ¹⁶

Recall that the contribution of each pole and zero on the magnitude, phase, and group delay of the system function (or frequency response) is in the following form:

$$1 - \alpha_k e^{-j\omega} = 1 - r e^{j\theta} e^{-j\omega}$$
$$= 1 - r e^{j(\theta - \omega)}$$
$$= 1 - r \cos(\theta - \omega) - j \sin(\theta - \omega)$$

where pole (zero) : $\alpha_k = re^{j\theta}$.

Figure 5.17: Representation of α_k in a polar coordinate.

 $^{^{16}}$ Be reminded that the pole has a *substractive* effect, whereas the zero has a *additive* effect.

(1) Log magnitude:

$$20 \log_{10} \left| 1 - \alpha_k e^{-j\omega} \right| = 20 \log_{10} \left| 1 - r e^{j(\theta - \omega)} \right|$$
$$= 20 \log_{10} \left[\{ 1 - r \cos(\theta - \omega) \}^2 + r^2 \sin(\theta - \omega) \right]^{\frac{1}{2}}$$
$$= 10 \log_{10} \left[1 - 2r \cos(\theta - \omega) + r^2 \right]$$
$$= 10 \log_{10} \left[1 - 2r \cos(\omega - \theta) + r^2 \right]$$
(5.12)

(2) Phase:

$$\operatorname{ARG}\left[1 - \alpha_{k}e^{-j\omega}\right] = \tan^{-1}\left[\frac{-r\sin(\theta - \omega)}{1 - r\cos(\theta - \omega)}\right]$$
$$= \tan^{-1}\left[\frac{r\sin(\omega - \theta)}{1 - r\cos(\omega - \theta)}\right]$$
(5.13)

(3) Group delay:

$$\operatorname{grd}\left[1-\alpha_{k}e^{-j\omega}\right] = \frac{\operatorname{Re}\left\{|\alpha_{k}|^{2}-\alpha_{k}e^{-j\omega}\right\}}{1-2\operatorname{Re}\left\{\alpha_{k}e^{-j\omega}\right\}+|\alpha_{k}|^{2}}$$
$$= \frac{r^{2}-r\cos(\omega-\theta)}{1+r^{2}-2r\cos(\omega-\theta)}$$
$$(5.14)$$
$$= \frac{r^{2}-r\cos(\omega-\theta)}{|1-r^{j\theta}e^{-j\omega}|^{2}}$$

Example 5.9

Log magnitude $20 \log_{10} \left| 1 - re^{j\theta} e^{-j\omega} \right|$, phase ARG $\left[1 - re^{j\theta} e^{-j\omega} \right]$, and group delay grd $\left[1 - re^{j\theta} e^{-j\omega} \right]$:

solid line : $\theta = 0$, dotted line : $\theta = \pi$, where r = 0.9

Figure 5.18: Log magnitude, phase, and group delay.

(cf.) Notice that dotted line is a shifted version of solid line in amount of $\omega = \theta$.

Remarks:

- (a) Note that (5.12), (5.13), and (5.14) are periodic in ω with period of 2π .
- (b) (5.12) = $20 \log_{10} \left| 1 r e^{j\theta} e^{-j\omega} \right|$:
 - (i) It dips at $\omega = \theta^{-17}$. (will be explined later...)
 - (ii) The maximum of (5.12) occurs at $\theta \omega = \pi$, where for r = 0.9: max {(5.12)} = 10 log₁₀ (1 + 2r + r²) = 20 log₁₀(1 + r) ≈ 5.57 (dB)

(iii) The minimum of (5.12) occurs at $\theta - \omega = 0$, where for r = 0.9:

 $\min\left\{(5.12)\right\} = 10\log_{10}\left(1 - 2r - r^2\right) = 20\log_{10}|1 - r| \approx -20(\text{dB})$

- (c) (5.13) = ARG $\left[1 re^{j\theta}e^{-j\omega}\right] = 0$ at $\omega = \theta$.
- (d) (5.14) = grd $\left[1 re^{j\theta}e^{-j\omega}\right]$

high positive slope at $\omega = \theta$ in (5.13) \equiv large negative peak at $\omega = \theta$ in (5.14)

¹⁷Maximum attenuation or minimum gain.

5.4.3 Geometric interpretations on the factor $1 - re^{j\theta}e^{-j\omega}$

: Useful for approximate sketching of $H(e^{j\omega})$ directly from pole-zero diagram of H(z).

Consider a first order system function H(z) as follows: ¹⁸

$$H(z) = (1 - re^{j\theta}z^{-1}) = \frac{z - re^{j\theta}}{z}, \quad r < 1$$

Then, the frequency response is:

$$H(e^{j\omega}) = \left(1 - re^{j\theta}e^{-j\omega}\right) = \frac{e^{j\omega} - re^{j\theta}}{e^{j\omega}}$$

pole : z = 0, zero : $z = re^{j\theta}$

Figure 5.19: Pole-zero diagram.

where the pole vector ¹⁹ $\vec{v_1}$, $\vec{v_2}$, and the zero vector ²⁰ $\vec{v_3}$ are given recpectively as:

 $\begin{array}{l} (1) \ \vec{v_1} = e^{j\omega} \\ (2) \ \vec{v_2} = r e^{j\theta} \\ (3) \ \vec{v_3} = \vec{v_1} - \vec{v_2} = e^{j\omega} - r e^{j\theta} \ \text{phase} = \phi_3 \end{array}$

(1) Magnitude: ²¹

$$\left| H(e^{j\omega}) \right| = \left| 1 - re^{j\theta} e^{-j\omega} \right| = \frac{|e^{j\omega} - re^{j\theta}|}{|e^{j\omega}|} = \frac{|\vec{v_3}|}{|\vec{v_1}|} = |\vec{v_3}|$$

(2) Phase: ²²

$$\Phi_H(e^{j\omega}) = \text{phase}(\vec{v_3}) - \text{phase}(\vec{v_1}) = \phi_3 - \omega$$

 $^{^{18}\}mathrm{Condition}\ r<1$ os for stability of the system.

¹⁹Vector from a pole to a point on the unit circle.

 $^{^{20}\}mathrm{Vector}$ from a zero to a point on the unit circle.

²¹Magnitude of zero vector.

²²Phase of zero vector minus phase of pole vector.

REMARKS: Contribution of $(1 - re^{j\theta}e^{-j\omega})$

(a) Magnitude:

$$|\vec{v_3}| = |\text{vector from a zero to a point } z = e^{j\omega}|$$

 $\longrightarrow \operatorname{argmin}_{\omega} |\vec{v_3}| = \theta$ from the plot at previous page.
 \longrightarrow so $|\vec{v_3}|$ is minimum when $\omega = \theta$.
 \longrightarrow explains the sharp dip of log magnitude at $\omega = \theta$.

(b) Phase:

$$\Phi_H(e^{j\omega}) = \text{phase}(\vec{v_3}) - \text{phase}(\vec{v_1}) = \phi_3 - \omega$$

= phase(zero vector) - phase(pole vector)

Example 5.10

 $\theta = \pi$ (refer the plot at example5.9.)

$$\omega_2 < \omega_1$$
, and $\phi_3 - \omega \leq 0$ (where $0 \leq \omega \leq \pi$)

Figure 5.20: Pole vector and zero vector.

As ω increases ($\omega = 0 \rightarrow \omega_1 \rightarrow \omega_2 \rightarrow \pi$), $\Phi_H(e^{j\omega})$ starts from **zero**, and the difference gets larger, whereas as $\omega \rightarrow \pi$, the difference becomes smaller and approaches to **zero** again. (see plot at example5.9.) (c) Effect of radius r:

A. As $r \rightarrow 1$, we have: ²³

- (i) Log magnitude dips more sharply at $\omega = \theta$, and becomes $-\infty$ (dB) at $\omega = \theta$ when r = 1.
- (ii) The positive slope of phase function around $\omega = \theta$ becomes ∞ at $r \to 1$, and becomes discontinuous at $\omega = \theta$ when r = 1.
- (iii) Since group delay is negative slope of the phase function, group delay is negative around $\omega = \theta$, and dips more sharply ar $r \to 1$. And away from $\omega = \theta$, group delay has a relatively flat positive values.

 \implies self study: p.221 of your textbook

B. For r > 1, we have:

- (iv) i. Magnitude response has similar characteristics of the case when $r \leq 1$.
 - ii. Phase has negative slope for all ω , and has discontinuities at $\omega = \theta$.
 - iii. Group delay has positive values for all $\omega.$

 \implies self study: p.223 of your textbook

(d) If $(1 - re^{j\theta}e^{-j\omega})$ is a pole factor, i.e. $1/(1 - re^{j\theta}e^{-j\omega})$, all of the characteristics become *negative* of previously discussed characteristics. ((cf.) Inverse system.)

Examples pp.225 ~ 230 : Self study

 $^{^{23}\}mathrm{Refer}$ the figure 5.8 at p.222 of your textbook.