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Chapter 3

SINGLE RANDOM VARIABLES
AND PROBABILITY
DISTRIBUTIONS

3.1 What is a Random Variable?

Why random variable?:

It is easier to describe and manipulate outcomes and events of the chance experiments
using numerical values rather than in words...

—> purpose of a random variable

= maps each point in S into a point on R!. !

For example,
z = X(C)

where X is the random variable, x is its specific value, and ( denotes the outcome of
a chance experiment.

IThis type of transform or mapping is called a function.
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Figure 3.1: A r.v. is a mapping of the sample space into a real line.

NOTE: Events are now described by the random variable, rather than in words, and
corresponding probability of the event can be calculated via r.v..

Example: For a chance experiment of tossing a fair coin, define a r.v. ? X (w) >:

X(head) =1 & X(tail) =0

Then, using the equally likely assignment of probability, we have:
1 1

P(X=1)=3 P(X=0)=3

Example 3.1

Consider an experiment of rolling a pair of dice, and find the probability of all
possible values of the sum.

Solution:

Define a r.v. X as the sum of the two dice, then referring the Table3.1. and
applying the equally likely assignment of probability, we have:

PX=2=4  PX=H=j=k PX-4=d=%
PX=5)=4=} PX=0=3  PX=1=8=1
P(X =8) = 3, PX=9)=g5=35 PX=10)=5=r,

2Value assignment of a r.v. entirely depends on the convenience, i.e. values 0 and 1 would be
more convenient to handle than values 7 and e.
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FACT: Functions of r.v. are ALSO r.v.’s, for instance:

Y= W=InX, U=cosX, V=X

Categorization of random variables:

1. Discrete random variable assumes only a countable number of values.

(e.g.) rolling dice: example3.1 (only 11 values)

2. Continuous random wvariable can assume a continuum of values.

(e.g.) weather vane: angle of the indicator (any value from 0 to 27 radian)

3. Mized random variable is a combination of above two types.

Example 3.2 Self study
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3.2 Probability Distribution Functions

Description of r.v. using probability:

In case of discrete r.v.:
= probability mass distribution

— tabulate (or plot) probability of its values

Example: example3.1(equation (3-2)), table3.1

Two types of general methods of description: 3

(1) Cumulative (probability) distribution function: cdf

(2) Probability density function: pdf

3.2.1 Cumulative Distribution Function

Definition 3.1 cumulative distribution function:
The cdf of a random variable X is defined as follows:

Fx(z) = P(X <)

3These apply to and work for all three types of r.v., i.e., comtinuous, discrete, and mixed random
variables.
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Example 3.3

Consider a chance experiment of rolling a pair of fair dice, and define a r.v. X

as the sum of the numbers showing up. Find the cdf of X. (refer to example
3.1)

Solution:

Since the cdf is defined as Fiy(z) = P(X < x), for instance if x = 3, we have:

Fx(3) = PI(X=2)U(X =3)]= P[(X =2)]+ P[(X =3)]

P{1,1}] + P[{1,2} U {2,1}] = P[{1,1}] + P[{1,2}] + P[{2,1}]
1 1 1 1
T 36736 36 12

Continuing until we cover all possible values of X, we get:

0, =<2
1
(NTE
367 —
S 4<z<5
%, b <xr <6
2o6<x<T
Fx(w) = % 7<x<8
%, 8§<zr <9
N 9<r<10
g’é, 10<z<11
2 11<z<12
8, r>12

Figure 3.2: The cdf of X, which is the sum of two dice.

4Notice that: Fx(—o00) = P(¢) =0, and Fx(c0) = P(S) = 1.
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General properties of cdf:

1. Limiting values:
lim Fyx(r) = 0
lim Fx(z) = 1

r—00

2. The cdf is right hand continuous, i.e.:

Fx(zo) = lim Fx(z)

$4>933—

3. The cdf Fx(z) is monotine non-decreasing function of x.

4. The probability of X having values b/w z; and x4 is given by:

P(zy < X < 19) = Fx(x2) — Fx(11)

Brief verification:

1. Notice that the inverse images of X at x = —oo and x = oo are respectively:
X(=00) = 6
X x)=8

2. This is due to the fact that the cdf is defined as Fy(z) £ P(X < z) rather than
Fx(x) 2 P(X < z): detailed proof is omitted! ®

3. Follows from property # 4.

4. Let 1 < x9, then we have:

hy?
P(X <2)=Pl(X <a)U(z1 < X <25)] "= P(X <2)+P(a; < X < )

which is equivalent to:
Fx(l‘l) + P(l’l < X< ZL’Q) = Fx(wg)
Rearranging the above provides:

P<$1 <X S.TQ) :Fx<l’2)—Fx(Q?1) >0

5To prove this, we need the so called continuity axiom, which is beyond the scope of this class:
will be discussed at the graduate level coursel.
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Example 3.4

Find the probability that the sum of two dice is between 3 and 7 inclusive.

Solution:

From the definition and properties of cdf, and using figure 3.1, we have: °

21 1 20 5
P(3§X§7):FX<7)_FX(3_):FX(7)_FX(2):%_%:%25

Example 3.5

Is Fx(z) below is a valid cdf?

1 2
Fx(x) = 5(1 + ;tan_1 x)

Solution:

Check if all the properties of cdf are satisfied: self study

Figure 3.3: Suitable cdf.

6Note that there 3 20 outcomes favorable to the event, thus applying the equally likely assignment
probability, we get %.
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3.2.2 Probability Density Function

Definition 3.2 probability density function:
The pdf of a (continuous)random variable X is defined as follows:

NOTE: interpretation of pdf!!!

Using the definition of derivative, we can re-write pdf as:

. Fx(x+ Ax) — Fx(z)
Jx(z) = Algcrilo Az
For Az suffuciently small, we can remove the limit, and thus:

Fx(z+Az) — Fx(z) =Plxr < X <z + Azx) >~ fx(v)Ax

General properties of pdf:

Since the pdf of a r.v. X is the derivative of the cdf, cdf Fx(z) can be expressed as
the integration of the pdf fx(x), i.e.:

Fx(z) = /xoo fx(u)du

1. The pdf is a non-negative function, i.e.:

fX(x) Z 07 Vr

2. The area under pdf is unity, i.e.:

/O:O fx(z)dr =1

3. The probability of X having values b/w x; and x5 is given by:

P(a:1<X§x2):/

xT

" fx(z)dz
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Brief verification:

1. Since the cdf is non-decreasing, and pdf is the derivetive ( or slope) of it, it
must be non-negative.

2. Using the relationship b/w the cdf and pdf, we have:

/O:O fx(z)dr = Fx(o0) =1

3. From the property of the cdf, and using the relationship b/w the cdf and pdf,

we have:
P(ZEl <X§l‘2) = Fx<CL’2)—FX(ZE1)
= /Z fx(u)du — /x; fx(uw)du
= /:2 fx(u)du
Example 3.6

Obtain the pdf of a r.v. X whose cdf is given as: (example 3.5)

1 2
Fx(x) = 5(1 + ;tan_l x)

and find the probability of an event 5: 2 < X <5.

Solution:

Since L tan™' x = ﬁ, we easily get:

fx(z) = 1117;2

and using the property of the cdf, we obtain:

1
P2<X<5) = ;(tan’l 5—tan~'2)

= 0.085
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Figure 3.4: The pdf of X in example 3.6.

Remark:
The definition of the pdf can generally be applied to both continuous and discrete
random variables!!!

motive:

Since the cdf of a discrete r.v. can generally be expressed as the sum of the weighted
& shifted unit step function u(z) 7, i.e.:

Fx(x) = Z_:lpzu(x — ;)

and the derivative of u(x) is the unit impulse function §(x) as:

du(z)
dz

= d(x)

the pdf fx(x) of a discrete r.v. can generally be described as the sum of the weighted
& shifted unit impulse function 6(z), i.e.:

N

fx(z) = pid(z — ;)

i=1

"Recall that the unit step function is defined as u(x) 21 forz > 0 and 0 elsewhere.
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Example 3.7

Express the pdf of the r.v. X discussed in example 3.3.

Solution:

The cdf of X in terms of u(z) can be expressed as:

Fx(z) = 55 [u(e —2)+2u(z — 3) 4 3u(z — 4) + 4u(z — 5) + Su(z — 6)
+ 6u(z —7) + 5u(x — 8) + 4u(x — 9) + 3u(z — 10)
+ 2u(r —11) + u(x — 12)]

w

Taking the derivative, we find the pdf to be:

fx(@)= 55 [6(x —2)+20(x —3) +36(x —4) + 46(x — 5) + 56(z — 6)
+ 60(z—7)+55(x —8) +4(x —9) + 36(x — 10)
+ 26(z — 11) + 8(z — 12))]

w

Figure 3.5: The pdf of X in example 3.7
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3.3 Common Random Variables and their Distri-
bution Functions

Commonly occurring and widely used r.v.’s are discussed

— In terms of their cdf & pdf

Uniform Random Variable:

The uniform random variable X is defined in terms of its probability density function
as follows:

7, a<xr<bb>a

0, otherwise

By integration, we can derive its cumulative distribution function(cdf) to be:

0, r<a
fx(@)=1¢ 72, a<z<b
1, x>0

Figure 3.6: Uniform r.v.: (a) pdf (b) cdf in case of a =0 & b=5
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Example 3.8

Resistors are known to be uniformly distributed within £10% tolerance range.
Find the probability that a nominal 1000 €2 resistor has a value b/w 990 and
1010 €.

Solution:

Since the tolerance region is bounded in the interval [900, 1100] centered at the
nominal value of 1000§2, the pdf of the resistance R is given by:

1
sis, 900 < 2 < 1100

fr(r) =

0, otherwise

Therefore, the probability that the resistor has a resistance value in the range
of [900, 1100] is then:

1010
P(9909 < R < 10109) = / 0.1

000 200

Gaussian Random Variable:

The Gaussian random variable X is defined in terms of its probability density function
as follows:
6—(x—m)2/202

vV 2mo?

where m and o? are parameters called the mean and variance respectively.

fx(z) =

The cdf can be derived by direct integration of the pdf, which cannot be expressed
in a closed form, however...
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Instead, we use either of the following functions defined as:

(1) @ function:

—u2/2du

Q) == [

whose numerical values are tabulated in Appendix C.

(2) Error function:

erf(z) = \/2%/0:6 e du

In terms of the @ function, the cdf of the Gaussian r.v. is given by:

r—m

)

derivation: assignment

Question: Express () and error functions in terms of each other: assignment

Figure: Illustration of integration for () and error functions.
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Figure 3.7: Gaussian distribution for m =5 and ¢ = 2: (a) pdf (b) cdf.

Example 3.9

A mechanical compopnent, whose 5mm thickness(7")is known to have a Gaus-
sian distribution w/ m = 5 and ¢ = 0.05. Find the probability that 7" is less
than 4.9mm OR greater than 5.1mm.

Solution: 8

P(T < 4.9mm OR T > 5.1mm)
= 1—P4.9mm <T < 5.1mm)

= 1 [Fr(5.1) — Fr(4.9)]

5.1-5 4.9 -5
-1
0.05 ) +Q 0.05

= 1-[Q(-2) - Q)] =1-[1-Q( —2)) - Q(2)]

= 1-[1-0( )]

= 2Q(2) = 0.02275

8We use here the relationship Q(z) =1 — Q(|z|) for z < 0.
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Exponential Random Variable:

The exponential random variable X is defined in terms of its probability density
function with parameter « as follows:

The cdf, by integration, can then be obtained as:
Fx(z) = (1 — e *)u(z)

where u(z) is the unit step function.

Assignment: Plot fx(z) and Fx(z) for a exponential r.v.,and verify its properties.

Example 3.10 Self Study

Gamma Random Variable:

The Gamma random variable X has its probability density function as follows:

b

Ix(z) = F(éb):vb_le_“u(:v), bc>0

where T'(b) is the gamma function given by the integral ? :

() = /OOO Yt le Vdy

%It can be shown by evaluation that I'(1) = 1 and I'(3) = /7, and by replacing b by b+ 1, we can
also show that T'(b+ 1) = bI'(b), which in turn provides that I'(n + 1) = n! in case of b an integer n.
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Special cases:

1. Chi-square pdf: (statistics)

1

_ (n/2)—1_—x/2
72”/2F(n/2)x e u(r)

Ix(z)

where b and ¢ are replaced by b =n/2 and ¢ = 2

2. Erlang pdf: (queing theory)

where b = n is an integer.

Figure 3.8: Plots of (a) chi-square pdf and (b) Erlang pdf.

Cauchy Random Variable:

The Cauchy random variable X has its probability density function as follows:

ajm
22+ a2

fx(z) =

Corresponding cdf is given by:

Note: Example 3.5 with fig.3.3 is the case of Cauchy r.v. for a = 1!
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Binomial Random Variable:

The r.v. X is binomially distributed if it takes on the non-negative integer values
0,1,2,...,n with probabilities:

P(X:k):<z>pkqn_k7 k:O,1,27"',7’L

where p+ q = 1.

Corresponding pdf and the cdf, using the unit impulse function, are given by:

et =3 () startate -

Remark: This is the distribution describing the number(k) of heads occurring in n
tosses of a fair coin, in which case p = ¢ = 0.5.

Figure 3.9: The pdf of binomial r.v. for n = 10: (a) p=¢ = %; (b) p = %, q= %.

Geometric Random Variable:

Suppose we flip a biased coin w/ probability of a head is p whereas the probability of
tail is 1 — p. Then, the probability of getting the head(success) for the first time at
the £ — th toss is given by:

P(first success at trial k) = P(X = k) = (1 —p)*'p, k=1,2,---

where p is the probability of success.

—> called the geometric distribution

— corresponds to the geometric mean of k — 1 and k + 1 values.

Check: assignment
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Poisson Random Variable:

The r.v. X is Poisson with parameter a if it takes on the non-negative integer values

0,1,2,... with probabilities:

P(X=k)=—¢* k=012-

Corresponding cdf of a Poisson r.v. is given by:

ak

Fx(x) = Z He’a

k<z

Figure 3.10: Poisson pdf (a) a = 0.9; (b) a = 0.2.

Limiting Forms of Bionomial and Poisson Distributions:

Theorem 3.1 De Mowvre-Laplace theorem:

For n sufficiently large, the binomial distribution can be approximated by the samples

of a Gaussian curve properly scaled and shifted as:

—(k—m)?
e
pkqn—k ~ n> 1

Voro?

where m = np and 02 = npq respectively.

Proof: omit
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Corresponding cdf of a binomial r.v., based on the De Moivre-Laplace theroem, can
be approximated as:

r—np

Vv 1Pq

Fx(r) ~1-0Q( )

where Q(+) is the Q-function.

Figure 3.11: Binomial cdf and De Moivre-Laplace approximation for n = 10: (a)
p=0.2; (b) a=0.5.

Theorem 3.2 :
The Poisson distribution approaches to a Gaussian distribution for a > 1 as:

ak e—(k—a)2/2a

—e '~ ——— n>1, p<Ll,np=a
k! 21a b b

Proof:

This is due to the fact that a binomial distribution approaches the Poisson distribution
with a = np if n > 1 and p < 1, and applying the De Moivre-Laplace theorem proves
it!

:READ
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Example 3.11

In a digital communication system, the probability of an error is 1073. What is
the probability of 3 errors in transmission of 5000 bits?

Solution:

This has a binomial distribution, and the Poisson approximation with n = 5000,
p =103, and k = 3 shows:

3

)
P(3 errors) ~ §6_5 = 0.14037

whereas the exact value of the probability using the binomial distribution is:

2000
3

) (107%)3(1 — 107*)"97 = 0.14036

Poisson Points and Exponential Probability Density Function:

Consider a finite interval T" (fig 3.12), with the probability of k occurrence of an event
( mi : arrival of electrons at certain point) in this interval obeys a Poisson distribution,
le.

P(X =k) =" k=012

where \ is the numberof events per unit time.

Then, the interval from an arbitrarily selected point and the next event is a r.v. W
following an exponential distribution with its pdf as:

fw(w) = Xe  u(w)

Figure 3.12: Poisson points on a finite interval 7.
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proof:

First, find the cdf of W as 19 :
Fy(w)=PW <w)=1-P(X=0=1—¢, w>0

Differentiating it, we obtain:

Jw(w) = dCfUFw(w) = de Mu(w)

Example 3.12

Raindrops impinge on a tin roof at a rate of 100/sec. What is the probabil-
ity that the interval between adjacent raindrops is greater than 1(msec), and
10(msec)?

Solution:

This can be approximated by a Poisson poiny process with A = 100, and there-
fore:

PW>10"?%) = 1-P(W <107
— 1 _ (1 _ e—lOOX0.00l) — 6—0.1 — 0905

and

PW>10"% = 1-PW <107?)
= 1—(1—e ) =™t =0.368

Pascal Random Variable:

The r.v. X has a Pascal distribution if it takes on the positive integer values 1,2, 3, ...
with probabilities:

n—1 e

10fW < w} corresponds to the event that there is at least one Poisson event in the interval (0, w).
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Note:

1. For example, in a sequence of coin tossing, the probability of getting the k — th
head on the n —th toss obeys a Pascal distribution, where p = prob. of a head.

2. Reasoning: We get the first k£ — 1 heads in any order in the first n — 1 tosses,
which is binomial, and then must get a head on the n — th toss.

3. Geometric distribution is a special case of the Pascal distribution.

Example 3.13 Self study

Hypergeometric Random Variable:

Consider a box containg N items, K of which are defective. Then, the probability of
obtaining k£ defective items in a selection of n items without replacement follows the
hypergeometric distribution:

K N-K
k n—=k
P(X =k)= k=0,1,2,---,n

)

Example 3.14 Self study

27



3.4 Transformation of a Single Random Variable

Consider functions of random variables, i.e.:

Y =g(X)
where ¢(-) is a (single valued) function.
(e.g.)

Y= W=InX, U=cosX, V=X?

Recall: If X is a random variable, Y is also a random variable!!!

Question:
Given the probability distributions (Fx(x) or fx(z)) of X, find corresponding prob-
ability distributions ( Fy(y) or fy(y)) of the newly defined r.v. V...

Figure 3.13: Examples of monotonic and nonmonotonic transformations of a r.v..
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1. Case #1: ¢(-) is monotone increasing
For an arbitrary value g, of Y, there 3 a unique corresponding value xq of X >:

Yo = 9(xo)

Then, we have:

P(Y <o) 2 Fy(yo) = Plg(X) < g(x0)] = P(X < 20) = Fx (o)

Changing =y and yy to arbitrary values x and y, we get

Fy(y) = Fx(x)  where z =g '(y)

Differentiating the above Fy (y) w.r.t. y, we get the pdf fy(y) as:

dy dz  dy r=g~1(y) dy r=g~1(

fr(y)

)

2. Case #2: ¢(-) is monotone decreasing:
For a specific value gy, of Y, there 3 also a unique corresponding value xg of X 3:

Yo = 9(xo)

But, in this case we have:

Fy(yo) = Plg(X) < g(z0)] = P(X > 20) =1 - P(X < 20) = 1 — Fx(%0)

In general, this can be expressed as:

Fy(y)=1—Fx(z)  where z=g7'(y)

Differentiating the above Fy (y) w.r.t. y, we get the pdf fy(y) as:

_dFy(y)  dFx(z) dz dx
dy dr Ay, g1y

fr(y)
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Remark:

Notice that the slope( or derivative) Z—Z > 0 for case #1, whereas % < 0 for case #2.
Therefore, using the absolute value of the derivative, we can combine the above two
cases, and express the probability density function fy(y) as follows:

_dFy(y) _ dFx(a)
dy dx

dx
dy

dx

dy

fr(y) = fx(z)

2=971(v)

o971 (v)

Example 3.15

Suppose X is an exponential r.v. w/ parameter «, i.e.:
fx(z) = ae™u(z), a>0
Then find the pdf of a newly defined r.v. Y via the following transformation.

Y=aX+b

Solution:

The transformation is monotone, and solving the transformation w.r.t. z, we
get:

xZi@—m

and the derivative has a constant value as:

dx 1

dy  a
Therefore, the pdf of Y can be derived as:

(07 _
:fww=7aéMWWMMy—m
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Figure 3.14: The pdf for example 3.15: (a) a > 0; (b) a < 0.

3. Case #3: g¢(-) is non-monotonic:

In this case, there will 4 more than one solution of X = x for a given value of Y =y,
ie.:

m dl’z
fy(y) = ;fX(x) dy zi=g; ' (v)
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Example 3.16
Let X be a Gaussian r.v. w/ mean m = 0. Find the pdf of Y defined a follows:

Y = X?

Solution:
Note that Y > 0, and therefore fy(y) =0 for y < 0.

For the case when y > 0, solving the transformation w.r.t. x, we obtain:
r1 =y and x3=—/y

Thus

dl‘i
dy

= i=1,2

Therefore, the pdf of Y becomes:

6—962/20'2
frly) = 1 [

1 e—x2/20'2‘| ‘|
R + R
2\/y [\/27?02 - 2y | V2ro? S

efy/202

V2mo?y’

Figure 3.15: The pdf of Y in example 3.16 for the case of m = 0 and 0% = 1.
Example 3.17 Self study
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3.5 Averages of Random Variables

Expressing r.v.’s using its representative values!!!

: For the cases when complete description of the r.v. 3: the pdf and/or cdf might
not be necessary.....

Definition 3.3 Expectation of a r.v.:
The mathematical expectation of a random variable X, using the r.v.’s pdf, is defined
according to the following equation:

E(X) = / Y ofx(@)de

—0o0

where E(-) stands for expectation.

Note:

The above definition applies to both continuous and discrete random variables, i.e.,
if X is discrete, we have '!:

E(X) = /OO vy pid(x — x;)de
=1

- Sp /°° 20(x — x;)d
i=1 >

n
= Z Tipi
i=1

where p; £ P (X = z;), and this might be the more familiar form of the mathematical
expectation for discrete r.v.’s for you.

' This is due to the sifting property of the unit impulse function, which is, ffooo g(x)d(x —x;)dx =
9(@i).
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Example 3.18

The test scores of 100 students are summarized in Table3.2. Find the average
score using the mathematical expectation.

Score # of students Relative frequency

100 2 0.02
95 5 0.05
90 10 0.10
85 20 0.20
80 33 0.33
) 15 0.15
70 7 0.07
65 4 0.04
60 3 0.03
95 1 0.01

Table3.2 Test scores for 100 students.

Solution:
Using the relative frequency approach for probability, and by the definition of

mathematical expectation, we have:

E(X) = 100 x 0.02+ 95 x 0.05+90 x 0.1 + 85 x 0.2+ 80 x 0.33
+ 75 x0.154+70 x 0.07 + 65 x 0.04 + 60 x 0.03 + 55 x 0.01 = 80

(cf) Compare the result with ordinary way of calculating averages, which you
may be more accustomed to from elementary school days, below:

100 x 2495 x54+90x104+85x20+---+65x4+60x3+55x1
100
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Definition 3.4 Expectation of functions of r.v.’s:
In general, for any function g(X) of a rv. X, we defined the expectation of this
function to be '2:

Elg(X)) = [ g(a)fx(x)da

1. m-th moment:

If g(X) = X™ where m is an integer, we call it the m-th moment of r.v. X, i.e.:

e}

m-th moment £ E [X™] = / ™ fx(x)dx

(cf)
The first moment(m = 1) is called the mean and denoted as px, whereas the
second moment(m = 2) is called its mean squared value.

Example 3.19

Find the mean and the eman squared value of a uniform r.v. X ~ Ula,b].

Solution:
The mean is given by:

o2 a4

a:2(b—a)_ 2

b xdx x?
E<X):/a b—a 2(b—a)

whereas the eman squared value is as follows:

b b —al a® + ab + b?

3(b—a) 3

3

9 b zidx
E(X):/a b—a 3(b—a)

a

12\We take this as a definition here, but it can actually be proved: more advanced course on
probability...
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2. central moment:

If g(X) = (X — px)™ where n is an integer, we call it the n-th central moment
of rv. X, ie.:

oo

ma 2 BIX = pux)") = [ (@ = px)" fx(@)da

(cf)
The second central moment is especially called the variance, and denoted by
the symbol o%:

ok 2my = E[(X = )] = [ (0 = px)*fx(a)d

— 00

Assignment:

Show that the variance of a uniform r.v. X ~ Ula,b] is 0% = (b — a)?/12.

Note:

The square root of the variance is called the standard deviation, and it represents
the average amount of spread around the mean 3 :

o= /E{[X - B(X)]?}

13Note that E[X — F(X)] is NOT adequate for representing the spread about mean since positive
and negative values of the difference X — E(X) will cancel out, thus smaller measure of deviation
may result. On the other hand, E[|X — E(X)|] would cure this problem, but hard to handle the

absolute value analytically...
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Example 3.20

Consider a Gaussian r.v. X, whose pdf is given by:

e—(w—’r7z)2/2cr2

=

(a) Show that the mean is ux = m
(b) Find the central moments of X.

Solution:

(a) The mean is given by:

/oo e~ (z—m)?/20? J (1 )
= r——dx etu=x—m
Hx —oc0 V2mo?

[ s m S
= u+m u
—oo 2702
—u2/2a 00 eTU /20
= / du + m/
—oo 27702
= 0+m=m
(b) By the definition of the central moments, we have:
iy - et
my = — n = €xr — n__________ T
(X =) = [ =) s
/oo R 1,2
= u u, n=12---
—o0  \2mo?

which is zero when n is odd. (why?)

For the case when n being even integers,the integrand is symmetric about
u = 0, and employing the table of integral, we obtain:

mzk—2/

—u2/20

du:1-3-----(2k‘—1)02k, k=12,

Note that the special case of n = 2k = 2 provides the variance o2!!!
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Properties of expectation:

1. The expectation of a constant is the constant itself:
FEla] = a, a = constant

2. The expectation of a constant times a function of r.v. is the constant times the
expectation of the function of r.v.:

Elag(X)] = aE[g(X)], a = constant

3. The expectation of the sum of two functions of r.v. is the sum of each expecta-
tion:

Elg1(X) + 92(X)] = E[g1(X)] + E[ga(z)]

proof: assignment

Note: Combination of the properties 2 & 3 is called the linearity property of the
expectation 3: Elagi(X) + bga2(X)] = aE[g1(X)] + bE[g2(z)].

Example 3.21

Show that the variance of a r.v. X can be computed according to:

0% = El(z — px)’] = B(X?) - [E(X))*

Solution:

Using the foregoing properties,

ox = El(z— px)?
= E(X2—2,UXX+NX)
= B(X?) - 2uxE(X) + E(1%)
— E( 2>_2MX+IU’X
= B(X?) -
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Example 3.22

Let two r.v.’s X and Y are linearly related as:
Y =aX+0b

Find the mean and variance of Y in terms of those of X.

Solution:

Using the properties of expectation, we have the mean as:

py = ElaX +b] =aE(X)+ E(b) = aux +b
whereas the variance is given by:

oy = E[(Y — py)*] = E{[(aX +b) — (apx + )]} = Ela*(X

Example 3.23

The mean and variance of a binomial random variable.

Solution: Self study
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3.6 Characteristic Function

Definition 3.5 The characteristic function:
The characteristic function of a r.v. s a special case of the mathematical expectation

defined as follows:

My(jv) = B@) 2 [* fx(@)edo

Usefulness of characteristic function:

1. The m-th moment of a r.v. can be obtained by differentiating the
characteristic function w.r.t. its argument.

2. Sometimes the characteristic function of a r.v. is easier to obtain than the pdf.

3. The characteristic function and the pdf are Fourier transform pairs.

To show the first statement, we differentiate the characteristic function w.r.t. v to
obtain:

dM
X001 oy e [ gy

Now set v = 0, and divide by j to get:

. de(]V)
—J pi
v

Repeating the same procedure n times, the n —th moment of the r.v. X can generally
be expressed as:
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Example 3.24

Find the characteristic function of a Cauchy r.v. w/ its pdf given as:

ajm
2+ a?

fx(z) =

Solution:

Applying the definition of the characteristic function, we obtain:

Mx(jv) = /OO T uag,

—0o0 2 +CY2

= /_O:o m2a—i/_7ra2 [cos(vz) + jsin(va)|dz

/OO COS VfE
ooZUZ‘i‘CYZ

which, by use of a table of indefinite integral, can be expressed as 4

My (jv) = e

Example 3.25

Find the characteristic function of the double sided exponential r.v.(called the
Laplacian r.v.), whose pdf is given by:

fx(z) = %e—am, a>0

4Note that Mx(jv) is not differentiable at ¥ = 0, and thus we cannot use it to evaluate the
moments. In fact, its moments do not exists in this case.
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Solution:

By the definition of the characteristic function, we get:

Mx(jv) :/ %e’“'x‘ej”dx

—00

= /oo %e_o‘m[cos(ym) + jsin(vz)|dx

= %/ cos(vax)e I dz

which, by use of a table of indefinite integral, can be expressed as '° :

062

x(jv) =« ; cos(vx)e =

Assignment: Show that the first and the second moments are 0 and 2/a?
respectively by differentiation.

15Note that the integrand is symmetric about = = 0.
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3.7 Chebyshev’s Inequality

Recall:
The standard deviation of a r.v. gives a measure of spread about its mean

= The Chebyshev’s inequality provides a bound on the probability that a r.v.
deviated more than k standard deviations from its mean ¢ !l!

Chebyshev’s Inequality:

For any random variable X, the probability of X being deviated from its mean more
than k£ standard deviation must satisfy the following inequality:

1
P(|X = px| 2 kox) < 15

or 17

1
P(|X_MX|<]€UX)>1_E

proof:
Let Y = X — ux'® and a = kox. Then, the LHS of the first inequality becomes:
P(lY|>a)=PY < —a)+ P(Y > a)

which follows from the fact |Y| > a is the union of two mutually exclusive events
Y >aand Y < —a.

161t is a very loose bound, but its merit is the fact that very little need to be known about the
r.v. to obtain the bound...

1"Note that two events |X — ux| > kox and |X — ux| < kox are mutually exclusive to each
other!

18Note then: E[Y?] = 0%.
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Now, consider the second moment of Y, which is:

—a

E(Y?) =/_O:o v fy(y)dy > Y fy(y dy+/ v Iy (y

[ vy [ fy<y>dy}

= *[P(Y <—a)+P(Y >a)], a>0

v

Solving, we obtain:
E(Y?)

P(Y < —a)+ P(Y >a) = P([Y| > a) <

Replacing Y = X — py with E[Y?] = 0%, and a = kox, we have the Chebyshev’s
inequality as:
1
PUX = jux] > ko) <
Q.E.D.

Example 3.26

(a) Find a bound on the probability that a r.v. is within three standard
deviations of its mean.

(b) Find the exact probability of this event, if the r.v. is a Gaussian, and
compare with the bound.

Solution:

(a) From the Chebyshev’s inequality, we have:
1
P(IX = x| < 80x) > 1= =5 = 0.889

(b) The probability of the given event for a Gaussian r.v. is:

ux+3ox 6_($_NX)2/20—§(

P(X — < 3o = / ——dx
(1 fix| x) i —30x rm&

e U /2 3 e U /2

\/27r \/27r
- 1—2@( )_1—2><0.00135
= 0.9973

(cf) Note that the Chebyshev’s inequality does NOT provide a tight bound in
this case!!!
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3.8 Computer Generation of Random Variables

Recall:

1. Generation of uniform pseudorandom numbers X ~ U|0, 1]:
X = rand(1,1000);
2. Generation of Gaussian pseudorandom numbers Y ~ N(0,1) 19 :
Y = randn(p, q)
)20 .

3. Generation of Gaussian pseudorandom numbers Z ~ N(m, o>

Z=0cY+m

Generation of random numbers with an arbitrary distribution:

Let U be a r.v. uniformly distributed in [0, 1], and define a new r.v. V as:

vV =yg(U)

where ¢(-) is assumed to br monotonic.

Then, the pdf of the newly defined r.v. V' is given by:

du
folv) = folu)|—
Vi _ 1
u=g~1(v)
% :‘dg;(v) L 0<u<l1
0, otherwise

where the last equation follows because fy(u) is unity in [0, 1] and zero elsewhere.

19This generates an array of Gaussian pseudorandom numbers with p rows and ¢ columns.
20By way of transformation.
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Re-writing the above result for the case of 0 < u < 1:

dg—'(v) dg—'(v)
gdv ) gdv Z 0

Integrating and solving for ¢~ (v), we obtain:

[2 oo Fv(AN)dA = Fy (v), dg~' ) <

9 (v) = 1
— [P fr(NdA = —Fy(v), 20 <0

where Fy,(v) represents the desired cdf of r.v. V.

Example 3.27

Using a uniform r.v. U uniformly distributed in [0, 1], find the required trans-
formation V' = ¢g(U) so that it will generate an exponential pdf given by:

fr(v) = 2e " u(v)

Solution:

The cdf of the desired exponential r.v. is:

Fr(o) = [ Jv(nar =

From which, we obtain 2:
u=g'tv)=1—-e?, v>0
Solving for v, expressing it into the relationship between two r.v.’s U and V 2%

V = —05In(1-0)
= —0.5In(U)

which means that the required transformation is V = ¢g(U) = —0.5In(U).

2INote that this inverse transformation always has positive slope.
%2Here we use that fact: if U is uniform on [0, 1], so is 1 — U.
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