Contents

3 SINGLE RANDOM VARIABLES AND PROBABILITY DISTRI- BUTIONS 35
3.1 What is a Random Variable? 35
3.2 Probability Distribution Functions 38
3.2.1 Cumulative Distribution Function 38
3.2.2 Probability Density Function 42
3.3 Common Random Variables and their Distribution Functions 46
3.4 Transformation of a Single Random Variable 58
3.5 Averages of Random Variables 63
3.6 Characteristic Function 70
3.7 Chebyshev's Inequality 73
3.8 Computer Generation of Random Variables 75

Chapter 3

SINGLE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

3.1 What is a Random Variable?

Why random variable?:

It is easier to describe and manipulate outcomes and events of the chance experiments using numerical values rather than in words...
\Longrightarrow purpose of a random variable
\Longrightarrow maps each point in S into a point on R^{1}. ${ }^{1}$

For example,

$$
x=X(\zeta)
$$

where X is the random variable, x is its specific value, and ζ denotes the outcome of a chance experiment.

[^0]Figure 3.1: A r.v. is a mapping of the sample space into a real line.

NOTE: Events are now described by the random variable, rather than in words, and corresponding probability of the event can be calculated via r.v..

Example: For a chance experiment of tossing a fair coin, define a r.v. ${ }^{2} X(\omega) \ni$:

$$
X(\text { head })=1 \quad \& \quad X(\text { tail })=0
$$

Then, using the equally likely assignment of probability, we have:

$$
P(X=1)=\frac{1}{2}, \quad P(X=0)=\frac{1}{2}
$$

Example 3.1

Consider an experiment of rolling a pair of dice, and find the probability of all possible values of the sum.

Solution:

Define a r.v. X as the sum of the two dice, then referring the Table3.1. and applying the equally likely assignment of probability, we have:

$$
\begin{array}{lll}
P(X=2)=\frac{1}{36}, & P(X=3)=\frac{2}{36}=\frac{1}{18}, & P(X=4)=\frac{3}{36}=\frac{1}{12}, \\
P(X=5)=\frac{4}{36}=\frac{1}{9}, & P(X=6)=\frac{5}{36}, & P(X=7)=\frac{6}{36}=\frac{1}{6}, \\
P(X=8)=\frac{5}{36}, & P(X=9)=\frac{4}{36}=\frac{1}{9}, & P(X=10)=\frac{3}{36}=\frac{1}{12}, \\
P(X=11)=\frac{2}{36}=\frac{1}{18}, & P(X=12)=\frac{1}{36}, &
\end{array}
$$

[^1]FACT: Functions of r.v. are ALSO r.v.'s, for instance:

$$
Y=e^{X}, \quad W=\ln X, \quad U=\cos X, \quad V=X^{2}
$$

Categorization of random variables:

1. Discrete random variable assumes only a countable number of values.
(e.g.) rolling dice: example3.1 (only 11 values)
2. Continuous random variable can assume a continuum of values.
(e.g.) weather vane: angle of the indicator (any value from 0 to 2π radian)
3. Mixed random variable is a combination of above two types.

Example 3.2 Self study

3.2 Probability Distribution Functions

Description of r.v. using probability:

In case of discrete r.v.:
\Longrightarrow probability mass distribution
\Longrightarrow tabulate (or plot) probability of its values

Example: example3.1(equation (3-2)), table3.1

Two types of general methods of description: ${ }^{3}$

(1) Cumulative (probability) distribution function: cdf
(2) Probability density function: pdf

3.2.1 Cumulative Distribution Function

Definition 3.1 cumulative distribution function:
The cdf of a random variable X is defined as follows:

$$
F_{X}(x)=P(X \leq x)
$$

[^2]
Example 3.3

Consider a chance experiment of rolling a pair of fair dice, and define a r.v. X as the sum of the numbers showing up. Find the cdf of X. (refer to example 3.1)

Solution:

Since the cdf is defined as $F_{X}(x)=P(X \leq x)$, for instance if $x=3$, we have: ${ }^{4}$

$$
\begin{aligned}
F_{X}(3) & =P[(X=2) \cup(X=3)]=P[(X=2)]+P[(X=3)] \\
& =P[\{1,1\}]+P[\{1,2\} \cup\{2,1\}]=P[\{1,1\}]+P[\{1,2\}]+P[\{2,1\}] \\
& =\frac{1}{36}+\frac{1}{36}+\frac{1}{36}=\frac{1}{12}
\end{aligned}
$$

Continuing until we cover all possible values of X, we get:

$$
F_{X}(x)= \begin{cases}0, & x<2 \\ \frac{1}{36}, & 2 \leq x<3 \\ \frac{3}{36}, & 3 \leq x<4 \\ \frac{6}{36}, & 4 \leq x<5 \\ \frac{10}{36}, & 5 \leq x<6 \\ \frac{15}{36}, & 6 \leq x<7 \\ \frac{21}{36}, & 7 \leq x<8 \\ \frac{26}{36}, & 8 \leq x<9 \\ \frac{30}{36}, & 9 \leq x<10 \\ \frac{33}{36}, & 10 \leq x<11 \\ \frac{35}{36}, & 11 \leq x<12 \\ \frac{36}{36}, & x \geq 12\end{cases}
$$

Figure 3.2: The cdf of X , which is the sum of two dice.

[^3]1. Limiting values:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} F_{X}(x) & =0 \\
\lim _{x \rightarrow \infty} F_{X}(x) & =1
\end{aligned}
$$

2. The cdf is right hand continuous, i.e.:

$$
F_{X}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}^{+}} F_{X}(x)
$$

3. The cdf $F_{X}(x)$ is monotine non-decreasing function of x.
4. The probability of X having values $\mathrm{b} / \mathrm{w} x_{1}$ and x_{2} is given by:

$$
P\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right)
$$

Brief verification:

1. Notice that the inverse images of X at $x=-\infty$ and $x=\infty$ are respectively:

$$
\begin{gathered}
X^{-1}(-\infty)=\phi \\
X^{-1}(\infty)=S
\end{gathered}
$$

2. This is due to the fact that the cdf is defined as $F_{X}(x) \triangleq P(X \leq x)$ rather than $F_{X}(x) \triangleq P(X<x)$: detailed proof is omitted! ${ }^{5}$
3. Follows from property \# 4.
4. Let $x_{1} \leq x_{2}$, then we have:

$$
P\left(X \leq x_{2}\right)=P\left[\left(X \leq x_{1}\right) \cup\left(x_{1}<X \leq x_{2}\right)\right] \stackrel{\text { why }}{=} P\left(X \leq x_{1}\right)+P\left(x_{1}<X \leq x_{2}\right)
$$

which is equivalent to:

$$
F_{X}\left(x_{1}\right)+P\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)
$$

Rearranging the above provides:

$$
P\left(x_{1}<X \leq x_{2}\right)=F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \geq 0
$$

[^4]
Example 3.4

Find the probability that the sum of two dice is between 3 and 7 inclusive.

Solution:

From the definition and properties of cdf, and using figure 3.1, we have: ${ }^{6}$

$$
P(3 \leq X \leq 7)=F_{X}(7)-F_{X}\left(3^{-}\right)=F_{X}(7)-F_{X}(2)=\frac{21}{36}-\frac{1}{36}=\frac{20}{36}=\frac{5}{9}
$$

Example 3.5

Is $F_{X}(x)$ below is a valid cdf?

$$
F_{X}(x)=\frac{1}{2}\left(1+\frac{2}{\pi} \tan ^{-1} x\right)
$$

Solution:

Check if all the properties of cdf are satisfied: self study

Figure 3.3: Suitable cdf.

[^5]
3.2.2 Probability Density Function

Definition 3.2 probability density function:

The pdf of a (continuous)random variable X is defined as follows:

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

NOTE: interpretation of pdf!!!

Using the definition of derivative, we can re-write pdf as:

$$
f_{X}(x)=\lim _{\Delta x \rightarrow 0} \frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x}
$$

For Δx suffuciently small, we can remove the limit, and thus:

$$
F_{X}(x+\Delta x)-F_{X}(x)=P(x<X \leq x+\Delta x) \simeq f_{X}(x) \Delta x
$$

General properties of pdf:

Since the pdf of a r.v. X is the derivative of the cdf, $\operatorname{cdf} F_{X}(x)$ can be expressed as the integration of the pdf $f_{X}(x)$, i.e.:

$$
F_{X}(x)=\int_{-\infty}^{x} f_{X}(u) d u
$$

1. The pdf is a non-negative function, i.e.:

$$
f_{X}(x) \geq 0, \quad \forall x
$$

2. The area under pdf is unity, i.e.:

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

3. The probability of X having values $\mathrm{b} / \mathrm{w} x_{1}$ and x_{2} is given by:

$$
P\left(x_{1}<X \leq x_{2}\right)=\int_{x_{1}}^{x_{2}} f_{X}(x) d x
$$

Brief verification:

1. Since the cdf is non-decreasing, and pdf is the derivetive (or slope) of it, it must be non-negative.
2. Using the relationship b / w the cdf and pdf, we have:

$$
\int_{-\infty}^{\infty} f_{X}(x) d x \stackrel{\text { def }}{=} F_{X}(\infty)=1
$$

3. From the property of the cdf, and using the relationship b/w the cdf and pdf, we have:

$$
\begin{aligned}
P\left(x_{1}<X \leq x_{2}\right) & =F_{X}\left(x_{2}\right)-F_{X}\left(x_{1}\right) \\
& =\int_{-\infty}^{x_{2}} f_{X}(u) d u-\int_{-\infty}^{x_{1}} f_{X}(u) d u \\
& =\int_{x_{1}}^{x_{2}} f_{X}(u) d u
\end{aligned}
$$

Example 3.6

Obtain the pdf of a r.v. X whose cdf is given as: (example 3.5)

$$
F_{X}(x)=\frac{1}{2}\left(1+\frac{2}{\pi} \tan ^{-1} x\right)
$$

and find the probability of an event $\ni: 2<X \leq 5$.

Solution:

Since $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$, we easily get:

$$
f_{X}(x)=\frac{1 / \pi}{1+x^{2}}
$$

and using the property of the cdf, we obtain:

$$
\begin{aligned}
P(2<X \leq 5) & =\frac{1}{\pi}\left(\tan ^{-1} 5-\tan ^{-1} 2\right) \\
& =0.085
\end{aligned}
$$

Figure 3.4: The pdf of X in example 3.6.

Remark:

The definition of the pdf can generally be applied to both continuous and discrete random variables!!!

motive:

Since the cdf of a discrete r.v. can generally be expressed as the sum of the weighted \& shifted unit step function $u(x)^{7}$, i.e.:

$$
F_{X}(x)=\sum_{i=1}^{N} p_{i} u\left(x-x_{i}\right)
$$

and the derivative of $u(x)$ is the unit impulse function $\delta(x)$ as:

$$
\frac{d u(x)}{d x}=\delta(x)
$$

the pdf $f_{X}(x)$ of a discrete r.v. can generally be described as the sum of the weighted $\&$ shifted unit impulse function $\delta(x)$, i.e.:

$$
f_{X}(x)=\sum_{i=1}^{N} p_{i} \delta\left(x-x_{i}\right)
$$

[^6]
Example 3.7

Express the pdf of the r.v. X discussed in example 3.3.

Solution:

The cdf of X in terms of $u(x)$ can be expressed as:

$$
\begin{aligned}
F_{X}(x)= & \frac{1}{36}[u(x-2)+2 u(x-3)+3 u(x-4)+4 u(x-5)+5 u(x-6) \\
& +6 u(x-7)+5 u(x-8)+4 u(x-9)+3 u(x-10) \\
& +2 u(x-11)+u(x-12)]
\end{aligned}
$$

Taking the derivative, we find the pdf to be:

$$
\begin{aligned}
f_{X}(x)= & \frac{1}{36}[\delta(x-2)+2 \delta(x-3)+3 \delta(x-4)+4 \delta(x-5)+5 \delta(x-6) \\
& +6 \delta(x-7)+5 \delta(x-8)+4 \delta(x-9)+3 \delta(x-10) \\
& +2 \delta(x-11)+\delta(x-12)]
\end{aligned}
$$

Figure 3.5: The pdf of X in example 3.7

3.3 Common Random Variables and their Distribution Functions

Commonly occurring and widely used r.v.'s are discussed
\Longrightarrow In terms of their cdf \& pdf

Uniform Random Variable:

The uniform random variable X is defined in terms of its probability density function as follows:

$$
f_{X}(x)= \begin{cases}\frac{1}{b-a}, & a \leq x \leq b, b>a \\ 0, & \text { otherwise }\end{cases}
$$

By integration, we can derive its cumulative distribution function(cdf) to be:

$$
f_{X}(x)= \begin{cases}0, & x \leq a \\ \frac{x-a}{b-a}, & a<x \leq b \\ 1, & x>b\end{cases}
$$

Figure 3.6: Uniform r.v.: (a) pdf (b) cdf in case of $a=0 \& b=5$

Example 3.8

Resistors are known to be uniformly distributed within $\pm 10 \%$ tolerance range. Find the probability that a nominal 1000Ω resistor has a value b/w 990 and 1010Ω.

Solution:

Since the tolerance region is bounded in the interval [900, 1100] centered at the nominal value of 1000Ω, the pdf of the resistance R is given by:

$$
f_{R}(r)= \begin{cases}\frac{1}{200}, & 900 \leq x \leq 1100 \\ 0, & \text { otherwise }\end{cases}
$$

Therefore, the probability that the resistor has a resistance value in the range of $[900,1100]$ is then:

$$
P(990 \Omega<R \leq 1010 \Omega)=\int_{990}^{1010} \frac{d r}{200}=0.1
$$

Gaussian Random Variable:

The Gaussian random variable X is defined in terms of its probability density function as follows:

$$
f_{X}(x)=\frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}
$$

where m and σ^{2} are parameters called the mean and variance respectively.

The cdf can be derived by direct integration of the pdf, which cannot be expressed in a closed form, however...

Instead, we use either of the following functions defined as:
(1) Q function:

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-u^{2} / 2} d u
$$

whose numerical values are tabulated in Appendix C.
(2) Error function:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-u^{2}} d u
$$

In terms of the Q function, the cdf of the Gaussian r.v. is given by:

$$
F_{X}(x)=1-Q\left(\frac{x-m}{\sigma}\right)
$$

derivation: assignment

Question: Express Q and error functions in terms of each other: assignment

Figure: Illustration of integration for Q and error functions.

Figure 3.7: Gaussian distribution for $m=5$ and $\sigma=2$: (a) pdf (b) cdf.

Example 3.9

A mechanical compopnent, whose 5 mm thickness (T) is known to have a Gaussian distribution $\mathrm{w} / m=5$ and $\sigma=0.05$. Find the probability that T is less than 4.9 mm OR greater than 5.1 mm .

Solution: ${ }^{8}$

$$
\begin{aligned}
& P(T<4.9 m m \text { OR } T>5.1 m m) \\
= & 1-P(4.9 m m \leq T \leq 5.1 m m) \\
= & 1-\left[F_{T}(5.1)-F_{T}(4.9)\right] \\
= & 1-\left[1-Q\left(\frac{5.1-5}{0.05}\right)-1+Q\left(\frac{4.9-5}{0.05}\right)\right] \\
= & 1-[Q(-2)-Q(2)]=1-[1-Q(|-2|)-Q(2)] \\
= & 2 Q(2)=0.02275
\end{aligned}
$$

[^7]
Exponential Random Variable:

The exponential random variable X is defined in terms of its probability density function with parameter α as follows:

$$
f_{X}(x)=\alpha e^{-\alpha x} u(x), \quad \alpha>0
$$

The cdf, by integration, can then be obtained as:

$$
F_{X}(x)=\left(1-e^{-\alpha x}\right) u(x)
$$

where $u(x)$ is the unit step function.

Assignment: Plot $f_{X}(x)$ and $F_{X}(x)$ for a exponential r.v., and verify its properties.

Example 3.10 Self Study

Gamma Random Variable:

The Gamma random variable X has its probability density function as follows:

$$
f_{X}(x)=\frac{c^{b}}{\Gamma(b)} x^{b-1} e^{-c x} u(x), \quad b, c>0
$$

where $\Gamma(b)$ is the gamma function given by the integral ${ }^{9}$:

$$
\Gamma(b)=\int_{0}^{\infty} y^{b-1} e^{-y} d y
$$

[^8]1. Chi-square pdf: (statistics)

$$
f_{X}(x)=\frac{1}{2^{n / 2} \Gamma(n / 2)} x^{(n / 2)-1} e^{-x / 2} u(x)
$$

where b and c are replaced by $b=n / 2$ and $c=2$
2. Erlang pdf: (queing theory)

$$
f_{X}(x)=\frac{c^{n}}{(n-1)!} x^{n-1} e^{-c x} u(x)
$$

where $b=n$ is an integer.

Figure 3.8: Plots of (a) chi-square pdf and (b) Erlang pdf.

Cauchy Random Variable:

The Cauchy random variable X has its probability density function as follows:

$$
f_{X}(x)=\frac{\alpha / \pi}{x^{2}+\alpha^{2}}
$$

Corresponding cdf is given by:

$$
F_{X}(x)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1} \frac{x}{\alpha}
$$

Note: Example 3.5 with fig. 3.3 is the case of Cauchy r.v. for $\alpha=1$!

Binomial Random Variable:

The r.v. X is binomially distributed if it takes on the non-negative integer values $0,1,2, \ldots, n$ with probabilities:

$$
P(X=k)=\binom{n}{k} p^{k} q^{n-k}, \quad k=0,1,2, \cdots, n
$$

where $p+q=1$.

Corresponding pdf and the cdf, using the unit impulse function, are given by:

$$
\begin{gathered}
f_{X}(x)=\sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k} \delta(x-k) \\
F_{X}(x)=\sum_{k \leq x}\binom{n}{k} p^{k} q^{n-k}
\end{gathered}
$$

Remark: This is the distribution describing the number (k) of heads occurring in n tosses of a fair coin, in which case $p=q=0.5$.

Figure 3.9: The pdf of binomial r.v. for $n=10$: (a) $p=q=\frac{1}{2}$; (b) $p=\frac{1}{5}, q=\frac{4}{5}$.

Geometric Random Variable:

Suppose we flip a biased coin $\mathrm{w} /$ probability of a head is p whereas the probability of tail is $1-p$. Then, the probability of getting the head(success) for the first time at the $k-t h$ toss is given by:
$P($ first success at trial $k)=P(X=k)=(1-p)^{k-1} p, \quad k=1,2, \cdots$
where p is the probability of success.
\Longrightarrow called the geometric distribution
\Longrightarrow corresponds to the geometric mean of $k-1$ and $k+1$ values.
Check: assignment

Poisson Random Variable:

The r.v. X is Poisson with parameter a if it takes on the non-negative integer values $0,1,2, \ldots$ with probabilities:

$$
P(X=k)=\frac{a^{k}}{k!} e^{-a}, \quad k=0,1,2, \cdots
$$

Corresponding cdf of a Poisson r.v. is given by:

$$
F_{X}(x)=\sum_{k \leq x} \frac{a^{k}}{k!} e^{-a}
$$

Figure 3.10: Poisson pdf (a) $a=0.9$; (b) $a=0.2$.

Limiting Forms of Bionomial and Poisson Distributions:

Theorem 3.1 De Moivre-Laplace theorem:
For n sufficiently large, the binomial distribution can be approximated by the samples of a Gaussian curve properly scaled and shifted as:

$$
p^{k} q^{n-k} \simeq \frac{e^{-(k-m)^{2}}}{\sqrt{2 \pi \sigma^{2}}}, \quad n \gg 1
$$

where $m=n p$ and $\sigma^{2}=n p q$ respectively.

Proof: omit

Corresponding cdf of a binomial r.v., based on the De Moivre-Laplace theroem, can be approximated as:

$$
F_{X}(x) \simeq 1-Q\left(\frac{x-n p}{\sqrt{n p q}}\right)
$$

where $Q(\cdot)$ is the Q -function.

Figure 3.11: Binomial cdf and De Moivre-Laplace approximation for $n=10$: (a) $p=0.2 ;(\mathrm{b}) a=0.5$.

Theorem 3.2 :

The Poisson distribution approaches to a Gaussian distribution for $a \gg 1$ as:

$$
\frac{a^{k}}{k!} e^{-a} \simeq \frac{e^{-(k-a)^{2} / 2 a}}{\sqrt{2 \pi a}}, \quad n \gg 1, p \ll 1, n p=a
$$

Proof:

This is due to the fact that a binomial distribution approaches the Poisson distribution with $a=n p$ if $n \gg 1$ and $p \ll 1$, and applying the De Moivre-Laplace theorem proves it!
:READ

Example 3.11

In a digital communication system, the probability of an error is 10^{-3}. What is the probability of 3 errors in transmission of 5000 bits?

Solution:

This has a binomial distribution, and the Poisson approximation with $n=5000$, $p=10^{-3}$, and $k=3$ shows:

$$
P(3 \text { errors }) \simeq \frac{5^{3}}{3!} e^{-5}=0.14037
$$

whereas the exact value of the probability using the binomial distribution is:

$$
\binom{5000}{3}\left(10^{-3}\right)^{3}\left(1-10^{-3}\right)^{4997}=0.14036
$$

Poisson Points and Exponential Probability Density Function:

Consider a finite interval T (fig 3.12), with the probability of k occurrence of an event ($n i$: arrival of electrons at certain point) in this interval obeys a Poisson distribution, i.e.:

$$
P(X=k)=\frac{(\lambda T)^{k}}{k!} e^{-\lambda T}, \quad k=0,1,2, \cdots
$$

where λ is the numberof events per unit time.
Then, the interval from an arbitrarily selected point and the next event is a r.v. W following an exponential distribution with its pdf as:

$$
f_{W}(w)=\lambda e^{-\lambda w} u(w)
$$

Figure 3.12: Poisson points on a finite interval T.
proof:
First, find the cdf of W as ${ }^{10}$:

$$
F_{W}(w)=P(W \leq w)=1-P(X=0)=1-e^{-\lambda w}, \quad w \geq 0
$$

Differentiating it, we obtain:

$$
f_{W}(w)=\frac{d}{d w} F_{W}(w)=\lambda e^{-\lambda w} u(w)
$$

Example 3.12

Raindrops impinge on a tin roof at a rate of $100 / \mathrm{sec}$. What is the probability that the interval between adjacent raindrops is greater than $1(\mathrm{msec})$, and $10(\mathrm{msec})$?

Solution:

This can be approximated by a Poisson poiny process with $\lambda=100$, and therefore:

$$
\begin{aligned}
P\left(W \geq 10^{-3}\right) & =1-P\left(W \leq 10^{-3}\right) \\
& =1-\left(1-e^{-100 \times 0.001}\right)=e^{-0.1}=0.905
\end{aligned}
$$

and

$$
\begin{aligned}
P\left(W \geq 10^{-2}\right) & =1-P\left(W \leq 10^{-2}\right) \\
& =1-\left(1-e^{-100 \times 0.01}\right)=e^{-1}=0.368
\end{aligned}
$$

Pascal Random Variable:

The r.v. X has a Pascal distribution if it takes on the positive integer values $1,2,3, \ldots$ with probabilities:

$$
P(X=k)=\binom{n-1}{k-1} p^{k} q^{n-k}, \quad k=1,2, \cdots, \quad q=1-p
$$

[^9]
Note:

1. For example, in a sequence of coin tossing, the probability of getting the $k-t h$ head on the $n-t h$ toss obeys a Pascal distribution, where $p=$ prob. of a head.
2. Reasoning: We get the first $k-1$ heads in any order in the first $n-1$ tosses, which is binomial, and then must get a head on the $n-t h$ toss.
3. Geometric distribution is a special case of the Pascal distribution.

Example 3.13 Self study

Hypergeometric Random Variable:

Consider a box containg N items, K of which are defective. Then, the probability of obtaining k defective items in a selection of n items without replacement follows the hypergeometric distribution:

$$
P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}, \quad k=0,1,2, \cdots, n
$$

Example 3.14 Self study

3.4 Transformation of a Single Random Variable

Consider functions of random variables, i.e.:

$$
Y=g(X)
$$

where $g(\cdot)$ is a (single valued) function.
(e.g.)

$$
Y=e^{X}, \quad W=\ln X, \quad U=\cos X, \quad V=X^{2}
$$

Recall: If X is a random variable, Y is also a random variable!!!

Question:

Given the probability distributions $\left(F_{X}(x)\right.$ or $\left.f_{X}(x)\right)$ of X, find corresponding probability distributions ($F_{Y}(y)$ or $f_{Y}(y)$) of the newly defined r.v. $Y \ldots$

Figure 3.13: Examples of monotonic and nonmonotonic transformations of a r.v..

1. Case \#1: $g(\cdot)$ is monotone increasing

For an arbitrary value y_{0} of Y, there \exists a unique corresponding value x_{0} of $X \ni$:

$$
y_{0}=g\left(x_{0}\right)
$$

Then, we have:

$$
P\left(Y \leq y_{0}\right) \triangleq F_{Y}\left(y_{0}\right)=P\left[g(X) \leq g\left(x_{0}\right)\right]=P\left(X \leq x_{0}\right)=F_{X}\left(x_{0}\right)
$$

Changing x_{0} and y_{0} to arbitrary values x and y, we get

$$
F_{Y}(y)=F_{X}(x) \quad \text { where } \quad x=g^{-1}(y)
$$

Differentiating the above $F_{Y}(y)$ w.r.t. y, we get the pdf $f_{Y}(y)$ as:

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\left.\frac{d F_{X}(x)}{d x} \frac{d x}{d y}\right|_{x=g^{-1}(y)}=\left.f_{X}(x) \frac{d x}{d y}\right|_{x=g^{-1}(y)}
$$

2. Case \#2: $g(\cdot)$ is monotone decreasing:

For a specific value y_{0} of Y, there \exists also a unique corresponding value x_{0} of $X \ni$:

$$
y_{0}=g\left(x_{0}\right)
$$

But, in this case we have:

$$
F_{Y}\left(y_{0}\right)=P\left[g(X) \leq g\left(x_{0}\right)\right]=P\left(X \geq x_{0}\right)=1-P\left(X \leq x_{0}\right)=1-F_{X}\left(x_{0}\right)
$$

In general, this can be expressed as:

$$
F_{Y}(y)=1-F_{X}(x) \quad \text { where } \quad x=g^{-1}(y)
$$

Differentiating the above $F_{Y}(y)$ w.r.t. y, we get the pdf $f_{Y}(y)$ as:

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=-\left.\frac{d F_{X}(x)}{d x} \frac{d x}{d y}\right|_{x=g^{-1}(y)}=-\left.f_{X}(x) \frac{d x}{d y}\right|_{x=g^{-1}(y)}
$$

Remark:

Notice that the slope(or derivative) $\frac{d x}{d y}>0$ for case \#1, whereas $\frac{d x}{d y}<0$ for case $\# 2$. Therefore, using the absolute value of the derivative, we can combine the above two cases, and express the probability density function $f_{Y}(y)$ as follows:

$$
f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d F_{X}(x)}{d x}\left|\frac{d x}{d y}\right|_{x=g^{-1}(y)}=f_{X}(x)\left|\frac{d x}{d y}\right|_{x=g^{-1}(y)}
$$

Example 3.15

Suppose X is an exponential r.v. w/ parameter α, i.e.:

$$
f_{X}(x)=\alpha e^{-\alpha x} u(x), \quad \alpha>0
$$

Then find the pdf of a newly defined r.v. Y via the following transformation.

$$
Y=a X+b
$$

Solution:

The transformation is monotone, and solving the transformation w.r.t. x, we get:

$$
x=\frac{1}{a}(y-b)
$$

and the derivative has a constant value as:

$$
\frac{d x}{d y}=\frac{1}{a}
$$

Therefore, the pdf of Y can be derived as:

$$
f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|_{x=g^{-1}(y)}=f_{Y}(y)=\frac{\alpha}{|a|} e^{(\alpha /|a|)(y-b)} u(y-b)
$$

Figure 3.14: The pdf for example 3.15: (a) $a>0$; (b) $a<0$.
3. Case \#3: $g(\cdot)$ is non-monotonic:

In this case, there will \exists more than one solution of $X=x$ for a given value of $Y=y$, i.e.:

$$
x_{i}=g_{i}^{-1}(y), \quad i=1,2, \cdots, m
$$

Therefore, we can generalize the formula of the newly derined r.v.'s pdf as:

$$
f_{Y}(y)=\sum_{i=1}^{m} f_{X}(x)\left|\frac{d x_{i}}{d y}\right|_{x_{i}=g_{i}^{-1}(y)}
$$

Example 3.16

Let X be a Gaussian r.v. w/ mean $m=0$. Find the pdf of Y defined a follows:

$$
Y=X^{2}
$$

Solution:

Note that $Y>0$, and therefore $f_{Y}(y)=0$ for $y<0$.
For the case when $y \geq 0$, solving the transformation w.r.t. x, we obtain:

$$
x_{1}=\sqrt{y} \quad \text { and } \quad x_{2}=-\sqrt{y}
$$

Thus

$$
\left|\frac{d x_{i}}{d y}\right|=\frac{1}{2 \sqrt{y}}, \quad i=1,2
$$

Therefore, the pdf of Y becomes:

$$
\begin{aligned}
f_{Y}(y) & =\frac{1}{2 \sqrt{y}}\left[\frac{e^{-x^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}\right]_{x_{1}=\sqrt{y}}+\frac{1}{2 \sqrt{y}}\left[\frac{e^{-x^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}\right]_{x_{1}=-\sqrt{y}} \\
& =\frac{e^{-y / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2} y}}, \quad y \geq 0
\end{aligned}
$$

Figure 3.15: The pdf of Y in example 3.16 for the case of $m=0$ and $\sigma^{2}=1$.

Example 3.17 Self study

3.5 Averages of Random Variables

Expressing r.v.'s using its representative values!!!
: For the cases when complete description of the r.v. $\ni:$ the pdf and/or cdf might not be necessary....

Definition 3.3 Expectation of a r.v.:

The mathematical expectation of a random variable X, using the r.v.'s pdf, is defined according to the following equation:

$$
E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

where $E(\cdot)$ stands for expectation.

Note:

The above definition applies to both continuous and discrete random variables, i.e., if X is discrete, we have ${ }^{11}$:

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x \sum_{i=1}^{n} p_{i} \delta\left(x-x_{i}\right) d x \\
& =\sum_{i=1}^{n} p_{i} \int_{-\infty}^{\infty} x \delta\left(x-x_{i}\right) d x \\
& =\sum_{i=1}^{n} x_{i} p_{i}
\end{aligned}
$$

where $p_{i} \triangleq P\left(X=x_{i}\right)$, and this might be the more familiar form of the mathematical expectation for discrete r.v.'s for you.

[^10]
Example 3.18

The test scores of 100 students are summarized in Table3.2. Find the average score using the mathematical expectation.

Score	\# of students	Relative frequency
100	2	0.02
95	5	0.05
90	10	0.10
85	20	0.20
80	33	0.33
75	15	0.15
70	7	0.07
65	4	0.04
60	3	0.03
55	1	0.01

Table3.2 Test scores for 100 students.

Solution:

Using the relative frequency approach for probability, and by the definition of mathematical expectation, we have:

$$
\begin{aligned}
E(X) & =100 \times 0.02+95 \times 0.05+90 \times 0.1+85 \times 0.2+80 \times 0.33 \\
& +75 \times 0.15+70 \times 0.07+65 \times 0.04+60 \times 0.03+55 \times 0.01=80
\end{aligned}
$$

(cf) Compare the result with ordinary way of calculating averages, which you may be more accustomed to from elementary school days, below:

$$
\frac{100 \times 2+95 \times 5+90 \times 10+85 \times 20+\cdots+65 \times 4+60 \times 3+55 \times 1}{100}
$$

Definition 3.4 Expectation of functions of r.v.'s.

In general, for any function $g(X)$ of a r.v. X, we defined the expectation of this function to be ${ }^{12}$:

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x
$$

1. m-th moment:

If $g(X)=X^{m}$ where m is an integer, we call it the m-th moment of r.v. X, i.e.:

$$
\mathrm{m} \text {-th moment } \triangleq E\left[X^{m}\right]=\int_{-\infty}^{\infty} x^{m} f_{X}(x) d x
$$

(cf)

The first $\operatorname{moment}(m=1)$ is called the mean and denoted as μ_{X}, whereas the second moment $(m=2)$ is called its mean squared value.

Example 3.19

Find the mean and the eman squared value of a uniform r.v. $X \sim U[a, b]$.

Solution:

The mean is given by:

$$
E(X)=\int_{a}^{b} \frac{x d x}{b-a}=\left.\frac{x^{2}}{2(b-a)}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2}
$$

whereas the eman squared value is as follows:

$$
E\left(X^{2}\right)=\int_{a}^{b} \frac{x^{2} d x}{b-a}=\left.\frac{x^{3}}{3(b-a)}\right|_{a} ^{b}=\frac{b^{3}-a^{3}}{3(b-a)}=\frac{a^{2}+a b+b^{2}}{3}
$$

[^11]2. central moment:

If $g(X)=\left(X-\mu_{X}\right)^{n}$ where n is an integer, we call it the n-th central moment of r.v. X, i.e.:

$$
m_{n} \triangleq E\left[\left(X-\mu_{X}\right)^{n}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{n} f_{X}(x) d x
$$

(cf)
The second central moment is especially called the variance, and denoted by the symbol σ_{X}^{2} :

$$
\sigma_{X}^{2} \triangleq m_{n}=E\left[\left(X-\mu_{X}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{2} f_{X}(x) d x
$$

Assignment:

Show that the variance of a uniform r.v. $X \sim U[a, b]$ is $\sigma_{X}^{2}=(b-a)^{2} / 12$.

Note:

The square root of the variance is called the standard deviation, and it represents the average amount of spread around the mean ${ }^{13}$:

$$
\sigma=\sqrt{E\left\{[X-E(X)]^{2}\right\}}
$$

[^12]
Example 3.20

Consider a Gaussian r.v. X, whose pdf is given by:

$$
f_{X}(x)=\frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}}
$$

(a) Show that the mean is $\mu_{X}=m$.
(b) Find the central moments of X.

Solution:

(a) The mean is given by:

$$
\begin{aligned}
\mu_{X} & =\int_{-\infty}^{\infty} x \frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d x \quad(\text { let } u=x-m) \\
& =\int_{-\infty}^{\infty}(u+m) \frac{e^{-u^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d u \\
& =\int_{-\infty}^{\infty} u \frac{e^{-u^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d u+m \int_{-\infty}^{\infty} \frac{e^{-u^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d u \\
& =0+m=m
\end{aligned}
$$

(b) By the definition of the central moments, we have:

$$
\begin{aligned}
m_{n}=E\left[\left(X-\mu_{X}\right)^{n}\right] & =\int_{-\infty}^{\infty}\left(x-\mu_{X}\right)^{n} \frac{e^{-\left(x-\mu_{X}\right)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d x \\
& =\int_{-\infty}^{\infty} u^{n} \frac{e^{-u^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d u, \quad n=1,2, \cdots
\end{aligned}
$$

which is zero when n is odd. (why?)
For the case when n being even integers, the integrand is symmetric about $u=0$, and employing the table of integral, we obtain:

$$
m_{2 k}=2 \int_{-\infty}^{\infty} u^{2 k} \frac{e^{-u^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi \sigma^{2}}} d u=1 \cdot 3 \cdots \cdot(2 k-1) \sigma^{2 k}, \quad k=1,2, \cdots
$$

Note that the special case of $n=2 k=2$ provides the variance $\sigma^{2}!!!$

Properties of expectation:

1. The expectation of a constant is the constant itself:

$$
E[a]=a, \quad a=\text { constant }
$$

2. The expectation of a constant times a function of r.v. is the constant times the expectation of the function of r.v.:

$$
E[a g(X)]=a E[g(X)], \quad a=\mathrm{constant}
$$

3. The expectation of the sum of two functions of r.v. is the sum of each expectation:

$$
E\left[g_{1}(X)+g_{2}(X)\right]=E\left[g_{1}(X)\right]+E\left[g_{2}(x)\right]
$$

proof: assignment

Note: Combination of the properties $2 \& 3$ is called the linearity property of the expectation $\ni: ~ E\left[a g_{1}(X)+b g_{2}(X)\right]=a E\left[g_{1}(X)\right]+b E\left[g_{2}(x)\right]$.

Example 3.21

Show that the variance of a r.v. X can be computed according to:

$$
\sigma_{X}^{2}=E\left[\left(x-\mu_{X}\right)^{2}\right]=E\left(X^{2}\right)-[E(X)]^{2}
$$

Solution:

Using the foregoing properties,

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[\left(x-\mu_{X}\right)^{2}\right] \\
& =E\left(X^{2}-2 \mu_{X} X+\mu_{X}^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu_{X} E(X)+E\left(\mu_{X}^{2}\right) \\
& =E\left(X^{2}\right)-2 \mu_{X}^{2}+\mu_{X}^{2} \\
& =E\left(X^{2}\right)-\mu_{X}^{2}
\end{aligned}
$$

Example 3.22

Let two r.v.'s X and Y are linearly related as:

$$
Y=a X+b
$$

Find the mean and variance of Y in terms of those of X.

Solution:

Using the properties of expectation, we have the mean as:

$$
\mu_{Y}=E[a X+b]=a E(X)+E(b)=a \mu_{X}+b
$$

whereas the variance is given by:

$$
\sigma_{Y}^{2}=E\left[\left(Y-\mu_{Y}\right)^{2}\right]=E\left\{\left[(a X+b)-\left(a \mu_{X}+b\right)\right]^{2}\right\}=E\left[a^{2}\left(X-\mu_{X}\right)^{2}\right]=a^{2} \sigma_{X}^{2}
$$

Example 3.23

The mean and variance of a binomial random variable.

Solution: Self study

3.6 Characteristic Function

Definition 3.5 The characteristic function:

The characteristic function of a r.v. is a special case of the mathematical expectation defined as follows:

$$
M_{X}(j \nu)=E\left(e^{j \nu X}\right) \triangleq \int_{-\infty}^{\infty} f_{X}(x) e^{j \nu x} d x
$$

Usefulness of characteristic function:

1. The m-th moment of a r.v. can be obtained by differentiating the characteristic function w.r.t. its argument.
2. Sometimes the characteristic function of a r.v. is easier to obtain than the pdf.
3. The characteristic function and the pdf are Fourier transform pairs.

To show the first statement, we differentiate the characteristic function w.r.t. ν to obtain:

$$
\frac{d M_{X}(j \nu)}{d \nu}=\int_{-\infty}^{\infty} f_{X}(x) \frac{d}{d \nu} e^{j \nu x} d x=j \int_{-\infty}^{\infty} x f_{X}(x) e^{j \nu x} d x
$$

Now set $\nu=0$, and divide by j to get:

$$
-\left.j \frac{d M_{X}(j \nu)}{d \nu}\right|_{\nu=0}=\int_{-\infty}^{\infty} x f_{X}(x) d x=E(X)
$$

Repeating the same procedure n times, the $n-t h$ moment of the r.v. X can generally be expressed as:

$$
E\left(X^{m}\right)=\left.(-j)^{m} \frac{d^{m} M_{X}(j \nu)}{d \nu^{m}}\right|_{\nu=0}
$$

Example 3.24

Find the characteristic function of a Cauchy r.v. w/ its pdf given as:

$$
f_{X}(x)=\frac{\alpha / \pi}{x^{2}+\alpha^{2}}
$$

Solution:

Applying the definition of the characteristic function, we obtain:

$$
\begin{aligned}
M_{X}(j \nu) & =\int_{-\infty}^{\infty} \frac{\alpha / \pi}{x^{2}+\alpha^{2}} e^{j \nu x} d x \\
& =\int_{-\infty}^{\infty} \frac{\alpha / \pi}{x^{2}+\alpha^{2}}[\cos (\nu x)+j \sin (\nu x)] d x \\
& =\frac{\alpha}{\pi} \int_{-\infty}^{\infty} \frac{\cos (\nu x)}{x^{2}+\alpha^{2}} d x
\end{aligned}
$$

which, by use of a table of indefinite integral, can be expressed as ${ }^{14}$:

$$
M_{X}(j \nu)=e^{\alpha|\nu|}
$$

Example 3.25

Find the characteristic function of the double sided exponential r.v.(called the Laplacian r.v.), whose pdf is given by:

$$
f_{X}(x)=\frac{\alpha}{2} e^{-\alpha|x|}, \quad \alpha>0
$$

[^13]
Solution:

By the definition of the characteristic function, we get:

$$
\begin{aligned}
M_{X}(j \nu) & =\int_{-\infty}^{\infty} \frac{\alpha}{2} e^{-\alpha|x|} e^{j \nu x} d x \\
& =\int_{-\infty}^{\infty} \frac{\alpha}{2} e^{-\alpha|x|}[\cos (\nu x)+j \sin (\nu x)] d x \\
& =\frac{\alpha}{2} \int_{-\infty}^{\infty} \cos (\nu x) e^{-\alpha|x|} d x
\end{aligned}
$$

which, by use of a table of indefinite integral, can be expressed as ${ }^{15}$:

$$
M_{X}(j \nu)=\alpha \int_{0}^{\infty} \cos (\nu x) e^{-\alpha x} d x=\frac{\alpha^{2}}{\alpha^{2}+\nu^{2}}
$$

Assignment: Show that the first and the second moments are 0 and $2 / \alpha^{2}$ respectively by differentiation.

[^14]
3.7 Chebyshev's Inequality

Recall:

The standard deviation of a r.v. gives a measure of spread about its mean
\Longrightarrow The Chebyshev's inequality provides a bound on the probability that a r.v. deviated more than k standard deviations from its mean ${ }^{16}$!!!

Chebyshev's Inequality:

For any random variable X, the probability of X being deviated from its mean more than k standard deviation must satisfy the following inequality:

$$
P\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right) \leq \frac{1}{k^{2}}
$$

or ${ }^{17}$

$$
P\left(\left|X-\mu_{X}\right|<k \sigma_{X}\right)>1-\frac{1}{k^{2}}
$$

proof:

Let $Y=X-\mu_{X}{ }^{18}$ and $a=k \sigma_{X}$. Then, the LHS of the first inequality becomes:

$$
P(|Y| \geq a)=P(Y \leq-a)+P(Y \geq a)
$$

which follows from the fact $|Y| \geq a$ is the union of two mutually exclusive events $Y \geq a$ and $Y \leq-a$.

[^15]Now, consider the second moment of Y, which is:

$$
\begin{aligned}
E\left(Y^{2}\right)=\int_{-\infty}^{\infty} y^{2} f_{Y}(y) d y & \geq \int_{-\infty}^{-a} y^{2} f_{Y}(y) d y+\int_{a}^{\infty} y^{2} f_{Y}(y) d y \\
& \geq a^{2}\left[\int_{-\infty}^{-a} f_{Y}(y) d y+\int_{a}^{\infty} f_{Y}(y) d y\right] \\
& =a^{2}[P(Y \leq-a)+P(Y \geq a)], \quad a>0
\end{aligned}
$$

Solving, we obtain:

$$
P(Y \leq-a)+P(Y \geq a)=P(|Y| \geq a) \leq \frac{E\left(Y^{2}\right)}{a^{2}}
$$

Replacing $Y=X-\mu_{X}$ with $E\left[Y^{2}\right]=\sigma_{X}^{2}$, and $a=k \sigma_{X}$, we have the Chebyshev's inequality as:

$$
P\left(\left|X-\mu_{X}\right| \geq k \sigma_{X}\right) \leq \frac{1}{k^{2}}
$$

Q.E.D.

Example 3.26

(a) Find a bound on the probability that a r.v. is within three standard deviations of its mean.
(b) Find the exact probability of this event, if the r.v. is a Gaussian, and compare with the bound.

Solution:

(a) From the Chebyshev's inequality, we have:

$$
P\left(\left|X-\mu_{X}\right|<3 \sigma_{X}\right)>1-\frac{1}{3^{2}}=0.889
$$

(b) The probability of the given event for a Gaussian r.v. is:

$$
\begin{aligned}
P\left(\left|X-\mu_{X}\right|<3 \sigma_{X}\right) & =\int_{\mu_{X}-3 \sigma_{X}}^{\mu_{X}+3 \sigma_{X}} \frac{e^{-\left(x-\mu_{X}\right)^{2} / 2 \sigma_{X}^{2}}}{\sqrt{2 \pi \sigma_{X}^{2}}} d x \\
& =\int_{-3}^{3} \frac{e^{-u^{2} / 2}}{\sqrt{2 \pi}} d u=2 \int_{0}^{3} \frac{e^{-u^{2} / 2}}{\sqrt{2 \pi}} d u \\
& =1-2 Q(3)=1-2 \times 0.00135 \\
& =0.9973
\end{aligned}
$$

(cf) Note that the Chebyshev's inequality does NOT provide a tight bound in this case!!!

3.8 Computer Generation of Random Variables

Recall:

1. Generation of uniform pseudorandom numbers $X \sim U[0,1]$:

$$
X=\operatorname{rand}(1,1000)
$$

2. Generation of Gaussian pseudorandom numbers $Y \sim N(0,1){ }^{19}$:

$$
Y=\operatorname{randn}(p, q)
$$

3. Generation of Gaussian pseudorandom numbers $Z \sim N\left(m, \sigma^{2}\right)^{20}$:

$$
Z=\sigma Y+m
$$

Generation of random numbers with an arbitrary distribution:

Let U be a r.v. uniformly distributed in $[0,1]$, and define a new r.v. V as:

$$
V=g(U)
$$

where $g(\cdot)$ is assumed to br monotonic.

Then, the pdf of the newly defined r.v. V is given by:

$$
\begin{aligned}
f_{V}(v) & =f_{U}(u)\left|\frac{d u}{d v}\right|_{u=g^{-1}(v)} \\
& = \begin{cases}\left|\frac{d u}{d v}\right|=\left|\frac{d g^{-1}(v)}{d v}\right|, & 0 \leq u \leq 1 \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

where the last equation follows because $f_{U}(u)$ is unity in $[0,1]$ and zero elsewhere.

[^16]Re-writing the above result for the case of $0 \leq u \leq 1$:

$$
f_{V}(v)= \begin{cases}\frac{d g^{-1}(v)}{d v}, & \frac{d g^{-1}(v)}{d v} \geq 0 \\ -\frac{d g^{-1}(v)}{d v}, & \frac{d g^{-1}(v)}{d v}<0\end{cases}
$$

Integrating and solving for $g^{-1}(v)$, we obtain:

$$
g^{-1}(v)= \begin{cases}\int_{-\infty}^{v} f_{V}(\lambda) d \lambda=F_{V}(v), & \frac{d g^{-1}(v)}{d v} \geq 0 \\ -\int_{-\infty}^{v} f_{V}(\lambda) d \lambda=-F_{V}(v), & \frac{d g^{-1}(v)}{d v}<0\end{cases}
$$

where $F_{V}(v)$ represents the desired cdf of r.v. V.

Example 3.27

Using a uniform r.v. U uniformly distributed in $[0,1]$, find the required transformation $V=g(U)$ so that it will generate an exponential pdf given by:

$$
f_{V}(v)=2 e^{-2 v} u(v)
$$

Solution:

The cdf of the desired exponential r.v. is:

$$
F_{V}(v)=\int_{-\infty}^{v} f_{V}(\lambda) d \lambda= \begin{cases}0, & v<0 \\ 1-e^{-2 v}, & v \geq 0\end{cases}
$$

From which, we obtain ${ }^{21}$:

$$
u=g^{-1}(v)=1-e^{-2 v}, \quad v \geq 0
$$

Solving for v, expressing it into the relationship between two r.v.'s U and V^{22} :

$$
\begin{aligned}
V & =-0.5 \ln (1-U) \\
& =-0.5 \ln (U)
\end{aligned}
$$

which means that the required transformation is $V=g(U)=-0.5 \ln (U)$.

[^17]
[^0]: ${ }^{1}$ This type of transform or mapping is called a function.

[^1]: ${ }^{2}$ Value assignment of a r.v. entirely depends on the convenience, i.e. values 0 and 1 would be more convenient to handle than values π and e.

[^2]: ${ }^{3}$ These apply to and work for all three types of r.v., i.e., comtinuous, discrete, and mixed random variables.

[^3]: ${ }^{4}$ Notice that: $F_{X}(-\infty)=P(\phi)=0$, and $F_{X}(\infty)=P(S)=1$.

[^4]: ${ }^{5}$ To prove this, we need the so called continuity axiom, which is beyond the scope of this class: will be discussed at the graduate level course!.

[^5]: ${ }^{6}$ Note that there $\exists 20$ outcomes favorable to the event, thus applying the equally likely assignment probability, we get $\frac{20}{36}$.

[^6]: ${ }^{7}$ Recall that the unit step function is defined as $u(x) \triangleq 1$ for $x \geq 0$ and 0 elsewhere.

[^7]: ${ }^{8}$ We use here the relationship $Q(x)=1-Q(|x|)$ for $x<0$.

[^8]: ${ }^{9}$ It can be shown by evaluation that $\Gamma(1)=1$ and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$, and by replacing b by $b+1$, we can also show that $\Gamma(b+1)=b \Gamma(b)$, which in turn provides that $\Gamma(n+1)=n!$ in case of b an integer n.

[^9]: ${ }^{10}\{W \leq w\}$ corresponds to the event that there is at least one Poisson event in the interval $(0, w)$.

[^10]: ${ }^{11}$ This is due to the sifting property of the unit impulse function, which is, $\int_{-\infty}^{\infty} g(x) \delta\left(x-x_{i}\right) d x=$ $g\left(x_{i}\right)$.

[^11]: ${ }^{12}$ We take this as a definition here, but it can actually be proved: more advanced course on probability...

[^12]: ${ }^{13}$ Note that $E[X-E(X)]$ is NOT adequate for representing the spread about mean since positive and negative values of the difference $X-E(X)$ will cancel out, thus smaller measure of deviation may result. On the other hand, $E[|X-E(X)|]$ would cure this problem, but hard to handle the absolute value analytically...

[^13]: ${ }^{14}$ Note that $M_{X}(j \nu)$ is not differentiable at $\nu=0$, and thus we cannot use it to evaluate the moments. In fact, its moments do not exists in this case.

[^14]: ${ }^{15}$ Note that the integrand is symmetric about $x=0$.

[^15]: ${ }^{16}$ It is a very loose bound, but its merit is the fact that very little need to be known about the r.v. to obtain the bound...
 ${ }^{17}$ Note that two events $\left|X-\mu_{X}\right| \geq k \sigma_{X}$ and $\left|X-\mu_{X}\right|<k \sigma_{X}$ are mutually exclusive to each other!
 ${ }^{18}$ Note then: $E\left[Y^{2}\right]=\sigma_{X}^{2}$.

[^16]: ${ }^{19}$ This generates an array of Gaussian pseudorandom numbers with p rows and q columns.
 ${ }^{20} \mathrm{By}$ way of transformation.

[^17]: ${ }^{21}$ Note that this inverse transformation always has positive slope.
 ${ }^{22}$ Here we use that fact: if U is uniform on $[0,1]$, so is $1-U$.

