Contents

3	SIN	GLE RANDOM VARIABLES AND PROBABILITY DISTRI-	
	BU'	$\Gamma IONS$	35
	3.1	What is a Random Variable?	35
	3.2	Probability Distribution Functions	38
		3.2.1 Cumulative Distribution Function	38
		3.2.2 Probability Density Function	42
	3.3	Common Random Variables and their Distribution Functions	46
	3.4	Transformation of a Single Random Variable	58
	3.5	Averages of Random Variables	63
	3.6	Characteristic Function	70
	3.7	Chebyshev's Inequality	73
	3.8	Computer Generation of Random Variables	75

Chapter 3

SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3.1 What is a Random Variable?

Why random variable?:

It is easier to describe and manipulate *outcomes* and *events* of the chance experiments using <u>numerical values</u> rather than in <u>words</u>...

- ⇒ purpose of a random variable
- \implies maps each point in S into a point on \mathbb{R}^1 . ¹

For example,

$$x = X(\zeta)$$

where X is the random variable, x is its specific value, and ζ denotes the outcome of a chance experiment.

¹This type of transform or mapping is called a *function*.

Figure 3.1: A r.v. is a mapping of the sample space into a real line.

NOTE: Events are now described by the random variable, rather than in words, and corresponding probability of the event can be calculated via r.v..

Example: For a chance experiment of tossing a fair coin, define a r.v. 2 $X(\omega) \ni$:

$$X(\text{head}) = 1 \& X(\text{tail}) = 0$$

Then, using the equally likely assignment of probability, we have:

$$P(X = 1) = \frac{1}{2}, \quad P(X = 0) = \frac{1}{2}$$

Example 3.1

Consider an experiment of rolling a pair of dice, and find the probability of all possible values of the sum.

Solution:

Define a r.v. X as the sum of the two dice, then referring the Table 3.1. and applying the equally likely assignment of probability, we have:

$$P(X = 2) = \frac{1}{36}, \qquad P(X = 3) = \frac{2}{36} = \frac{1}{18}, \quad P(X = 4) = \frac{3}{36} = \frac{1}{12},$$

$$P(X = 5) = \frac{4}{36} = \frac{1}{9}, \qquad P(X = 6) = \frac{5}{36}, \qquad P(X = 7) = \frac{6}{36} = \frac{1}{6},$$

$$P(X = 8) = \frac{5}{36}, \qquad P(X = 9) = \frac{4}{36} = \frac{1}{9}, \quad P(X = 10) = \frac{3}{36} = \frac{1}{12},$$

$$P(X = 11) = \frac{2}{36} = \frac{1}{18}, \quad P(X = 12) = \frac{1}{36},$$

²Value assignment of a r.v. entirely depends on the convenience, i.e. values 0 and 1 would be more convenient to handle than values π and e.

FACT: Functions of r.v. are ALSO r.v.'s, for instance:

$$Y = e^X, \ W = \ln X, \ U = \cos X, \ V = X^2$$

Categorization of random variables:

- 1. Discrete random variable assumes only a countable number of values.
 - (e.g.) rolling dice: example 3.1 (only 11 values)
- 2. Continuous random variable can assume a continuum of values.
 - (e.g.) weather vane: angle of the indicator (any value from 0 to 2π radian)
- 3. Mixed random variable is a combination of above two types.

Example 3.2 Self study

3.2 Probability Distribution Functions

Description of r.v. using probability:

In case of discrete r.v.:

- ⇒ probability mass distribution
- ⇒ tabulate (or plot) probability of its values

Example: example3.1(equation (3-2)), table3.1

Two types of general methods of description: ³

- (1) Cumulative (probability) distribution function: cdf
- (2) Probability density function: pdf

3.2.1 Cumulative Distribution Function

Definition 3.1 cumulative distribution function:

The cdf of a random variable X is defined as follows:

$$F_X(x) = P(X \le x)$$

 $^{^{3}}$ These apply to and work for all three types of r.v., i.e., comtinuous, discrete, and mixed random variables.

Consider a chance experiment of rolling a pair of fair dice, and define a r.v. X as the sum of the numbers showing up. Find the cdf of X. (refer to example 3.1)

Solution:

Since the cdf is defined as $F_X(x) = P(X \le x)$, for instance if x = 3, we have: ⁴

$$F_X(3) = P[(X=2) \cup (X=3)] = P[(X=2)] + P[(X=3)]$$

$$= P[\{1,1\}] + P[\{1,2\} \cup \{2,1\}] = P[\{1,1\}] + P[\{1,2\}] + P[\{2,1\}]$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{36} = \frac{1}{12}$$

:

Continuing until we cover all possible values of X, we get:

$$F_X(x) = \begin{cases} 0, & x < 2\\ \frac{1}{36}, & 2 \le x < 3\\ \frac{3}{36}, & 3 \le x < 4\\ \frac{6}{36}, & 4 \le x < 5\\ \frac{10}{36}, & 5 \le x < 6\\ \frac{15}{36}, & 6 \le x < 7\\ \frac{21}{36}, & 7 \le x < 8\\ \frac{26}{36}, & 8 \le x < 9\\ \frac{30}{36}, & 9 \le x < 10\\ \frac{33}{36}, & 10 \le x < 11\\ \frac{35}{36}, & 11 \le x < 12\\ \frac{36}{36}, & x \ge 12 \end{cases}$$

Figure 3.2: The cdf of X, which is the sum of two dice.

⁴Notice that: $F_X(-\infty) = P(\phi) = 0$, and $F_X(\infty) = P(S) = 1$.

General properties of cdf:

1. Limiting values:

$$\lim_{x \to -\infty} F_X(x) = 0$$
$$\lim_{x \to \infty} F_X(x) = 1$$

2. The cdf is right hand continuous, i.e.:

$$F_X(x_0) = \lim_{x \to x_0^+} F_X(x)$$

- 3. The cdf $F_X(x)$ is monotine non-decreasing function of x.
- 4. The probability of X having values $b/w x_1$ and x_2 is given by:

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1)$$

Brief verification:

1. Notice that the inverse images of X at $x = -\infty$ and $x = \infty$ are respectively:

$$X^{-1}(-\infty) = \phi$$

$$X^{-1}(\infty) = S$$

- 2. This is due to the fact that the cdf is defined as $F_X(x) \stackrel{\Delta}{=} P(X \leq x)$ rather than $F_X(x) \stackrel{\Delta}{=} P(X < x)$: detailed proof is omitted! ⁵
- 3. Follows from property # 4.
- 4. Let $x_1 \leq x_2$, then we have:

$$P(X \le x_2) = P[(X \le x_1) \cup (x_1 < X \le x_2)] \stackrel{\text{why?}}{=} P(X \le x_1) + P(x_1 < X \le x_2)$$

which is equivalent to:

$$F_X(x_1) + P(x_1 < X < x_2) = F_X(x_2)$$

Rearranging the above provides:

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1) \ge 0$$

⁵To prove this, we need the so called **continuity axiom**, which is beyond the scope of this class: will be discussed at the graduate level course!.

Find the probability that the sum of two dice is between 3 and 7 inclusive.

Solution:

From the definition and properties of cdf, and using figure 3.1, we have: 6

$$P(3 \le X \le 7) = F_X(7) - F_X(3^-) = F_X(7) - F_X(2) = \frac{21}{36} - \frac{1}{36} = \frac{20}{36} = \frac{5}{9}$$

Example 3.5

Is $F_X(x)$ below is a valid cdf?

$$F_X(x) = \frac{1}{2}(1 + \frac{2}{\pi}\tan^{-1}x)$$

Solution:

Check if all the properties of cdf are satisfied: self study

Figure 3.3: Suitable cdf.

⁶Note that there \exists 20 outcomes favorable to the event, thus applying the equally likely assignment probability, we get $\frac{20}{36}$.

3.2.2 Probability Density Function

Definition 3.2 probability density function:

The pdf of a (continuous) random variable X is defined as follows:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

NOTE: interpretation of pdf!!!

Using the definition of derivative, we can re-write pdf as:

$$f_X(x) = \lim_{\Delta x \to 0} \frac{F_X(x + \Delta x) - F_X(x)}{\Delta x}$$

For Δx suffuciently small, we can remove the limit, and thus:

$$F_X(x + \Delta x) - F_X(x) = P(x < X \le x + \Delta x) \simeq f_X(x)\Delta x$$

General properties of pdf:

Since the pdf of a r.v. X is the derivative of the cdf, cdf $F_X(x)$ can be expressed as the integration of the pdf $f_X(x)$, i.e.:

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

1. The pdf is a non-negative function, i.e.:

$$f_X(x) \ge 0, \ \forall x$$

2. The area under pdf is unity, i.e.:

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

3. The probability of X having values b/w x_1 and x_2 is given by:

$$P(x_1 < X \le x_2) = \int_{x_1}^{x_2} f_X(x) dx$$

Brief verification:

- 1. Since the cdf is non-decreasing, and pdf is the derivetive (or slope) of it, it must be non-negative.
- 2. Using the relationship b/w the cdf and pdf, we have:

$$\int_{-\infty}^{\infty} f_X(x) dx \stackrel{\text{def}}{=} F_X(\infty) = 1$$

3. From the property of the cdf, and using the relationship b/w the cdf and pdf, we have:

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1)$$

$$= \int_{-\infty}^{x_2} f_X(u) du - \int_{-\infty}^{x_1} f_X(u) du$$

$$= \int_{x_1}^{x_2} f_X(u) du$$

Example 3.6

Obtain the pdf of a r.v. X whose cdf is given as: (example 3.5)

$$F_X(x) = \frac{1}{2}(1 + \frac{2}{\pi} \tan^{-1} x)$$

and find the probability of an event \ni : $2 < X \le 5$.

Solution:

Since $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$, we easily get:

$$f_X(x) = \frac{1/\pi}{1+x^2}$$

and using the property of the cdf, we obtain:

$$P(2 < X \le 5) = \frac{1}{\pi} (\tan^{-1} 5 - \tan^{-1} 2)$$
$$= 0.085$$

Figure 3.4: The pdf of X in example 3.6.

Remark:

The definition of the pdf can *generally* be applied to both continuous and discrete random variables!!!

motive:

Since the cdf of a discrete r.v. can generally be expressed as the sum of the weighted & shifted unit step function u(x)⁷, i.e.:

$$F_X(x) = \sum_{i=1}^{N} p_i u(x - x_i)$$

and the derivative of u(x) is the unit impulse function $\delta(x)$ as:

$$\frac{du(x)}{dx} = \delta(x)$$

the pdf $f_X(x)$ of a discrete r.v. can generally be described as the sum of the weighted & shifted unit impulse function $\delta(x)$, i.e.:

$$f_X(x) = \sum_{i=1}^{N} p_i \delta(x - x_i)$$

⁷Recall that the unit step function is defined as $u(x) \stackrel{\Delta}{=} 1$ for $x \geq 0$ and 0 elsewhere.

Express the pdf of the r.v. X discussed in example 3.3.

Solution:

The cdf of X in terms of u(x) can be expressed as:

$$F_X(x) = \frac{1}{36} \left[u(x-2) + 2u(x-3) + 3u(x-4) + 4u(x-5) + 5u(x-6) + 6u(x-7) + 5u(x-8) + 4u(x-9) + 3u(x-10) + 2u(x-11) + u(x-12) \right]$$

Taking the derivative, we find the pdf to be:

$$f_X(x) = \frac{1}{36} \left[\delta(x-2) + 2\delta(x-3) + 3\delta(x-4) + 4\delta(x-5) + 5\delta(x-6) + 6\delta(x-7) + 5\delta(x-8) + 4\delta(x-9) + 3\delta(x-10) + 2\delta(x-11) + \delta(x-12) \right]$$

Figure 3.5: The pdf of X in example 3.7

3.3 Common Random Variables and their Distribution Functions

Commonly occurring and widely used r.v.'s are discussed

 \implies In terms of their cdf & pdf

Uniform Random Variable:

The uniform random variable X is defined in terms of its probability density function as follows:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \ b > a \\ 0, & \text{otherwise} \end{cases}$$

By integration, we can derive its cumulative distribution function(cdf) to be:

$$f_X(x) = \begin{cases} 0, & x \le a \\ \frac{x-a}{b-a}, & a < x \le b \\ 1, & x > b \end{cases}$$

Figure 3.6: Uniform r.v.: (a) pdf (b) cdf in case of a = 0 & b = 5

Resistors are known to be uniformly distributed within $\pm 10\%$ tolerance range. Find the probability that a nominal 1000 Ω resistor has a value b/w 990 and 1010 Ω .

Solution:

Since the tolerance region is bounded in the interval [900, 1100] centered at the nominal value of 1000Ω , the pdf of the resistance R is given by:

$$f_R(r) = \begin{cases} \frac{1}{200}, & 900 \le x \le 1100 \\ 0, & \text{otherwise} \end{cases}$$

Therefore, the probability that the resistor has a resistance value in the range of [900, 1100] is then:

$$P(990\Omega < R \le 1010\Omega) = \int_{990}^{1010} \frac{dr}{200} = 0.1$$

Gaussian Random Variable:

The Gaussian random variable X is defined in terms of its probability density function as follows:

$$f_X(x) = \frac{e^{-(x-m)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$$

where m and σ^2 are parameters called the mean and variance respectively.

The cdf can be derived by direct integration of the pdf, which cannot be expressed in a closed form, however...

Instead, we use either of the following functions defined as:

(1) Q function:

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-u^2/2} du$$

whose numerical values are tabulated in Appendix C.

(2) Error function:

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} du$$

In terms of the Q function, the cdf of the Gaussian r.v. is given by:

$$F_X(x) = 1 - Q(\frac{x - m}{\sigma})$$

derivation: assignment

Question: Express Q and error functions in terms of each other: assignment

Figure: Illustration of integration for Q and error functions.

Figure 3.7: Gaussian distribution for m = 5 and $\sigma = 2$: (a) pdf (b) cdf.

A mechanical component, whose 5mm thickness(T)is known to have a Gaussian distribution w/ m=5 and $\sigma=0.05$. Find the probability that T is less than 4.9mm OR greater than 5.1mm.

Solution: 8

$$P(T < 4.9mm \text{ OR } T > 5.1mm)$$

$$= 1 - P(4.9mm \le T \le 5.1mm)$$

$$= 1 - [F_T(5.1) - F_T(4.9)]$$

$$= 1 - [1 - Q(\frac{5.1 - 5}{0.05}) - 1 + Q(\frac{4.9 - 5}{0.05})]$$

$$= 1 - [Q(-2) - Q(2)] = 1 - [1 - Q(|-2|) - Q(2)]$$

$$= 2Q(2) = 0.02275$$

⁸We use here the relationship Q(x) = 1 - Q(|x|) for x < 0.

Exponential Random Variable:

The exponential random variable X is defined in terms of its probability density function with parameter α as follows:

$$f_X(x) = \alpha e^{-\alpha x} u(x), \quad \alpha > 0$$

The cdf, by integration, can then be obtained as:

$$F_X(x) = (1 - e^{-\alpha x})u(x)$$

where u(x) is the unit step function.

Assignment: Plot $f_X(x)$ and $F_X(x)$ for a exponential r.v., and verify its properties.

Example 3.10 Self Study

Gamma Random Variable:

The Gamma random variable X has its probability density function as follows:

$$f_X(x) = \frac{c^b}{\Gamma(b)} x^{b-1} e^{-cx} u(x), \quad b, c > 0$$

where $\Gamma(b)$ is the gamma function given by the integral ⁹:

$$\Gamma(b) = \int_0^\infty y^{b-1} e^{-y} dy$$

⁹It can be shown by evaluation that $\Gamma(1) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, and by replacing b by b+1, we can also show that $\Gamma(b+1) = b\Gamma(b)$, which in turn provides that $\Gamma(n+1) = n!$ in case of b an integer n.

Special cases:

1. Chi-square pdf: (statistics)

$$f_X(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{(n/2)-1} e^{-x/2} u(x)$$

where b and c are replaced by b = n/2 and c = 2

2. Erlang pdf: (queing theory)

$$f_X(x) = \frac{c^n}{(n-1)!} x^{n-1} e^{-cx} u(x)$$

where b = n is an integer.

Figure 3.8: Plots of (a) chi-square pdf and (b) Erlang pdf.

Cauchy Random Variable:

The Cauchy random variable X has its probability density function as follows:

$$f_X(x) = \frac{\alpha/\pi}{x^2 + \alpha^2}$$

Corresponding cdf is given by:

$$F_X(x) = \frac{1}{2} + \frac{1}{\pi} \tan^{-1} \frac{x}{\alpha}$$

Note: Example 3.5 with fig.3.3 is the case of Cauchy r.v. for $\alpha = 1$!

Binomial Random Variable:

The r.v. X is binomially distributed if it takes on the non-negative integer values $0, 1, 2, \ldots, n$ with probabilities:

$$P(X = k) = \binom{n}{k} p^k q^{n-k}, \quad k = 0, 1, 2, \dots, n$$

where p + q = 1.

Corresponding pdf and the cdf, using the unit impulse function, are given by:

$$f_X(x) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \delta(x-k)$$

$$F_X(x) = \sum_{k \le x} \binom{n}{k} p^k q^{n-k}$$

Remark: This is the distribution describing the number (k) of heads occurring in n tosses of a fair coin, in which case p = q = 0.5.

Figure 3.9: The pdf of binomial r.v. for n=10: (a) $p=q=\frac{1}{2}$; (b) $p=\frac{1}{5}$, $q=\frac{4}{5}$.

Geometric Random Variable:

Suppose we flip a biased coin w/ probability of a head is p whereas the probability of tail is 1 - p. Then, the probability of getting the head(success) for the first time at the k - th toss is given by:

 $P(\text{first success at trial } k) = P(X = k) = (1 - p)^{k-1}p, \ k = 1, 2, \dots$

where p is the probability of *success*.

- \implies called the geometric distribution
- \implies corresponds to the geometric mean of k-1 and k+1 values.

Check: assignment

Poisson Random Variable:

The r.v. X is Poisson with parameter a if it takes on the non-negative integer values $0, 1, 2, \ldots$ with probabilities:

$$P(X = k) = \frac{a^k}{k!}e^{-a}, \quad k = 0, 1, 2, \cdots$$

Corresponding cdf of a Poisson r.v. is given by:

$$F_X(x) = \sum_{k \le x} \frac{a^k}{k!} e^{-a}$$

Figure 3.10: Poisson pdf (a) a = 0.9; (b) a = 0.2.

Limiting Forms of Bionomial and Poisson Distributions:

Theorem 3.1 De Moivre-Laplace theorem:

For n sufficiently large, the binomial distribution can be approximated by the samples of a Gaussian curve properly scaled and shifted as:

$$p^k q^{n-k} \simeq \frac{e^{-(k-m)^2}}{\sqrt{2\pi\sigma^2}}, \quad n \gg 1$$

where m=np and $\sigma^2=npq$ respectively.

Proof: omit

Corresponding cdf of a binomial r.v., based on the *De Moivre-Laplace theroem*, can be approximated as:

$$F_X(x) \simeq 1 - Q(\frac{x - np}{\sqrt{npq}})$$

where $Q(\cdot)$ is the Q-function.

Figure 3.11: Binomial cdf and $De\ Moivre-Laplace$ approximation for n=10: (a) p=0.2; (b) a=0.5.

Theorem 3.2:

The Poisson distribution approaches to a Gaussian distribution for $a \gg 1$ as:

$$\frac{a^k}{k!}e^{-a} \simeq \frac{e^{-(k-a)^2/2a}}{\sqrt{2\pi a}}, \quad n \gg 1, \ p \ll 1, \ np = a$$

Proof:

This is due to the fact that a binomial distribution approaches the Poisson distribution with a=np if $n\gg 1$ and $p\ll 1$, and applying the *De Moivre-Laplace theorem* proves it!

:READ

In a digital communication system, the probability of an error is 10^{-3} . What is the probability of 3 errors in transmission of 5000 bits?

Solution:

This has a binomial distribution, and the Poisson approximation with n = 5000, $p = 10^{-3}$, and k = 3 shows:

$$P(3 \text{ errors}) \simeq \frac{5^3}{3!}e^{-5} = 0.14037$$

whereas the exact value of the probability using the binomial distribution is:

$$\begin{pmatrix} 5000 \\ 3 \end{pmatrix} (10^{-3})^3 (1 - 10^{-3})^{4997} = 0.14036$$

Poisson Points and Exponential Probability Density Function:

Consider a finite interval T (fig 3.12), with the probability of k occurrence of an event (ni: arrival of electrons at certain point) in this interval obeys a Poisson distribution, i.e.:

$$P(X = k) = \frac{(\lambda T)^k}{k!} e^{-\lambda T}, \quad k = 0, 1, 2, \dots$$

where λ is the number of events per unit time.

Then, the interval from an arbitrarily selected point and the next event is a r.v. W following an exponential distribution with its pdf as:

$$f_W(w) = \lambda e^{-\lambda w} u(w)$$

Figure 3.12: Poisson points on a finite interval T.

proof:

First, find the cdf of W as 10 :

$$F_W(w) = P(W \le w) = 1 - P(X = 0) = 1 - e^{-\lambda w}, \ w \ge 0$$

Differentiating it, we obtain:

$$f_W(w) = \frac{d}{dw} F_W(w) = \lambda e^{-\lambda w} u(w)$$

Example 3.12

Raindrops impinge on a tin roof at a rate of 100/sec. What is the probability that the interval between adjacent raindrops is greater than 1(msec), and 10(msec)?

Solution:

This can be approximated by a Poisson poiny process with $\lambda = 100$, and therefore:

$$P(W \ge 10^{-3}) = 1 - P(W \le 10^{-3})$$

= $1 - (1 - e^{-100 \times 0.001}) = e^{-0.1} = 0.905$

and

$$P(W \ge 10^{-2}) = 1 - P(W \le 10^{-2})$$

= $1 - (1 - e^{-100 \times 0.01}) = e^{-1} = 0.368$

Pascal Random Variable:

The r.v. X has a Pascal distribution if it takes on the positive integer values $1, 2, 3, \ldots$ with probabilities:

$$P(X = k) = {n-1 \choose k-1} p^k q^{n-k}, \quad k = 1, 2, \dots, \quad q = 1-p$$

 $^{10\{}W \le w\}$ corresponds to the event that there is at least one Poisson event in the interval (0, w).

Note:

- 1. For example, in a sequence of coin tossing, the probability of getting the k-th head on the n-th toss obeys a Pascal distribution, where p= prob. of a head.
- 2. **Reasoning:** We get the first k-1 heads in any order in the first n-1 tosses, which is binomial, and then must get a head on the n-th toss.
- 3. Geometric distribution is a special case of the Pascal distribution.

Example 3.13 Self study

Hypergeometric Random Variable:

Consider a box containg N items, K of which are defective. Then, the probability of obtaining k defective items in a selection of n items without replacement follows the hypergeometric distribution:

$$P(X=k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}, \quad k = 0, 1, 2, \dots, n$$

Example 3.14 Self study

3.4 Transformation of a Single Random Variable

Consider functions of random variables, i.e.:

$$Y = g(X)$$

where $g(\cdot)$ is a (*single valued*) function.

(e.g.)

$$Y = e^X, \ W = \ln X, \ U = \cos X, \ V = X^2$$

Recall: If X is a random variable, Y is also a random variable!!!

Question:

Given the probability distributions $(F_X(x))$ or $f_X(x)$ of X, find corresponding probability distributions $(F_Y(y))$ or $f_Y(y)$ of the newly defined r.v. Y...

Figure 3.13: Examples of monotonic and nonmonotonic transformations of a r.v..

1. Case #1: $g(\cdot)$ is monotone increasing

For an arbitrary value y_0 of Y, there \exists a unique corresponding value x_0 of $X \ni$:

$$y_0 = g(x_0)$$

Then, we have:

$$P(Y \le y_0) \stackrel{\Delta}{=} F_Y(y_0) = P[g(X) \le g(x_0)] = P(X \le x_0) = F_X(x_0)$$

Changing x_0 and y_0 to arbitrary values x and y, we get

$$F_Y(y) = F_X(x)$$
 where $x = g^{-1}(y)$

Differentiating the above $F_Y(y)$ w.r.t. y, we get the pdf $f_Y(y)$ as:

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{dF_X(x)}{dx} \frac{dx}{dy} \Big|_{x=g^{-1}(y)} = f_X(x) \frac{dx}{dy} \Big|_{x=g^{-1}(y)}$$

2. Case #2: $g(\cdot)$ is monotone decreasing:

For a specific value y_0 of Y, there \exists also a unique corresponding value x_0 of $X \ni$:

$$y_0 = g(x_0)$$

But, in this case we have:

$$F_Y(y_0) = P[q(X) < q(x_0)] = P(X > x_0) = 1 - P(X < x_0) = 1 - F_X(x_0)$$

In general, this can be expressed as:

$$F_Y(y) = 1 - F_X(x)$$
 where $x = g^{-1}(y)$

Differentiating the above $F_Y(y)$ w.r.t. y, we get the pdf $f_Y(y)$ as:

$$f_Y(y) = \frac{dF_Y(y)}{dy} = -\frac{dF_X(x)}{dx} \left. \frac{dx}{dy} \right|_{x=g^{-1}(y)} = -f_X(x) \left. \frac{dx}{dy} \right|_{x=g^{-1}(y)}$$

Remark:

Notice that the slope (or derivative) $\frac{dx}{dy} > 0$ for case #1, whereas $\frac{dx}{dy} < 0$ for case #2. Therefore, using the absolute value of the derivative, we can combine the above two cases, and express the probability density function $f_Y(y)$ as follows:

$$f_Y(y) = \frac{dF_Y(y)}{dy} = \frac{dF_X(x)}{dx} \left| \frac{dx}{dy} \right|_{x=g^{-1}(y)} = f_X(x) \left| \frac{dx}{dy} \right|_{x=g^{-1}(y)}$$

Example 3.15

Suppose X is an exponential r.v. w/ parameter α , i.e.:

$$f_X(x) = \alpha e^{-\alpha x} u(x), \quad \alpha > 0$$

Then find the pdf of a newly defined r.v. Y via the following transformation.

$$Y = aX + b$$

Solution:

The transformation is monotone, and solving the transformation w.r.t. x, we get:

$$x = \frac{1}{a}(y - b)$$

and the derivative has a constant value as:

$$\frac{dx}{dy} = \frac{1}{a}$$

Therefore, the pdf of Y can be derived as:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|_{x=g^{-1}(y)} = f_Y(y) = \frac{\alpha}{|a|} e^{(\alpha/|a|)(y-b)} u(y-b)$$

Figure 3.14: The pdf for example 3.15: (a) a>0; (b) a<0.

3. Case #3: $g(\cdot)$ is non-monotonic:

In this case, there will \exists more than one solution of X=x for a given value of Y=y, i.e.:

$$x_i = g_i^{-1}(y), \quad i = 1, 2, \dots, m$$

Therefore, we can generalize the formula of the newly derined r.v.'s pdf as:

$$f_Y(y) = \sum_{i=1}^m f_X(x) \left| \frac{dx_i}{dy} \right|_{x_i = g_i^{-1}(y)}$$

Let X be a Gaussian r.v. w/ mean m=0. Find the pdf of Y defined a follows:

$$Y = X^2$$

Solution:

Note that Y > 0, and therefore $f_Y(y) = 0$ for y < 0.

For the case when $y \ge 0$, solving the transformation w.r.t. x, we obtain:

$$x_1 = \sqrt{y}$$
 and $x_2 = -\sqrt{y}$

Thus

$$\left| \frac{dx_i}{dy} \right| = \frac{1}{2\sqrt{y}}, \quad i = 1, 2$$

Therefore, the pdf of Y becomes:

$$f_Y(y) = \frac{1}{2\sqrt{y}} \left[\frac{e^{-x^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} \right]_{x_1 = \sqrt{y}} + \frac{1}{2\sqrt{y}} \left[\frac{e^{-x^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} \right]_{x_1 = -\sqrt{y}}$$
$$= \frac{e^{-y/2\sigma^2}}{\sqrt{2\pi\sigma^2 y}}, \quad y \ge 0$$

Figure 3.15: The pdf of Y in example 3.16 for the case of m=0 and $\sigma^2=1$.

Example 3.17 Self study

3.5 Averages of Random Variables

Expressing r.v.'s using its representative values!!!

: For the cases when complete description of the r.v. \ni : the pdf and/or cdf might not be necessary.....

Definition 3.3 Expectation of a r.v.:

The mathematical expectation of a random variable X, using the r.v.'s pdf, is defined according to the following equation:

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

where $E(\cdot)$ stands for expectation.

Note:

The above definition applies to both *continuous* and *discrete* random variables, i.e., if X is discrete, we have 11 :

$$E(X) = \int_{-\infty}^{\infty} x \sum_{i=1}^{n} p_i \delta(x - x_i) dx$$
$$= \sum_{i=1}^{n} p_i \int_{-\infty}^{\infty} x \delta(x - x_i) dx$$
$$= \sum_{i=1}^{n} x_i p_i$$

where $p_i \stackrel{\Delta}{=} P(X = x_i)$, and this might be the more familiar form of the mathematical expectation for discrete r.v.'s for you.

This is due to the *sifting property* of the unit impulse function, which is, $\int_{-\infty}^{\infty} g(x)\delta(x-x_i)dx = g(x_i)$.

The test scores of 100 students are summarized in Table 3.2. Find the average score using the mathematical expectation.

Score	# of students	Relative frequency
100	2	0.02
95	5	0.05
90	10	0.10
85	20	0.20
80	33	0.33
75	15	0.15
70	7	0.07
65	4	0.04
60	3	0.03
55	1	0.01

Table 3.2 Test scores for 100 students.

Solution:

Using the relative frequency approach for probability, and by the definition of mathematical expectation, we have:

$$E(X) = 100 \times 0.02 + 95 \times 0.05 + 90 \times 0.1 + 85 \times 0.2 + 80 \times 0.33$$

+ $75 \times 0.15 + 70 \times 0.07 + 65 \times 0.04 + 60 \times 0.03 + 55 \times 0.01 = 80$

(cf) Compare the result with ordinary way of calculating averages, which you may be more accustomed to from elementary school days, below:

$$\frac{100 \times 2 + 95 \times 5 + 90 \times 10 + 85 \times 20 + \dots + 65 \times 4 + 60 \times 3 + 55 \times 1}{100}$$

Definition 3.4 Expectation of functions of r.v.'s:

In general, for any function g(X) of a r.v. X, we defined the expectation of this function to be 12 :

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

1. *m-th moment:*

If $g(X) = X^m$ where m is an integer, we call it the m-th moment of r.v. X, i.e.:

m-th moment
$$\stackrel{\Delta}{=} E[X^m] = \int_{-\infty}^{\infty} x^m f_X(x) dx$$

(cf)

The first moment (m = 1) is called the *mean* and denoted as μ_X , whereas the second moment (m = 2) is called its *mean squared value*.

Example 3.19

Find the mean and the eman squared value of a uniform r.v. $X \sim U[a, b]$.

Solution:

The mean is given by:

$$E(X) = \int_{a}^{b} \frac{x dx}{b - a} = \frac{x^{2}}{2(b - a)} \Big|_{a}^{b} = \frac{b^{2} - a^{2}}{2(b - a)} = \frac{a + b}{2}$$

whereas the eman squared value is as follows:

$$E(X^{2}) = \int_{a}^{b} \frac{x^{2} dx}{b - a} = \frac{x^{3}}{3(b - a)} \bigg|_{a}^{b} = \frac{b^{3} - a^{3}}{3(b - a)} = \frac{a^{2} + ab + b^{2}}{3}$$

 $^{^{12}}$ We take this as a definition here, but it can actually be proved: more advanced course on probability...

2. central moment:

If $g(X) = (X - \mu_X)^n$ where n is an integer, we call it the n-th central moment of r.v. X, i.e.:

$$m_n \stackrel{\Delta}{=} E[(X - \mu_X)^n] = \int_{-\infty}^{\infty} (x - \mu_X)^n f_X(x) dx$$

(cf)

The second central moment is especially called the *variance*, and denoted by the symbol σ_X^2 :

$$\sigma_X^2 \stackrel{\Delta}{=} m_n = E\left[(X - \mu_X)^2\right] = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) dx$$

Assignment:

Show that the variance of a uniform r.v. $X \sim U[a,b]$ is $\sigma_X^2 = (b-a)^2/12$.

Note:

The square root of the variance is called the $standard\ deviation$, and it represents the average amount of spread around the mean 13 :

$$\sigma = \sqrt{E\{[X - E(X)]^2\}}$$

¹³Note that E[X - E(X)] is NOT adequate for representing the spread about mean since positive and negative values of the difference X - E(X) will cancel out, thus smaller measure of deviation may result. On the other hand, E[|X - E(X)|] would cure this problem, but hard to handle the absolute value analytically...

Consider a Gaussian r.v. X, whose pdf is given by:

$$f_X(x) = \frac{e^{-(x-m)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}}$$

- (a) Show that the mean is $\mu_X = m$.
- (b) Find the central moments of X.

Solution:

(a) The mean is given by:

$$\mu_X = \int_{-\infty}^{\infty} x \frac{e^{-(x-m)^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} dx \quad (\text{let } u = x - m)$$

$$= \int_{-\infty}^{\infty} (u+m) \frac{e^{-u^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} du$$

$$= \int_{-\infty}^{\infty} u \frac{e^{-u^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} du + m \int_{-\infty}^{\infty} \frac{e^{-u^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} du$$

$$= 0 + m = m$$

(b) By the definition of the central moments, we have:

$$m_{n} = E[(X - \mu_{X})^{n}] = \int_{-\infty}^{\infty} (x - \mu_{X})^{n} \frac{e^{-(x - \mu_{X})^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} dx$$
$$= \int_{-\infty}^{\infty} u^{n} \frac{e^{-u^{2}/2\sigma^{2}}}{\sqrt{2\pi\sigma^{2}}} du, \quad n = 1, 2, \dots$$

which is zero when n is odd. (why?)

For the case when n being even integers, the integrand is symmetric about u = 0, and employing the table of integral, we obtain:

$$m_{2k} = 2 \int_{-\infty}^{\infty} u^{2k} \frac{e^{-u^2/2\sigma^2}}{\sqrt{2\pi\sigma^2}} du = 1 \cdot 3 \cdot \dots \cdot (2k-1)\sigma^{2k}, \quad k = 1, 2, \dots$$

Note that the special case of n = 2k = 2 provides the variance σ^2 !!!

Properties of expectation:

1. The expectation of a constant is the constant itself:

$$E[a] = a, \quad a = \text{constant}$$

2. The expectation of a constant times a function of r.v. is the constant times the expectation of the function of r.v.:

$$E[ag(X)] = aE[g(X)], \quad a = \text{constant}$$

3. The expectation of the sum of two functions of r.v. is the sum of each expectation:

$$E[g_1(X) + g_2(X)] = E[g_1(X)] + E[g_2(x)]$$

proof: assignment

<u>Note</u>: Combination of the properties 2 & 3 is called the *linearity* property of the expectation \ni : $E[ag_1(X) + bg_2(X)] = aE[g_1(X)] + bE[g_2(x)].$

Example 3.21

Show that the variance of a r.v. X can be computed according to:

$$\sigma_X^2 = E[(x - \mu_X)^2] = E(X^2) - [E(X)]^2$$

Solution:

Using the foregoing properties,

$$\begin{split} \sigma_X^2 &= E[(x - \mu_X)^2] \\ &= E(X^2 - 2\mu_X X + \mu_X^2) \\ &= E(X^2) - 2\mu_X E(X) + E(\mu_X^2) \\ &= E(X^2) - 2\mu_X^2 + \mu_X^2 \\ &= E(X^2) - \mu_X^2 \end{split}$$

Let two r.v.'s X and Y are linearly related as:

$$Y = aX + b$$

Find the mean and variance of Y in terms of those of X.

Solution:

Using the properties of expectation, we have the mean as:

$$\mu_Y = E[aX + b] = aE(X) + E(b) = a\mu_X + b$$

whereas the variance is given by:

$$\sigma_Y^2 = E[(Y - \mu_Y)^2] = E\{[(aX + b) - (a\mu_X + b)]^2\} = E[a^2(X - \mu_X)^2] = a^2\sigma_X^2$$

Example 3.23

The mean and variance of a binomial random variable.

Solution: Self study

3.6 Characteristic Function

Definition 3.5 The characteristic function:

The characteristic function of a r.v. is a special case of the mathematical expectation defined as follows:

$$M_X(j\nu) = E(e^{j\nu X}) \stackrel{\Delta}{=} \int_{-\infty}^{\infty} f_X(x)e^{j\nu x}dx$$

Usefulness of characteristic function:

- 1. The *m-th* moment of a r.v. can be obtained by differentiating the characteristic function w.r.t. its argument.
- 2. Sometimes the characteristic function of a r.v. is easier to obtain than the pdf.
- 3. The characteristic function and the pdf are Fourier transform pairs.

To show the first statement, we differentiate the characteristic function w.r.t. ν to obtain:

$$\frac{dM_X(j\nu)}{d\nu} = \int_{-\infty}^{\infty} f_X(x) \frac{d}{d\nu} e^{j\nu x} dx = j \int_{-\infty}^{\infty} x f_X(x) e^{j\nu x} dx$$

Now set $\nu = 0$, and divide by j to get:

$$-j \left. \frac{dM_X(j\nu)}{d\nu} \right|_{\nu=0} = \int_{-\infty}^{\infty} x f_X(x) dx = E(X)$$

Repeating the same procedure n times, the n-th moment of the r.v. X can generally be expressed as:

$$E(X^m) = (-j)^m \left. \frac{d^m M_X(j\nu)}{d\nu^m} \right|_{\nu=0}$$

Find the characteristic function of a Cauchy r.v. w/ its pdf given as:

$$f_X(x) = \frac{\alpha/\pi}{x^2 + \alpha^2}$$

Solution:

Applying the definition of the characteristic function, we obtain:

$$M_X(j\nu) = \int_{-\infty}^{\infty} \frac{\alpha/\pi}{x^2 + \alpha^2} e^{j\nu x} dx$$

$$= \int_{-\infty}^{\infty} \frac{\alpha/\pi}{x^2 + \alpha^2} [\cos(\nu x) + j\sin(\nu x)] dx$$

$$= \frac{\alpha}{\pi} \int_{-\infty}^{\infty} \frac{\cos(\nu x)}{x^2 + \alpha^2} dx$$

which, by use of a table of indefinite integral, can be expressed as 14 :

$$M_X(j\nu) = e^{\alpha|\nu|}$$

Example 3.25

Find the characteristic function of the double sided exponential r.v.(called the Laplacian r.v.), whose pdf is given by:

$$f_X(x) = \frac{\alpha}{2}e^{-\alpha|x|}, \quad \alpha > 0$$

¹⁴Note that $M_X(j\nu)$ is not differentiable at $\nu=0$, and thus we cannot use it to evaluate the moments. In fact, its moments do not exists in this case.

Solution:

By the definition of the characteristic function, we get:

$$M_X(j\nu) = \int_{-\infty}^{\infty} \frac{\alpha}{2} e^{-\alpha|x|} e^{j\nu x} dx$$

$$= \int_{-\infty}^{\infty} \frac{\alpha}{2} e^{-\alpha|x|} [\cos(\nu x) + j\sin(\nu x)] dx$$

$$= \frac{\alpha}{2} \int_{-\infty}^{\infty} \cos(\nu x) e^{-\alpha|x|} dx$$

which, by use of a table of indefinite integral, can be expressed as 15 :

$$M_X(j\nu) = \alpha \int_0^\infty \cos(\nu x) e^{-\alpha x} dx = \frac{\alpha^2}{\alpha^2 + \nu^2}$$

Assignment: Show that the first and the second moments are 0 and $2/\alpha^2$ respectively by differentiation.

¹⁵ Note that the integrand is symmetric about x = 0.

3.7 Chebyshev's Inequality

Recall:

The standard deviation of a r.v. gives a measure of spread about its mean

 \implies The Chebyshev's inequality provides a *bound* on the probability that a r.v. deviated more than k standard deviations from its mean ¹⁶!!!

Chebyshev's Inequality:

For any random variable X, the probability of X being deviated from its mean more than k standard deviation must satisfy the following inequality:

$$P(|X - \mu_X| \ge k\sigma_X) \le \frac{1}{k^2}$$

or 17

$$P(|X - \mu_X| < k\sigma_X) > 1 - \frac{1}{k^2}$$

proof:

Let $Y = X - \mu_X^{18}$ and $a = k\sigma_X$. Then, the LHS of the first inequality becomes:

$$P(|Y| \ge a) = P(Y \le -a) + P(Y \ge a)$$

which follows from the fact $|Y| \ge a$ is the union of two mutually exclusive events $Y \ge a$ and $Y \le -a$.

¹⁶It is a very *loose* bound, but its merit is the fact that very little need to be known about the r.v. to obtain the bound...

Note that two events $|X - \mu_X| \ge k\sigma_X$ and $|X - \mu_X| < k\sigma_X$ are mutually exclusive to each other!

¹⁸Note then: $E[Y^2] = \sigma_X^2$.

Now, consider the second moment of Y, which is:

$$E(Y^{2}) = \int_{-\infty}^{\infty} y^{2} f_{Y}(y) dy \ge \int_{-\infty}^{-a} y^{2} f_{Y}(y) dy + \int_{a}^{\infty} y^{2} f_{Y}(y) dy$$

$$\ge a^{2} \left[\int_{-\infty}^{-a} f_{Y}(y) dy + \int_{a}^{\infty} f_{Y}(y) dy \right]$$

$$= a^{2} [P(Y \le -a) + P(Y \ge a)], \ a > 0$$

Solving, we obtain:

$$P(Y \le -a) + P(Y \ge a) = P(|Y| \ge a) \le \frac{E(Y^2)}{a^2}$$

Replacing $Y = X - \mu_X$ with $E[Y^2] = \sigma_X^2$, and $a = k\sigma_X$, we have the Chebyshev's inequality as:

$$P(|X - \mu_X| \ge k\sigma_X) \le \frac{1}{k^2}$$

Q.E.D.

Example 3.26

- (a) Find a bound on the probability that a r.v. is within three standard deviations of its mean.
- (b) Find the exact probability of this event, if the r.v. is a Gaussian, and compare with the bound.

Solution:

(a) From the Chebyshev's inequality, we have:

$$P(|X - \mu_X| < 3\sigma_X) > 1 - \frac{1}{3^2} = 0.889$$

(b) The probability of the given event for a Gaussian r.v. is:

$$P(|X - \mu_X| < 3\sigma_X) = \int_{\mu_X + 3\sigma_X}^{\mu_X + 3\sigma_X} \frac{e^{-(x - \mu_X)^2 / 2\sigma_X^2}}{\sqrt{2\pi\sigma_X^2}} dx$$

$$= \int_{-3}^3 \frac{e^{-u^2/2}}{\sqrt{2\pi}} du = 2 \int_0^3 \frac{e^{-u^2/2}}{\sqrt{2\pi}} du$$

$$= 1 - 2Q(3) = 1 - 2 \times 0.00135$$

$$= 0.9973$$

(cf) Note that the Chebyshev's inequality does NOT provide a *tight* bound in this case!!!

3.8 Computer Generation of Random Variables

Recall:

1. Generation of uniform pseudorandom numbers $X \sim U[0,1]$:

$$X = rand(1, 1000);$$

2. Generation of Gaussian pseudorandom numbers $Y \sim N(0,1)^{-19}$:

$$Y = randn(p, q)$$

3. Generation of Gaussian pseudorandom numbers $Z \sim N(m, \sigma^2)^{-20}$:

$$Z = \sigma Y + m$$

Generation of random numbers with an arbitrary distribution:

Let U be a r.v. uniformly distributed in [0,1], and define a new r.v. V as:

$$V = q(U)$$

where $g(\cdot)$ is assumed to br monotonic.

Then, the pdf of the newly defined r.v. V is given by:

$$f_{V}(v) = f_{U}(u) \left| \frac{du}{dv} \right|_{u=g^{-1}(v)}$$

$$= \begin{cases} \left| \frac{du}{dv} \right| = \left| \frac{dg^{-1}(v)}{dv} \right|, & 0 \le u \le 1 \\ 0, & \text{otherwise} \end{cases}$$

where the last equation follows because $f_U(u)$ is unity in [0, 1] and zero elsewhere.

¹⁹This generates an array of Gaussian pseudorandom numbers with p rows and q columns.

 $^{^{20}\}mathrm{By}$ way of transformation.

Re-writing the above result for the case of $0 \le u \le 1$:

$$f_V(v) = \begin{cases} \frac{dg^{-1}(v)}{dv}, & \frac{dg^{-1}(v)}{dv} \ge 0\\ -\frac{dg^{-1}(v)}{dv}, & \frac{dg^{-1}(v)}{dv} < 0 \end{cases}$$

Integrating and solving for $g^{-1}(v)$, we obtain:

$$g^{-1}(v) = \begin{cases} \int_{-\infty}^{v} f_V(\lambda) d\lambda = F_V(v), & \frac{dg^{-1}(v)}{dv} \ge 0\\ -\int_{-\infty}^{v} f_V(\lambda) d\lambda = -F_V(v), & \frac{dg^{-1}(v)}{dv} < 0 \end{cases}$$

where $F_V(v)$ represents the desired cdf of r.v. V.

Example 3.27

Using a uniform r.v. U uniformly distributed in [0,1], find the required transformation V = g(U) so that it will generate an exponential pdf given by:

$$f_V(v) = 2e^{-2v}u(v)$$

Solution:

The cdf of the desired exponential r.v. is:

$$F_V(v) = \int_{-\infty}^v f_V(\lambda) d\lambda = \begin{cases} 0, & v < 0 \\ 1 - e^{-2v}, & v \ge 0 \end{cases}$$

From which, we obtain ²¹:

$$u = g^{-1}(v) = 1 - e^{-2v}, \quad v \ge 0$$

Solving for v, expressing it into the relationship between two r.v.'s U and V^{22} :

$$V = -0.5 \ln(1 - U)$$
$$= -0.5 \ln(U)$$

which means that the required transformation is $V = g(U) = -0.5 \ln(U)$.

²¹Note that this inverse transformation always has positive slope.

²²Here we use that fact: if U is uniform on [0,1], so is 1-U.