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Chapter 3

SINGLE RANDOM VARIABLES
AND PROBABILITY
DISTRIBUTIONS

3.1 What is a Random Variable?

Why random variable?:

It is easier to describe and manipulate outcomes and events of the chance experiments
using numerical values rather than in words...

=⇒ purpose of a random variable

=⇒ maps each point in S into a point on R1. 1

For example,

x = X(ζ)

where X is the random variable, x is its specific value, and ζ denotes the outcome of
a chance experiment.

1This type of transform or mapping is called a function.
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Figure 3.1: A r.v. is a mapping of the sample space into a real line.

NOTE: Events are now described by the random variable, rather than in words, and
corresponding probability of the event can be calculated via r.v..

Example: For a chance experiment of tossing a fair coin, define a r.v. 2 X(ω) 3:

X(head) = 1 & X(tail) = 0

Then, using the equally likely assignment of probability, we have:

P (X = 1) =
1

2
, P (X = 0) =

1

2

Example 3.1

Consider an experiment of rolling a pair of dice, and find the probability of all
possible values of the sum.

Solution:

Define a r.v. X as the sum of the two dice, then referring the Table3.1. and
applying the equally likely assignment of probability, we have:

P (X = 2) = 1
36

, P (X = 3) = 2
36

= 1
18

, P (X = 4) = 3
36

= 1
12

,

P (X = 5) = 4
36

= 1
9
, P (X = 6) = 5

36
, P (X = 7) = 6

36
= 1

6
,

P (X = 8) = 5
36

, P (X = 9) = 4
36

= 1
9
, P (X = 10) = 3

36
= 1

12
,

P (X = 11) = 2
36

= 1
18

, P (X = 12) = 1
36

,

2Value assignment of a r.v. entirely depends on the convenience, i.e. values 0 and 1 would be
more convenient to handle than values π and e.
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FACT: Functions of r.v. are ALSO r.v.’s, for instance:

Y = eX , W = ln X, U = cos X, V = X2

Categorization of random variables:

1. Discrete random variable assumes only a countable number of values.

(e.g.) rolling dice: example3.1 (only 11 values)

2. Continuous random variable can assume a continuum of values.

(e.g.) weather vane: angle of the indicator (any value from 0 to 2π radian)

3. Mixed random variable is a combination of above two types.

Example 3.2 Self study
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3.2 Probability Distribution Functions

Description of r.v. using probability:

In case of discrete r.v.:

=⇒ probability mass distribution

=⇒ tabulate (or plot) probability of its values

Example: example3.1(equation (3-2)), table3.1

Two types of general methods of description: 3

(1) Cumulative (probability) distribution function: cdf

(2) Probability density function: pdf

3.2.1 Cumulative Distribution Function

Definition 3.1 cumulative distribution function:
The cdf of a random variable X is defined as follows:

FX(x) = P (X ≤ x)

3These apply to and work for all three types of r.v., i.e., comtinuous, discrete, and mixed random
variables.
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Example 3.3

Consider a chance experiment of rolling a pair of fair dice, and define a r.v. X
as the sum of the numbers showing up. Find the cdf of X. (refer to example
3.1)

Solution:

Since the cdf is defined as FX(x) = P (X ≤ x), for instance if x = 3, we have: 4

FX(3) = P [(X = 2) ∪ (X = 3)] = P [(X = 2)] + P [(X = 3)]

= P [{1, 1}] + P [{1, 2} ∪ {2, 1}] = P [{1, 1}] + P [{1, 2}] + P [{2, 1}]
=

1

36
+

1

36
+

1

36
=

1

12

...

Continuing until we cover all possible values of X, we get:

FX(x) =





0, x < 2
1
36

, 2 ≤ x < 3
3
36

, 3 ≤ x < 4
6
36

, 4 ≤ x < 5
10
36

, 5 ≤ x < 6
15
36

, 6 ≤ x < 7
21
36

, 7 ≤ x < 8
26
36

, 8 ≤ x < 9
30
36

, 9 ≤ x < 10
33
36

, 10 ≤ x < 11
35
36

, 11 ≤ x < 12
36
36

, x ≥ 12

Figure 3.2: The cdf of X, which is the sum of two dice.

4Notice that: FX(−∞) = P (φ) = 0, and FX(∞) = P (S) = 1.
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General properties of cdf:

1. Limiting values:

lim
x→−∞FX(x) = 0

lim
x→∞FX(x) = 1

2. The cdf is right hand continuous, i.e.:

FX(x0) = lim
x→x+

0

FX(x)

3. The cdf FX(x) is monotine non-decreasing function of x.

4. The probability of X having values b/w x1 and x2 is given by:

P (x1 < X ≤ x2) = FX(x2)− FX(x1)

Brief verification:

1. Notice that the inverse images of X at x = −∞ and x = ∞ are respectively:

X−1(−∞) = φ

X−1(∞) = S

2. This is due to the fact that the cdf is defined as FX(x)
∆
= P (X ≤ x) rather than

FX(x)
∆
= P (X < x): detailed proof is omitted! 5

3. Follows from property # 4.

4. Let x1 ≤ x2, then we have:

P (X ≤ x2) = P [(X ≤ x1)∪(x1 < X ≤ x2)]
why?

= P (X ≤ x1)+P (x1 < X ≤ x2)

which is equivalent to:

FX(x1) + P (x1 < X ≤ x2) = FX(x2)

Rearranging the above provides:

P (x1 < X ≤ x2) = FX(x2)− FX(x1) ≥ 0

5To prove this, we need the so called continuity axiom, which is beyond the scope of this class:
will be discussed at the graduate level course!.
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Example 3.4

Find the probability that the sum of two dice is between 3 and 7 inclusive.

Solution:

From the definition and properties of cdf, and using figure 3.1, we have: 6

P (3 ≤ X ≤ 7) = FX(7)− FX(3−) = FX(7)− FX(2) =
21

36
− 1

36
=

20

36
=

5

9

Example 3.5

Is FX(x) below is a valid cdf?

FX(x) =
1

2
(1 +

2

π
tan−1 x)

Solution:

Check if all the properties of cdf are satisfied: self study

Figure 3.3: Suitable cdf.

6Note that there ∃ 20 outcomes favorable to the event, thus applying the equally likely assignment
probability, we get 20

36 .
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3.2.2 Probability Density Function

Definition 3.2 probability density function:
The pdf of a (continuous)random variable X is defined as follows:

fX(x) =
dFX(x)

dx

NOTE: interpretation of pdf!!!

Using the definition of derivative, we can re-write pdf as:

fX(x) = lim
∆x→0

FX(x + ∆x)− FX(x)

∆x

For ∆x suffuciently small, we can remove the limit, and thus:

FX(x + ∆x)− FX(x) = P (x < X ≤ x + ∆x) ' fX(x)∆x

General properties of pdf:

Since the pdf of a r.v. X is the derivative of the cdf, cdf FX(x) can be expressed as
the integration of the pdf fX(x), i.e.:

FX(x) =
∫ x

−∞
fX(u)du

1. The pdf is a non-negative function, i.e.:

fX(x) ≥ 0, ∀x

2. The area under pdf is unity, i.e.:
∫ ∞

−∞
fX(x)dx = 1

3. The probability of X having values b/w x1 and x2 is given by:

P (x1 < X ≤ x2) =
∫ x2

x1

fX(x)dx
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Brief verification:

1. Since the cdf is non-decreasing, and pdf is the derivetive ( or slope) of it, it
must be non-negative.

2. Using the relationship b/w the cdf and pdf, we have:

∫ ∞

−∞
fX(x)dx

def
= FX(∞) = 1

3. From the property of the cdf, and using the relationship b/w the cdf and pdf,
we have:

P (x1 < X ≤ x2) = FX(x2)− FX(x1)

=
∫ x2

−∞
fX(u)du−

∫ x1

−∞
fX(u)du

=
∫ x2

x1

fX(u)du

Example 3.6

Obtain the pdf of a r.v. X whose cdf is given as: (example 3.5)

FX(x) =
1

2
(1 +

2

π
tan−1 x)

and find the probability of an event 3 : 2 < X ≤ 5.

Solution:

Since d
dx

tan−1 x = 1
1+x2 , we easily get:

fX(x) =
1/π

1 + x2

and using the property of the cdf, we obtain:

P (2 < X ≤ 5) =
1

π
(tan−1 5− tan−1 2)

= 0.085
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Figure 3.4: The pdf of X in example 3.6.

Remark:
The definition of the pdf can generally be applied to both continuous and discrete
random variables!!!

motive:

Since the cdf of a discrete r.v. can generally be expressed as the sum of the weighted
& shifted unit step function u(x) 7, i.e.:

FX(x) =
N∑

i=1

piu(x− xi)

and the derivative of u(x) is the unit impulse function δ(x) as:

du(x)

dx
= δ(x)

the pdf fX(x) of a discrete r.v. can generally be described as the sum of the weighted
& shifted unit impulse function δ(x), i.e.:

fX(x) =
N∑

i=1

piδ(x− xi)

7Recall that the unit step function is defined as u(x) ∆= 1 for x ≥ 0 and 0 elsewhere.
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Example 3.7

Express the pdf of the r.v. X discussed in example 3.3.

Solution:

The cdf of X in terms of u(x) can be expressed as:

FX(x) = 1
36

[u(x− 2) + 2u(x− 3) + 3u(x− 4) + 4u(x− 5) + 5u(x− 6)

+ 6u(x− 7) + 5u(x− 8) + 4u(x− 9) + 3u(x− 10)

+ 2u(x− 11) + u(x− 12)]

Taking the derivative, we find the pdf to be:

fX(x) = 1
36

[δ(x− 2) + 2δ(x− 3) + 3δ(x− 4) + 4δ(x− 5) + 5δ(x− 6)

+ 6δ(x− 7) + 5δ(x− 8) + 4δ(x− 9) + 3δ(x− 10)

+ 2δ(x− 11) + δ(x− 12)]

Figure 3.5: The pdf of X in example 3.7
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3.3 Common Random Variables and their Distri-

bution Functions

Commonly occurring and widely used r.v.’s are discussed

=⇒ In terms of their cdf & pdf

Uniform Random Variable:

The uniform random variable X is defined in terms of its probability density function
as follows:

fX(x) =





1
b−a

, a ≤ x ≤ b, b > a

0, otherwise

By integration, we can derive its cumulative distribution function(cdf) to be:

fX(x) =





0, x ≤ a

x−a
b−a

, a < x ≤ b

1, x > b

Figure 3.6: Uniform r.v.: (a) pdf (b) cdf in case of a = 0 & b = 5
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Example 3.8

Resistors are known to be uniformly distributed within ±10% tolerance range.
Find the probability that a nominal 1000 Ω resistor has a value b/w 990 and
1010 Ω.

Solution:

Since the tolerance region is bounded in the interval [900, 1100] centered at the
nominal value of 1000Ω, the pdf of the resistance R is given by:

fR(r) =





1
200

, 900 ≤ x ≤ 1100

0, otherwise

Therefore, the probability that the resistor has a resistance value in the range
of [900, 1100] is then:

P (990Ω < R ≤ 1010Ω) =
∫ 1010

990

dr

200
= 0.1

Gaussian Random Variable:

The Gaussian random variable X is defined in terms of its probability density function
as follows:

fX(x) =
e−(x−m)2/2σ2

√
2πσ2

where m and σ2 are parameters called the mean and variance respectively.

The cdf can be derived by direct integration of the pdf, which cannot be expressed
in a closed form, however...
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Instead, we use either of the following functions defined as:

(1) Q function:

Q(x) =
1√
2π

∫ ∞

x
e−u2/2du

whose numerical values are tabulated in Appendix C.

(2) Error function:

erf(x) =
2√
π

∫ x

0
e−u2

du

In terms of the Q function, the cdf of the Gaussian r.v. is given by:

FX(x) = 1−Q(
x−m

σ
)

derivation: assignment

Question: Express Q and error functions in terms of each other: assignment

Figure: Illustration of integration for Q and error functions.
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Figure 3.7: Gaussian distribution for m = 5 and σ = 2: (a) pdf (b) cdf.

Example 3.9

A mechanical compopnent, whose 5mm thickness(T )is known to have a Gaus-
sian distribution w/ m = 5 and σ = 0.05. Find the probability that T is less
than 4.9mm OR greater than 5.1mm.

Solution: 8

P (T < 4.9mm OR T > 5.1mm)

= 1− P (4.9mm ≤ T ≤ 5.1mm)

= 1− [FT (5.1)− FT (4.9)]

= 1− [1−Q(
5.1− 5

0.05
)− 1 + Q(

4.9− 5

0.05
)]

= 1− [Q(−2)−Q(2)] = 1− [1−Q(| − 2|)−Q(2)]

= 2Q(2) = 0.02275

8We use here the relationship Q(x) = 1−Q(|x|) for x < 0.
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Exponential Random Variable:

The exponential random variable X is defined in terms of its probability density
function with parameter α as follows:

fX(x) = αe−αxu(x), α > 0

The cdf, by integration, can then be obtained as:

FX(x) = (1− e−αx)u(x)

where u(x) is the unit step function.

Assignment: Plot fX(x) and FX(x) for a exponential r.v.,and verify its properties.

Example 3.10 Self Study

Gamma Random Variable:

The Gamma random variable X has its probability density function as follows:

fX(x) =
cb

Γ(b)
xb−1e−cxu(x), b, c > 0

where Γ(b) is the gamma function given by the integral 9 :

Γ(b) =
∫ ∞

0
yb−1e−ydy

9It can be shown by evaluation that Γ(1) = 1 and Γ(1
2 ) =

√
π, and by replacing b by b+1, we can

also show that Γ(b + 1) = bΓ(b), which in turn provides that Γ(n + 1) = n! in case of b an integer n.
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Special cases:

1. Chi-square pdf: (statistics)

fX(x) =
1

2n/2Γ(n/2)
x(n/2)−1e−x/2u(x)

where b and c are replaced by b = n/2 and c = 2

2. Erlang pdf: (queing theory)

fX(x) =
cn

(n− 1)!
xn−1e−cxu(x)

where b = n is an integer.

Figure 3.8: Plots of (a) chi-square pdf and (b) Erlang pdf.

Cauchy Random Variable:

The Cauchy random variable X has its probability density function as follows:

fX(x) =
α/π

x2 + α2

Corresponding cdf is given by:

FX(x) =
1

2
+

1

π
tan−1 x

α

Note: Example 3.5 with fig.3.3 is the case of Cauchy r.v. for α = 1!
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Binomial Random Variable:

The r.v. X is binomially distributed if it takes on the non-negative integer values
0, 1, 2, . . . , n with probabilities:

P (X = k) =

(
n
k

)
pkqn−k, k = 0, 1, 2, · · · , n

where p + q = 1.

Corresponding pdf and the cdf, using the unit impulse function, are given by:

fX(x) =
n∑

k=0

(
n
k

)
pkqn−kδ(x− k)

FX(x) =
∑

k≤x

(
n
k

)
pkqn−k

Remark: This is the distribution describing the number(k) of heads occurring in n
tosses of a fair coin, in which case p = q = 0.5.

Figure 3.9: The pdf of binomial r.v. for n = 10: (a) p = q = 1
2
; (b) p = 1

5
, q = 4

5
.

Geometric Random Variable:

Suppose we flip a biased coin w/ probability of a head is p whereas the probability of
tail is 1 − p. Then, the probability of getting the head(success) for the first time at
the k − th toss is given by:

P (first success at trial k) = P (X = k) = (1− p)k−1p, k = 1, 2, · · ·
where p is the probability of success.

=⇒ called the geometric distribution

=⇒ corresponds to the geometric mean of k − 1 and k + 1 values.

Check: assignment
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Poisson Random Variable:

The r.v. X is Poisson with parameter a if it takes on the non-negative integer values
0, 1, 2, . . . with probabilities:

P (X = k) =
ak

k!
e−a, k = 0, 1, 2, · · ·

Corresponding cdf of a Poisson r.v. is given by:

FX(x) =
∑

k≤x

ak

k!
e−a

Figure 3.10: Poisson pdf (a) a = 0.9; (b) a = 0.2.

Limiting Forms of Bionomial and Poisson Distributions:

Theorem 3.1 De Moivre-Laplace theorem:

For n sufficiently large, the binomial distribution can be approximated by the samples
of a Gaussian curve properly scaled and shifted as:

pkqn−k ' e−(k−m)2

√
2πσ2

, n À 1

where m = np and σ2 = npq respectively.

Proof: omit
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Corresponding cdf of a binomial r.v., based on the De Moivre-Laplace theroem, can
be approximated as:

FX(x) ' 1−Q(
x− np√

npq
)

where Q(·) is the Q-function.

Figure 3.11: Binomial cdf and De Moivre-Laplace approximation for n = 10: (a)
p = 0.2; (b) a = 0.5.

Theorem 3.2 :

The Poisson distribution approaches to a Gaussian distribution for a À 1 as:

ak

k!
e−a ' e−(k−a)2/2a

√
2πa

, n À 1, p ¿ 1, np = a

Proof:
This is due to the fact that a binomial distribution approaches the Poisson distribution
with a = np if n À 1 and p ¿ 1, and applying the De Moivre-Laplace theorem proves
it!

:READ

54



Example 3.11

In a digital communication system, the probability of an error is 10−3. What is
the probability of 3 errors in transmission of 5000 bits?

Solution:

This has a binomial distribution, and the Poisson approximation with n = 5000,
p = 10−3, and k = 3 shows:

P (3 errors) ' 53

3!
e−5 = 0.14037

whereas the exact value of the probability using the binomial distribution is:

(
5000

3

)
(10−3)3(1− 10−3)4997 = 0.14036

Poisson Points and Exponential Probability Density Function:

Consider a finite interval T (fig 3.12), with the probability of k occurrence of an event
( ni : arrival of electrons at certain point) in this interval obeys a Poisson distribution,
i.e.:

P (X = k) =
(λT )k

k!
e−λT , k = 0, 1, 2, · · ·

where λ is the numberof events per unit time.

Then, the interval from an arbitrarily selected point and the next event is a r.v. W
following an exponential distribution with its pdf as:

fW (w) = λe−λwu(w)

Figure 3.12: Poisson points on a finite interval T .
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proof:

First, find the cdf of W as 10 :

FW (w) = P (W ≤ w) = 1− P (X = 0) = 1− e−λw, w ≥ 0

Differentiating it, we obtain:

fW (w) =
d

dw
FW (w) = λe−λwu(w)

Example 3.12

Raindrops impinge on a tin roof at a rate of 100/sec. What is the probabil-
ity that the interval between adjacent raindrops is greater than 1(msec), and
10(msec)?

Solution:

This can be approximated by a Poisson poiny process with λ = 100, and there-
fore:

P (W ≥ 10−3) = 1− P (W ≤ 10−3)

= 1− (1− e−100×0.001) = e−0.1 = 0.905

and

P (W ≥ 10−2) = 1− P (W ≤ 10−2)

= 1− (1− e−100×0.01) = e−1 = 0.368

Pascal Random Variable:

The r.v. X has a Pascal distribution if it takes on the positive integer values 1, 2, 3, . . .
with probabilities:

P (X = k) =

(
n− 1
k − 1

)
pkqn−k, k = 1, 2, · · · , q = 1− p

10{W ≤ w} corresponds to the event that there is at least one Poisson event in the interval (0, w).
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Note:

1. For example, in a sequence of coin tossing, the probability of getting the k− th
head on the n− th toss obeys a Pascal distribution, where p = prob. of a head.

2. Reasoning: We get the first k − 1 heads in any order in the first n− 1 tosses,
which is binomial, and then must get a head on the n− th toss.

3. Geometric distribution is a special case of the Pascal distribution.

Example 3.13 Self study

Hypergeometric Random Variable:

Consider a box containg N items, K of which are defective. Then, the probability of
obtaining k defective items in a selection of n items without replacement follows the
hypergeometric distribution:

P (X = k) =

(
K
k

) (
N −K
n− k

)

(
N
n

) , k = 0, 1, 2, · · · , n

Example 3.14 Self study
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3.4 Transformation of a Single Random Variable

Consider functions of random variables, i.e.:

Y = g(X)

where g(·) is a (single valued) function.

(e.g.)

Y = eX , W = ln X, U = cos X, V = X2

Recall: If X is a random variable, Y is also a random variable!!!

Question:
Given the probability distributions (FX(x) or fX(x)) of X, find corresponding prob-
ability distributions ( FY (y) or fY (y)) of the newly defined r.v. Y ...

Figure 3.13: Examples of monotonic and nonmonotonic transformations of a r.v..

58



1. Case #1: g(·) is monotone increasing

For an arbitrary value y0 of Y , there ∃ a unique corresponding value x0 of X 3:

y0 = g(x0)

Then, we have:

P (Y ≤ y0)
∆
= FY (y0) = P [g(X) ≤ g(x0)] = P (X ≤ x0) = FX(x0)

Changing x0 and y0 to arbitrary values x and y, we get

FY (y) = FX(x) where x = g−1(y)

Differentiating the above FY (y) w.r.t. y, we get the pdf fY (y) as:

fY (y) =
dFY (y)

dy
=

dFX(x)

dx

dx

dy

∣∣∣∣∣
x=g−1(y)

= fX(x)
dx

dy

∣∣∣∣∣
x=g−1(y)

2. Case #2: g(·) is monotone decreasing:

For a specific value y0 of Y , there ∃ also a unique corresponding value x0 of X 3:

y0 = g(x0)

But, in this case we have:

FY (y0) = P [g(X) ≤ g(x0)] = P (X ≥ x0) = 1− P (X ≤ x0) = 1− FX(x0)

In general, this can be expressed as:

FY (y) = 1− FX(x) where x = g−1(y)

Differentiating the above FY (y) w.r.t. y, we get the pdf fY (y) as:

fY (y) =
dFY (y)

dy
= −dFX(x)

dx

dx

dy

∣∣∣∣∣
x=g−1(y)

= −fX(x)
dx

dy

∣∣∣∣∣
x=g−1(y)
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Remark:

Notice that the slope( or derivative) dx
dy

> 0 for case #1, whereas dx
dy

< 0 for case #2.
Therefore, using the absolute value of the derivative, we can combine the above two
cases, and express the probability density function fY (y) as follows:

fY (y) =
dFY (y)

dy
=

dFX(x)

dx

∣∣∣∣∣
dx

dy

∣∣∣∣∣
x=g−1(y)

= fX(x)

∣∣∣∣∣
dx

dy

∣∣∣∣∣
x=g−1(y)

Example 3.15

Suppose X is an exponential r.v. w/ parameter α, i.e.:

fX(x) = αe−αxu(x), α > 0

Then find the pdf of a newly defined r.v. Y via the following transformation.

Y = aX + b

Solution:

The transformation is monotone, and solving the transformation w.r.t. x, we
get:

x =
1

a
(y − b)

and the derivative has a constant value as:

dx

dy
=

1

a

Therefore, the pdf of Y can be derived as:

fY (y) = fX(x)

∣∣∣∣∣
dx

dy

∣∣∣∣∣
x=g−1(y)

= fY (y) =
α

|a|e
(α/|a|)(y−b)u(y − b)
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Figure 3.14: The pdf for example 3.15: (a) a > 0; (b) a < 0.

3. Case #3: g(·) is non-monotonic:

In this case, there will ∃ more than one solution of X = x for a given value of Y = y,
i.e.:

xi = g−1
i (y), i = 1, 2, · · · ,m

Therefore, we can generalize the formula of the newly derined r.v.’s pdf as:

fY (y) =
m∑

i=1

fX(x)

∣∣∣∣∣
dxi

dy

∣∣∣∣∣
xi=g−1

i (y)
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Example 3.16

Let X be a Gaussian r.v. w/ mean m = 0. Find the pdf of Y defined a follows:

Y = X2

Solution:

Note that Y > 0, and therefore fY (y) = 0 for y < 0.

For the case when y ≥ 0, solving the transformation w.r.t. x, we obtain:

x1 =
√

y and x2 = −√y

Thus
∣∣∣∣∣
dxi

dy

∣∣∣∣∣ =
1

2
√

y
, i = 1, 2

Therefore, the pdf of Y becomes:

fY (y) =
1

2
√

y

[
e−x2/2σ2

√
2πσ2

]

x1=
√

y

+
1

2
√

y

[
e−x2/2σ2

√
2πσ2

]

x1=−√y

=
e−y/2σ2

√
2πσ2y

, y ≥ 0

Figure 3.15: The pdf of Y in example 3.16 for the case of m = 0 and σ2 = 1.

Example 3.17 Self study
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3.5 Averages of Random Variables

Expressing r.v.’s using its representative values!!!

: For the cases when complete description of the r.v. 3: the pdf and/or cdf might
not be necessary.....

Definition 3.3 Expectation of a r.v.:
The mathematical expectation of a random variable X, using the r.v.’s pdf, is defined
according to the following equation:

E(X) =
∫ ∞

−∞
xfX(x)dx

where E(·) stands for expectation.

Note:

The above definition applies to both continuous and discrete random variables, i.e.,
if X is discrete, we have 11:

E(X) =
∫ ∞

−∞
x

n∑

i=1

piδ(x− xi)dx

=
n∑

i=1

pi

∫ ∞

−∞
xδ(x− xi)dx

=
n∑

i=1

xipi

where pi
∆
= P (X = xi), and this might be the more familiar form of the mathematical

expectation for discrete r.v.’s for you.

11This is due to the sifting property of the unit impulse function, which is,
∫∞
−∞ g(x)δ(x−xi)dx =

g(xi).
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Example 3.18

The test scores of 100 students are summarized in Table3.2. Find the average
score using the mathematical expectation.

Score # of students Relative frequency

100 2 0.02
95 5 0.05
90 10 0.10
85 20 0.20
80 33 0.33
75 15 0.15
70 7 0.07
65 4 0.04
60 3 0.03
55 1 0.01

Table3.2 Test scores for 100 students.

Solution:

Using the relative frequency approach for probability, and by the definition of
mathematical expectation, we have:

E(X) = 100× 0.02 + 95× 0.05 + 90× 0.1 + 85× 0.2 + 80× 0.33

+ 75× 0.15 + 70× 0.07 + 65× 0.04 + 60× 0.03 + 55× 0.01 = 80

(cf) Compare the result with ordinary way of calculating averages, which you
may be more accustomed to from elementary school days, below:

100× 2 + 95× 5 + 90× 10 + 85× 20 + · · ·+ 65× 4 + 60× 3 + 55× 1

100
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Definition 3.4 Expectation of functions of r.v.’s:
In general, for any function g(X) of a r.v. X, we defined the expectation of this
function to be 12:

E[g(X)] =
∫ ∞

−∞
g(x)fX(x)dx

1. m-th moment:

If g(X) = Xm where m is an integer, we call it the m-th moment of r.v. X, i.e.:

m-th moment
∆
= E [Xm] =

∫ ∞

−∞
xmfX(x)dx

(cf)

The first moment(m = 1) is called the mean and denoted as µX , whereas the
second moment(m = 2) is called its mean squared value.

Example 3.19

Find the mean and the eman squared value of a uniform r.v. X ∼ U [a, b].

Solution:

The mean is given by:

E(X) =
∫ b

a

xdx

b− a
=

x2

2(b− a)

∣∣∣∣∣
b

a

=
b2 − a2

2(b− a)
=

a + b

2

whereas the eman squared value is as follows:

E(X2) =
∫ b

a

x2dx

b− a
=

x3

3(b− a)

∣∣∣∣∣
b

a

=
b3 − a3

3(b− a)
=

a2 + ab + b2

3

12We take this as a definition here, but it can actually be proved: more advanced course on
probability...
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2. central moment:

If g(X) = (X − µX)n where n is an integer, we call it the n-th central moment
of r.v. X, i.e.:

mn
∆
= E [(X − µX)n] =

∫ ∞

−∞
(x− µX)nfX(x)dx

(cf)

The second central moment is especially called the variance, and denoted by
the symbol σ2

X :

σ2
X

∆
= mn = E

[
(X − µX)2

]
=

∫ ∞

−∞
(x− µX)2fX(x)dx

Assignment:

Show that the variance of a uniform r.v. X ∼ U [a, b] is σ2
X = (b− a)2/12.

Note:

The square root of the variance is called the standard deviation, and it represents
the average amount of spread around the mean 13 :

σ =
√

E{[X − E(X)]2}

13Note that E[X−E(X)] is NOT adequate for representing the spread about mean since positive
and negative values of the difference X − E(X) will cancel out, thus smaller measure of deviation
may result. On the other hand, E[|X − E(X)|] would cure this problem, but hard to handle the
absolute value analytically...
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Example 3.20

Consider a Gaussian r.v. X, whose pdf is given by:

fX(x) =
e−(x−m)2/2σ2

√
2πσ2

(a) Show that the mean is µX = m.

(b) Find the central moments of X.

Solution:

(a) The mean is given by:

µX =
∫ ∞

−∞
x
e−(x−m)2/2σ2

√
2πσ2

dx (let u = x−m)

=
∫ ∞

−∞
(u + m)

e−u2/2σ2

√
2πσ2

du

=
∫ ∞

−∞
u
e−u2/2σ2

√
2πσ2

du + m
∫ ∞

−∞
e−u2/2σ2

√
2πσ2

du

= 0 + m = m

(b) By the definition of the central moments, we have:

mn = E[(X − µX)n] =
∫ ∞

−∞
(x− µX)n e−(x−µX)2/2σ2

√
2πσ2

dx

=
∫ ∞

−∞
un e−u2/2σ2

√
2πσ2

du, n = 1, 2, · · ·

which is zero when n is odd. (why?)

For the case when n being even integers,the integrand is symmetric about
u = 0, and employing the table of integral, we obtain:

m2k = 2
∫ ∞

−∞
u2k e−u2/2σ2

√
2πσ2

du = 1 · 3 · · · · · (2k − 1)σ2k, k = 1, 2, · · ·

Note that the special case of n = 2k = 2 provides the variance σ2!!!
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Properties of expectation:

1. The expectation of a constant is the constant itself:

E[a] = a, a = constant

2. The expectation of a constant times a function of r.v. is the constant times the
expectation of the function of r.v.:

E[ag(X)] = aE[g(X)], a = constant

3. The expectation of the sum of two functions of r.v. is the sum of each expecta-
tion:

E[g1(X) + g2(X)] = E[g1(X)] + E[g2(x)]

proof: assignment

Note: Combination of the properties 2 & 3 is called the linearity property of the
expectation 3: E[ag1(X) + bg2(X)] = aE[g1(X)] + bE[g2(x)].

Example 3.21

Show that the variance of a r.v. X can be computed according to:

σ2
X = E[(x− µX)2] = E(X2)− [E(X)]2

Solution:

Using the foregoing properties,

σ2
X = E[(x− µX)2]

= E(X2 − 2µXX + µ2
X)

= E(X2)− 2µXE(X) + E(µ2
X)

= E(X2)− 2µ2
X + µ2

X

= E(X2)− µ2
X
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Example 3.22

Let two r.v.’s X and Y are linearly related as:

Y = aX + b

Find the mean and variance of Y in terms of those of X.

Solution:

Using the properties of expectation, we have the mean as:

µY = E[aX + b] = aE(X) + E(b) = aµX + b

whereas the variance is given by:

σ2
Y = E[(Y − µY )2] = E{[(aX + b)− (aµX + b)]2} = E[a2(X − µX)2] = a2σ2

X

Example 3.23

The mean and variance of a binomial random variable.

Solution: Self study
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3.6 Characteristic Function

Definition 3.5 The characteristic function:
The characteristic function of a r.v. is a special case of the mathematical expectation
defined as follows:

MX(jν) = E(ejνX)
∆
=

∫ ∞

−∞
fX(x)ejνxdx

Usefulness of characteristic function:

1. The m-th moment of a r.v. can be obtained by differentiating the
characteristic function w.r.t. its argument.

2. Sometimes the characteristic function of a r.v. is easier to obtain than the pdf.

3. The characteristic function and the pdf are Fourier transform pairs.

To show the first statement, we differentiate the characteristic function w.r.t. ν to
obtain:

dMX(jν)

dν
=

∫ ∞

−∞
fX(x)

d

dν
ejνxdx = j

∫ ∞

−∞
xfX(x)ejνxdx

Now set ν = 0, and divide by j to get:

−j
dMX(jν)

dν

∣∣∣∣∣
ν=0

=
∫ ∞

−∞
xfX(x)dx = E(X)

Repeating the same procedure n times, the n−th moment of the r.v. X can generally
be expressed as:

E(Xm) = (−j)m dmMX(jν)

dνm

∣∣∣∣∣
ν=0
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Example 3.24

Find the characteristic function of a Cauchy r.v. w/ its pdf given as:

fX(x) =
α/π

x2 + α2

Solution:

Applying the definition of the characteristic function, we obtain:

MX(jν) =
∫ ∞

−∞
α/π

x2 + α2
ejνxdx

=
∫ ∞

−∞
α/π

x2 + α2
[cos(νx) + j sin(νx)]dx

=
α

π

∫ ∞

−∞
cos(νx)

x2 + α2
dx

which, by use of a table of indefinite integral, can be expressed as 14 :

MX(jν) = eα|ν|

Example 3.25

Find the characteristic function of the double sided exponential r.v.(called the
Laplacian r.v.), whose pdf is given by:

fX(x) =
α

2
e−α|x|, α > 0

14Note that MX(jν) is not differentiable at ν = 0, and thus we cannot use it to evaluate the
moments. In fact, its moments do not exists in this case.
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Solution:

By the definition of the characteristic function, we get:

MX(jν) =
∫ ∞

−∞
α

2
e−α|x|ejνxdx

=
∫ ∞

−∞
α

2
e−α|x|[cos(νx) + j sin(νx)]dx

=
α

2

∫ ∞

−∞
cos(νx)e−α|x|dx

which, by use of a table of indefinite integral, can be expressed as 15 :

MX(jν) = α
∫ ∞

0
cos(νx)e−αxdx =

α2

α2 + ν2

Assignment: Show that the first and the second moments are 0 and 2/α2

respectively by differentiation.

15Note that the integrand is symmetric about x = 0.
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3.7 Chebyshev’s Inequality

Recall:
The standard deviation of a r.v. gives a measure of spread about its mean

=⇒ The Chebyshev’s inequality provides a bound on the probability that a r.v.
deviated more than k standard deviations from its mean 16 !!!

Chebyshev’s Inequality:

For any random variable X, the probability of X being deviated from its mean more
than k standard deviation must satisfy the following inequality:

P (|X − µX | ≥ kσX) ≤ 1

k2

or 17

P (|X − µX | < kσX) > 1− 1

k2

proof:

Let Y = X − µX
18 and a = kσX . Then, the LHS of the first inequality becomes:

P (|Y | ≥ a) = P (Y ≤ −a) + P (Y ≥ a)

which follows from the fact |Y | ≥ a is the union of two mutually exclusive events
Y ≥ a and Y ≤ −a.

16It is a very loose bound, but its merit is the fact that very little need to be known about the
r.v. to obtain the bound...

17Note that two events |X − µX | ≥ kσX and |X − µX | < kσX are mutually exclusive to each
other!

18Note then: E[Y 2] = σ2
X .
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Now, consider the second moment of Y , which is:

E(Y 2) =
∫ ∞

−∞
y2fY (y)dy ≥

∫ −a

−∞
y2fY (y)dy +

∫ ∞

a
y2fY (y)dy

≥ a2
[∫ −a

−∞
fY (y)dy +

∫ ∞

a
fY (y)dy

]

= a2[P (Y ≤ −a) + P (Y ≥ a)], a > 0

Solving, we obtain:

P (Y ≤ −a) + P (Y ≥ a) = P (|Y | ≥ a) ≤ E(Y 2)

a2

Replacing Y = X − µX with E[Y 2] = σ2
X , and a = kσX , we have the Chebyshev’s

inequality as:

P (|X − µX | ≥ kσX) ≤ 1

k2

Q.E.D.

Example 3.26

(a) Find a bound on the probability that a r.v. is within three standard
deviations of its mean.

(b) Find the exact probability of this event, if the r.v. is a Gaussian, and
compare with the bound.

Solution:

(a) From the Chebyshev’s inequality, we have:

P (|X − µX | < 3σX) > 1− 1

32
= 0.889

(b) The probability of the given event for a Gaussian r.v. is:

P (|X − µX | < 3σX) =
∫ µX+3σX

µX−3σX

e−(x−µX)2/2σ2
X

√
2πσ2

X

dx

=
∫ 3

−3

e−u2/2

√
2π

du = 2
∫ 3

0

e−u2/2

√
2π

du

= 1− 2Q(3) = 1− 2× 0.00135

= 0.9973

(cf) Note that the Chebyshev’s inequality does NOT provide a tight bound in
this case!!!
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3.8 Computer Generation of Random Variables

Recall:

1. Generation of uniform pseudorandom numbers X ∼ U [0, 1]:

X = rand(1, 1000);

2. Generation of Gaussian pseudorandom numbers Y ∼ N(0, 1) 19 :

Y = randn(p, q)

3. Generation of Gaussian pseudorandom numbers Z ∼ N(m,σ2) 20 :

Z = σY + m

Generation of random numbers with an arbitrary distribution:

Let U be a r.v. uniformly distributed in [0, 1], and define a new r.v. V as:

V = g(U)

where g(·) is assumed to br monotonic.

Then, the pdf of the newly defined r.v. V is given by:

fV (v) = fU(u)

∣∣∣∣∣
du

dv

∣∣∣∣∣
u=g−1(v)

=





∣∣∣du
dv

∣∣∣ =
∣∣∣dg−1(v)

dv

∣∣∣ , 0 ≤ u ≤ 1

0, otherwise

where the last equation follows because fU(u) is unity in [0, 1] and zero elsewhere.

19This generates an array of Gaussian pseudorandom numbers with p rows and q columns.
20By way of transformation.
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Re-writing the above result for the case of 0 ≤ u ≤ 1:

fV (v) =





dg−1(v)
dv

, dg−1(v)
dv

≥ 0

−dg−1(v)
dv

, dg−1(v)
dv

< 0

Integrating and solving for g−1(v), we obtain:

g−1(v) =





∫ v
−∞ fV (λ)dλ = FV (v), dg−1(v)

dv
≥ 0

− ∫ v
−∞ fV (λ)dλ = −FV (v), dg−1(v)

dv
< 0

where FV (v) represents the desired cdf of r.v. V .

Example 3.27

Using a uniform r.v. U uniformly distributed in [0, 1], find the required trans-
formation V = g(U) so that it will generate an exponential pdf given by:

fV (v) = 2e−2vu(v)

Solution:

The cdf of the desired exponential r.v. is:

FV (v) =
∫ v

−∞
fV (λ)dλ =





0, v < 0

1− e−2v, v ≥ 0

From which, we obtain 21:

u = g−1(v) = 1− e−2v, v ≥ 0

Solving for v, expressing it into the relationship between two r.v.’s U and V 22:

V = −0.5 ln(1− U)

= −0.5 ln(U)

which means that the required transformation is V = g(U) = −0.5 ln(U).

21Note that this inverse transformation always has positive slope.
22Here we use that fact: if U is uniform on [0, 1], so is 1− U .
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