Contents

2	\mathbf{FU}	NDAMENTAL CONCEPTS OF PROBABILITY	9
	2.1	Introduction	9
	2.2	Approaches to Probability	11
	2.3	Axioms of Probability	14
	2.4	Set Theory	16
	2.5	Derived Probability Relationships	21
	2.6	Conditional Probabilities and Statistical Independence	23
	2.7	Total probability and Bayes' Theorem	27
	2.8	Counting Techniques	31

Chapter 2

FUNDAMENTAL CONCEPTS OF PROBABILITY

2.1 Introduction

Objective of chapter:

- (1) Define the meaning of probability
- (2) Develop various relationships among probabilities

Basic concepts:

- Chance (or random) experiment
- Outcome

Example:

A coin tossing game:

What is the probability of the head showing up?

Past approaches to probability: ¹

- 1. Personal approach
- 2. Relative frequency approach
- 3. Equally likely approach

Remark: These approches are:

- (a) Useful for assigning probability to an outcome of chance experiment
- (b) NOT suitable for the theoretical basis of probability

 \implies Axiomatic approach ^{2 3}

 $^{^{1}}$ To be discussed in the next section.

 $^{^{2}\}mathrm{Developed}$ by the Russian mathematician called Kolmogorov in 1933.

 $^{^3\}mathrm{Provides}$ the rules, or properties that probabilities should satisfy, but NOT the means of assigning values of probability.

2.2 Approaches to Probability

Basic approach:

Rather than *defining* probability, we take *axiomatic* approach...

 \implies providing the list of properties that probability must satisfy

Definitions of terminology

1. chance experiment

- Not necessarily actually performed, but is often conceptual
- called random, since the results do not obey deterministic laws of nature
- denoted by boldface uppercase letter, e.g. E

2. outcome

- result of chance experiment
- denoted by lowercase Greek letter, e.g. ω

3. event

- collection of outcomes
- denoted by uppercase italic letter, e.g. A

4. sample space

- collection of *all possible* outcomes for a given chance experiment
- $\bullet\,$ denoted by uppercase italic S, i.e. S

5. Venn diagram

- graphic representation a chance experiment
- sample space: rectangle
- outcome: point within rectangle
- event: closed curve in rectangle

Example:

Suppose we perform a game of casing a die, and denote this chance experiment as **D**. The outcomes, i.e. numbers from 1 to 6 could be represented as ω_1 , ω_2 , ω_3 , ω_4 , ω_5 , ω_6 repectively, and the event of an odd number showing up can be expressed as $O = \{\omega_1, \omega_3, \omega_5\}$.

Figure 2.1: Venn diagram for visualizing outcomes and events for a chance experiment.

Previous approaches to probability:

- (1) Personal approach: subjective
- 1. Determining whether to take umbrella with you or not in the morning
- 2. Different from person to person
- 3. NOT represent the idea of probability, but rather an educated guessing based on experience

(2) Equally likely approach

- 1. A chance experiment of throwing a die
- 2. Assumes each outcome has equal chance of occurrence: restrictive
- 3. P(A) = (# of outcomes in A)/(# of outcomes in S)
- 4. Use of probability in defining probability: main flaw
- 5. Nevertheless, useful in many situations

In a game of tossing a fair die, find the probability of getting an odd number using the equally likely approach.

Solution:

This is the event O in the above example. There are 6 outcomes in the sample space S, and 3 of them belong to the event O. Therefore, we have:

$$P(O) = \frac{\# \text{ of outcomes in } O}{\# \text{ of outcomes in } S} = \frac{3}{6} = \frac{1}{2}$$

(3) Relative frequency approach

- 1. A chance experiment of tossing a coin repeatedly
- 2. Expect half of heads and half of tails: assuming the coin and tosser are fair
- 3. For an arbitrary event A, the definition of P(A) in relative frequency sense is:

$$P(A) \stackrel{\Delta}{=} \lim_{n \to \infty} \frac{n_A}{n}$$

where n_A is the number of occurrence of event A in n repetition of experiment.

4. The limit can never be reached: main dilemma

Figure 2.2: Relative frequency for a sequence of 1000 coin tossing: (a) first 100; (b) entire 1000.

2.3 Axioms of Probability

Remark:

Due to the flaws and dilemmas of past approaches to probability as pointed out in the previous section, we adopt a different approach:

 \implies instead of stating what the probability *is*, we give 3 *properties* that it must satisfy.

PROBABILITY AXIOMS

For a chance experiment **E**, the probability of an event A in a sample space S is defined as a number P(A) which satisfies the following three axioms:

1. P(A) is a non-negative number, i.e.,

$$P(A) \ge 0$$

2. The probability of S (i.e. the certain event) is unity:

$$P(S) = 1$$

3. If two events A and B are mutually exclusive (or disjoint) ⁴, the probability of the event $\{A \text{ or } B\}$ is the sum of their probabilities:

$$P(A \text{ or } B) = P(A) + P(B)$$

Figure 2.3: Sample space S showing two disjoint events A and B, and two events C and D which are not.

⁴Two events are called mutually exclusive if they have NO common outcomes.

NOTE:

- (1) Probability axioms constitute the building blocks for a self-consistent theory of probability
- (2) The axioms DO NOT relate probabilities to physical events
- (3) Probabilities usually are assigned by other approaches ∋: relative frequency and equally likely etc..
 - \implies should obey the axioms

Verification: (Relative frequency approach)

Suppose that we perform a chance experiment \mathbf{E} repeatedly n times , and observed the event A occurring n_A times out of it. Then, if n is sufficiently large enough, the probability of A in a relative frequency sense is defined as:

$$P(A) = \frac{n_A}{n}$$

1. Axiom #1:

$$P(A) = \frac{n_A}{n} > 0$$
 since $n > 0, n_A > 0$

2. Axiom #2:

Let A = S, then

$$P(A) = P(S) = \frac{n}{n} = 1$$

3. Axiom #3:

Assume two events A and B are mutually exclusive. Then the event $\{A \text{ or } B\}$ will be observed $n_A + n_B$ times, since they cannot happen simultaneously. Therefore, we have:

$$P(A \text{ or } B) = \frac{n_A + n_B}{n}$$
$$= \frac{n_A}{n} + \frac{n_B}{n}$$
$$= P(A) + P(B)$$

Example 2.2 Self study

2.4 Set Theory

Remark:

Deveolpment of various theories and relations are fundamentally based on the *set* theory.

 \implies We first look at and review the set theory

Definition 2.1 Set and element:

Sets are collections of objects, with the objects in the set called elements.

Examples:

- 1. $S_1 = \{1, 3, 5, \dots\}$ is the set of non-negative, odd integers
- 2. $S_2 = \{\text{head, tail}\}\$ is the set of outcomes in tossing a coin

NOTE: Sets and Events:

Sets and *elements* in set theory correspond to the *events* and *outcomes* in probability theory!!!

Definition 2.2 Element of a set:

Indication of an element ξ_i belonging to a set A is denoted by:

 $\xi_i \in A$

where ξ_j is not contained in a set A is represented as:

 $\xi_j \not\in A$

Definition 2.3 Subset:

Set B is called a subset of a set A if every element in B is contained in A, and denoted by:

 $B \subset A$

Definition 2.4 Equality:

Two sets A and B are called equal if:

$$B \subset A$$
 and $A \subset B$

Definition 2.5 Proper subset: If $B \subset A$, but $B \neq A$, then B is called the proper subset of A.

Definition 2.6 Null set: Set containing no element is called the null set, and denoted by ϕ

Definition 2.7 Universal set:

Set which contains all of the element of interest is called the universal set or universe, and denoted by S.

(cf) Universal set corresponds to the sample space!!!

Definition 2.8 Union:

The union of two sets C and D is defined and denoted as follows:

$$E = C \cup D \stackrel{\Delta}{=} \{x \mid x \in C \text{ and/or } x \in D\}$$

Definition 2.9 Intersection:

The intersection of two sets C and D is defined and denoted as follows:

$$F = C \cap D \stackrel{\Delta}{=} \{ \omega \mid \omega \in C \ AND \ \omega \in D \}$$

Definition 2.10 Complement:

The complement of a set A is defined and denoted as follows:

$$A^{c} \stackrel{\Delta}{=} \{\omega \mid \omega \ni A \ but \ \omega \in S\}$$

(cf) Complement of a set A is also denoted as A' or \overline{A} .

Definition 2.11 Disjoint sets:

Two sets A and B are called disjoint if:

$$A \cap B = \phi$$

Definition 2.12 Countable set:

A set is called countable if its elements can be put into one-to-one correspondence with the positive integers.

(cf) A set which is NOT countable is called *uncountable*.

Basic Set Properties:

1. Identity property

$$A \cup S = S$$
$$A \cup \phi = A$$
$$A \cap S = A$$
$$A \cap \phi = \phi$$

2. Commutative property

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

3. Associative property

$$(A \cup B) \cup C = A \cup (B \cup C)$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

4. Distributive property

$$(A \cup B) \cup C = (A \cap C) \cup (B \cap C)$$

5. Complement property

$$A \cup A^c = S$$
 and $A \cap A^c = \phi$

6. DeMorgan's law

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Note: Set relations can usually, and easily verified by using the Venn diagrams.

Figure 2.4: Venn diagrams for illustrating set relationships.

Example 2.3 Self study

Definition 2.13 Partition of S:

Subsets A_1, A_2, \ldots, A_m are called the partition of the universal set S if:

$$A_i \cap A_j = \phi \ (\forall \ i \ and \ j, \ i \neq j)$$
$$A_1 \cup A_2 \cup \dots \cup A_m = S$$

Figure 2.5: Partition of a sample space S into disjoint events.

Definition 2.14 Cartesian product:

The Cartesian product 5 of two sets A and B is a set of pairs which is denoted and defined as:

$$C = A \times B \stackrel{\Delta}{=} \{ (\alpha_i, \beta_j) \mid \alpha_i \in A \text{ and } \beta_j \in B \}$$

Example 2.4

Consider tossing of two coins, where possible outcomes for each coin are sets $A = \{h_1, t_1\}$ and $B = \{h_2, t_2\}$ respectively. Determine the Cartesian product of events A and B

Solution:

From the definition of the cartesian product, we have:

$$A \times B = \{h_1h_2, h_1t_2, t_1h_2, t_2h_2\}$$

 $^{{}^{5}}$ The Cartesian product is sometimes called the *order space*, since the order of the pair is important!!!

2.5 Derived Probability Relationships

Remark:

Every probability relationships MUST be proved based only on the probability axioms!!!

1. Relation # 1:

$$P(A^c) = 1 - P(A)$$

proof:

From the complement property of sets, we have

$$A \cup A^c = S$$
 and $A \cap A^c = \phi$

Since A and A^c are disjoint, applying the axiom 2 and axiom 3, we get

$$1 = P(S) = P(A \cup A^c) = P(A) + P(A^c)$$

Q.E.D.

2. Relation # 2:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

proof:

From the Venn diagram in figure 2.6, we can easily verify the following set relations, which are expressed as the union of two *disjoint sets*:

$$A \cup B = A \cup (B \cap A^c)$$
$$B = (A \cap B) \cup (B \cap A^c)$$

Applying the axiom 3, we have:

$$P(A \cup B) = P(A) + P(B \cup A^c)$$
$$P(B) = P(A \cap B) + P(B \cap A^c)$$

Substacting above two equations proves the relation.

Q.E.D.

Figure 2.6: Venn diagrams for representing sets as a union of two disjoint sets.

Example 2.5 Self study

Example 2.6

Two *independent* random number generator produced numbers U and V, which are equally likely to be anywhere in the interval [0, 1]. Two events A and B are given as follows:

$$A = \{0 \le U \le 1, \ 0.5 \le V \le 1\}$$
$$B = \{0.5 \le U \le 1, \ 0 \le V \le 1\}$$

Find $P(A \cup B)$.

Solution:

From the Venn diagram in figure 2.7, it follows:

$$P(A) = \frac{1}{2}, \quad P(B) = \frac{1}{2}, \quad P(A \cap B) = \frac{1}{4}$$

Applying the relation #2, we have

$$P(A \cup B) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$$

Figure 2.7: Venn diagram for the probability of the union of two NOT disjoint sets.

2.6 Conditional Probabilities and Statistical Independence

Definition 2.15 Conditional probability:

The conditional probability of event A given that event B has occurred is defined as:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

NOTE:

1. Similally, the conditional probability of event B given that event A has occurred is:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

2. Also, the probability of event A and B simultaneously occurring can be expressed using conditional probabilities as:

$$P(A \cap B) = P(B|A)P(A) = P(A|B)P(B)$$

3. Conditional probability satisfies the three axioms of probability!!!

proof: assignment

4. Conditional probability of event A given B, i.e. P(A|B) corresponds to confining the sample space from S to B, (refer to fingure 2.8 below)

(cf)

Probability of a certain event A is equivalent to the conditional probability of event A given S, i.e.

$$P(A) = P(A|S)$$

Figure 2.8: Venn diagram illustrating the conditional probability.

Example 2.7

Find the conditional probability of obtaining two heads(event B) when flipping a coin twice given that at least one head was obtained(event A).

Solution:

The sample space is $S = \{t_1t_2, t_1h_2, h_1t_2, h_1h_2\}$ and $P(A) = \frac{3}{4}$ and $P(A \cap B) = \frac{1}{4}$ using equally likely approach of paobability. Therefore we have:

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$$

Note that sample space is now shrinked to event A whose has 3 outcomes among which only one outcome corresponds to event B, i.e. the probability is $\frac{1}{3}!!!$

Example 2.8

In example 2.6 define additional two events C and D as follows:

$$C = \{U > V\}$$
$$= \{0 \le U \le 1, \ 0 \le V \le 0.5\}$$

Find the conditional probabilities P(A|C) and P(A|D).

D

Solution:

From the venn diagram in figure 2.9 below, we have:

Figure 2.9: Venn diagram for example 2.8.

$$P(A) = P(C) = P(D) = 0.5$$
$$P(A \cap C) = 0.125$$
$$P(D \cap C) = 0.375$$

Applying the definition of the conditional probability, we get respective probability as follows:

$$P(A|C) = \frac{P(A \cap C)}{P(C)} = \frac{0.125}{0.5} = 0.2$$

and

$$P(D|C) = \frac{P(D \cap C)}{P(C)} = \frac{0.375}{0.5} = 0.75$$

Note: Notice that P(A) = 0.5 > P(A|C) = 0.25 whereas P(D) = 0.5 < P(D|C) = 0.75. The formers are called *a priori* probability and the latters are called *a posteriori* probability. Sometimes it could be P(A) = P(A|B), and this will be the foundation of the statistical independence concept below!!!

Definition 2.16 Statistical independence:

Two events S and B are said to be statistically independent if:

$$P(A \cap B) = P(A) P(B)$$

Example:

Let events A, B and C defined as follows:

 $A = \{ \text{the weather is rainy in the morning} \}$

 $B = \{$ you take the umbrella with you $\}$

 $C = \{$ you attend the probability and random process class $\}$

Are events A and B statistically independent?

In the similar manner, are events A and C statistically independent, or should they be?

Answer:

Example 2.9 Self study

2.7 Total probability and Bayes' Theorem

Theorem 2.1 Theorem of total probability:

Let the events A_1, A_2, \dots, A_m be a partition of the sample space S, i.e. they are munually exclusive, and the union of them is S. Then, the probability of any event B can be expressed as:

$$P(B) = \sum_{i=1}^{m} P(B \cap A_i) = \sum_{i=1}^{m} P(B|A_i)P(A_i)$$

Proof:

Using the idenity property and the distributive property of sets, any event B can be represented as:

$$B = B \cap S$$

= $B \cap (A_1 \cup A_2 \cup \dots \cup A_m)$
= $(B \cap A_1) \cup (B \cap A_2) \cup \dots \cup (B \cap A_m)$

From figure 2.10, notice that $B \cap A_i$ are mutually exclusive, since the events A_i 's are mutually exclusive. Therefore, applying the axiom #3, we get:

$$P(B) = P(B \cap A_1) + P(B \cap A_2) + \cdots + P(B \cap A_m)$$

Replacing the probability $P(B \cap A_i)$'s with the conditional probabilities below, the theorem follows.

$$P(B \cap A_i) = P(B|A_i)P(A_i)$$

Q.E.D.

Figure 2.10: Partition of sample space S with an event B: total probability law.

Box #1 contains 8 nickels and 2 quarters, whereas box #2 has 5 nickels and 20 quarters. You select a box at random and draw a coin. What is the paprobability that the coin you draw is a quarter?

Solution:

Let events B_1 , B_2 , and Q be respectively defined as follows:

 $B_1 = \{ \text{select box } \#1 \}$ $B_2 = \{ \text{select box } \#2 \}$ $Q = \{ \text{draw a quarter} \}$

Then, we have:

$$P(B_1) = P(B_2) = \frac{1}{2}$$
 and $P(Q|B_1) = \frac{1}{5}$ and $P(Q|B_2) = \frac{4}{5}$

Note that $Q \cap B_1$ and $Q \cap B_2$ are disjoint events, and applying the total probability theorem, the probability of drawing a quarter is then:

$$P(Q) = P(Q|B_1)P(B_1) + P(Q|B_2)P(B_2)$$

= $\frac{1}{5} \cdot \frac{1}{2} + \frac{4}{5} \cdot \frac{1}{2} = \frac{1}{2}$

Exercise: repeat above example with $P(B_1) = p$ and $P(B_2) = 1 - p$, and plot the probability P(Q) as a function of p.

Theorem 2.2 Bayes' Theorem:

The relationship below is known as *Bayes' theorem*:

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Proof: assignment (easy!)

Certain class is given an examination. The probability of a student preparing for the exam is 0.7, and of the students who prepared, the probability of passing the exam is 0.9, while if a student does not study for the exam, his or her chance of passing the exam is 0.05.

Given that a student did not pass the exam, what is the probability that he or she studied?

Solution:

Let W and V be the events that a student studied and that a student pass the exam respectively. Then, the probability we want to compute is as follows:

$$P(W|V^c) = \frac{P(V^c|W)P(W)}{P(V^c)}$$

where we are given that P(W) = 0.7, $P(V^c|W) = 1 - P(V|W) = 1 - 0.9 = 0.1$, and the denominator follows from the total probability theorem as:

$$P(V^{c}) = P(V^{c}|W)P(W) + P(V^{c}|W^{c})P(W^{c})$$

= (0.1)(0.7) + (0.95)(0.3) = 0.355

Therefore, we have:

$$P(W|V^c) = \frac{0.07}{0.355} = 0.197$$

Theorem 2.3 Genelaized Bayes' Theorem:

The generalization of the Bayes' theorem to the partition of a sample space into m disjoint events A_1, A_2, \ldots, A_m is in the following form:

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{m} P(B|A_j)P(A_j)}, \ 1 \le i \le m$$

Proof: In the Bayes' theorem, replace P(B) with the total probability theorem...

In the process of testing defects for certain manufacured devices, let events F and D be that the device fails the test and that the device is identified to be defective. Given the following probabilities:

$$P(D^c) = 0.95$$
$$P(F|D) = 0.98$$
$$P(F|D^c) = 0.03$$

what are the probabilities P(D|F) and $P(D^c|F^c)$?

Solution:

From the given probabilities, we get:

$$P(D) = 1 - P(D^{c}) = 1 - 0.95 = 0.05$$
$$P(F^{c}|D) = 1 - P(F|D) = 1 - 0.98 = 0.02$$
$$P(F^{c}|D^{c}) = 1 - P(F|D^{c}) = 1 - 0.03 = 0.97$$

Applying the total prob. theorem,

$$P(F) = P(F|D)P(D) + P(F|D^{c})P(D^{c})$$

= (0.98)(0.05) + (0.03)(0.95) = 0.078

Now, from the Bayes's theorem,

$$P(D|F) = \frac{P(F|D)P(D)}{P(F)}$$
$$= \frac{(0.98)(0.05)}{0.078} = 0.632$$

and

$$P(D^{c}|F^{c}) = \frac{P(F^{c}|D^{c})P(D^{c})}{P(F^{c})}$$
$$= \frac{(0.97)(0.95)}{0.922} = 0.999$$

(cf) Note that the probability that the device fails the test even if it is NOT defective 6 is:

$$P(F|D^{c}) = 1 - P(F^{c}|D^{c}) = 1 - 0.97 = 0.03$$

Example 2.13 Monte Hall problem: self study

⁶This is called the type I error, or the probability of false alarm, while $P(F^c|D)$ is called the type II error, or the probability of miss.

2.8 Counting Techniques

Remark: In equally likely approach for probability assignment:

 \implies need to count the # of favorable outcomes corresponding to the event is *necessary*

1. Multiplication principle

(e.g.) Suppose you have 3 suits, 2 ties, and 2 shoes. How many different selections of clothing do you have?

solution: Obviously from the tree diagram below, you have $3 \times 2 \times 2 \times = 12$ different selections to choose.

Figure 2.11: Possible clothing selections.

Example 2.14

How many different combinations of security code exist for a three thumbwheel briefcase, where each thumbwheel have numbers from 0 to 9?

Solution:

10 ways we can choose for the first number, and for each first number there are 10 ways we can choose for the second number ets...., i.e. $10 \times 10 \times 10 \times = 1000$ different combinations.

2. Permutations

(e.g.) How many different ways are there to draw 5 hearts *in a given order* from a 52 card deck?

solution: The first heart can be any one of 13 possibilities, and the second heart can be any of remaining 12 hearts, and so on..., for a total of:

$$13 \times 12 \times 11 \times 10 \times 9 = \frac{13!}{(13-5)!} = \frac{13!}{8!}$$

Definition 2.17 Permutation:

A permutation is the number of ways that we can line up a set of objects.

NOTE:

- 1. If there are n objects, we can permute them in n! ways. ⁷
- 2. The number of permutations of n objects taken m at a time is:

$$P_m^n = \frac{n!}{(n-m)!}$$

Example 2.15

Find the number of different ways of making password using five alphabets, where the same letter cannot be repeated.

Solution:

Permutation of size 5 from a 26 objects set:

$$P_5^{26} = \frac{26!}{(26-5)!} = 26 \times 15 \times 24 \times 23 \times 22 = 7,893,600$$

 $^{^{7}\}mathrm{Imagine}$ it as filling slots or boxes, where once a slot is filled with an pbject, it can never be used again.

3. Combinations

(e.g.) How many different ways are there to draw 5 hearts from a 52 card deck where the *order does not count*?

solution: Among the permutation P_5^{13} , there are $5 \times 4 \times 3 \times 2 \times 1 = 5!$ containing the same cards in a different order. Since we are not interested in order, we divide P_5^{13} by 5!, i.e.

$$\frac{13 \times 12 \times 11 \times 10 \times 9}{5 \times 4 \times 3 \times 2 \times 1} = \frac{13!}{(13-5)!5!} = \frac{13!}{8!5!}$$

Definition 2.18 Combination:

A combination is a permutation in which the order is of no consequences.

NOTE:

1. If there are n objects, there are only one way of selecting n objects out of n, i.e.:

$$\frac{n!}{n!} = 1$$

2. The number of combinations of n objects taken m at a time is:

$$C_m^n = \begin{pmatrix} n \\ m \end{pmatrix} = \frac{n!}{(n-m)!m!}$$

and it is called the *binomial coefficient of algebra*.

3. Useful properties of binomial coefficient:

$$\left(\begin{array}{c}n\\k\end{array}\right) = \left(\begin{array}{c}n\\n-k\end{array}\right), \quad \left(\begin{array}{c}n\\k\end{array}\right) = \left(\begin{array}{c}n-1\\k\end{array}\right) + \left(\begin{array}{c}n-1\\k-1\end{array}\right)$$

4. Let P(head) = p and P(tail) = 1 - p for a coin. If we flip the coin n times in a row, the probability of getting k heads out of n flips is the given by ⁸:

$$\binom{n}{k} p^k (1-p)^{n-k}$$

⁸This is called the *binomial probability distribution* and will be discussed in Chapter 3.

Find the probability of flush in a 5 cards poker game.

Solution:

There exits 4 possible suits, each of which having the number of possible 5 card hands given by:

$$\left(\begin{array}{c}13\\5\end{array}\right) = \frac{13!}{5! \times 8!}$$

where the total number of possible 5 card hands from 52 card deck is

$$\left(\begin{array}{c} 52\\5\end{array}\right) = \frac{52!}{5! \times 47!}$$

Using the equally likely definition of the probability, we have:

$$P(\text{flush}) = \frac{4 \times \frac{13!}{5! \times 8!}}{\frac{52!}{5! \times 47!}} = \frac{4 \times 13! \times 5! \times 47!}{5! \times 8! \times 52!}$$
$$= \frac{4 \times 13 \times 12 \times 11 \times 10 \times 9}{52 \times 51 \times 50 \times 49 \times 48} = 0.001981$$

Example 2.17 Self study

Example 2.18 Self study