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Chapter 4

PROBABILITY
DISTRIBUTIONS FOR MORE
THAN ONE RANDOM
VARIABLE

4.1 What are Bivariate Random Variables?

Necessaity: Examples (Bivariate)

1. A systen w/ random inputs or random components:

The joint probability that the input and output are in certain ranges at a specific
time instant.

2. Shooting a projectile at a target:

Derscription of the impact point needs two variables, in either Cartesian or
polar coordinates.

Remark:
Once the concept of two r.v.’s(i.e. bivariate), the extension to more than two r.v.’s(i.e.
multivariate) is relatively easy.....

In summary: We deal with the probability that a pair of random variables 3: X
and Y are in certain region of the plane.
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4.2 Bivariate CDF

Definition 4.1 Bivariate or joint cdf:
Given two r.v.’s X and Y , we define their bivariate, or joint cdf as:

FXY (x, y) = P (X ≤ x, Y ≤ y)

Note:
This corresponds to the joint probability that Xand Y are in the lower lefthand
portion of the xy-plane. (See figure4-1(a) below)

Figure 4.1: Definitions pertinent to the joint cdf: (a)defining joint cdf (b) probability
of X and Y being in a rectangular region.

Properties the joint cdf: 1

1. If either one of x or y is minus infinity, the joint cdf is zero:

FXY (−∞, y) = FXY (x,−∞) = FXY (−∞,−∞) = 0

2. If both x and yare infinity, the joint cdf is unity:

FXY (∞,∞) = 1

1Joint cdf can be defined for both continuous and discrete bivariate r.v.’s, of which the discrete
case will be discussed in Section4-4.
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3. If we set one of the variable to be infinity, we get the cdf of the other r.v.:

FXY (x,∞) = FX(x)

FXY (∞, y) = FY (y)

We call it the marginal cdf.....

4. The joint cdf is a nondecreasing function of its arguments:

FXY (x1, y1) ≥ FXY (x0, y0) for x1 ≥ x0 or y1 ≥ y0

5. The joint cdf is continuous from the right on either variable:

lim
x→x+

0

FXY (x, y) = FXY (x0, y)

lim
y→y+

0

FXY (x, y) = FXY (x, y0)

FACT:
The probability of X and Y lying in a certain range is found from the following
relationship:

P (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2)

= P (x1 ≤ X ≤ x2, Y ≤ y2)− P (x1 ≤ X ≤ x2, Y ≤ y1)

= P (X ≤ x2, Y ≤ y2)− P (X ≤ x1, Y ≤ y2)

−P (X ≤ x2, Y ≤ y1) + P (X ≤ x1, Y ≤ y1)

= FXY (x2, y2)− FXY (x1, y2)− FXY (x2, y1) + FXY (x1, y1)

Verification: assignment...( via probability axioms and figure4-1(b))
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Example 4.1

Consider the function

F̃ (x, y) = [1− exp(−x)][1− exp(−y)]u(x)u(y)

(a) Is it suitable for a joint cdf? Explain why.

(b) Find the probability that the r.v.’s lie in the rectangle

−10 ≤ X ≤ 2 3 ≤ Y ≤ 5

Solution:

(a) Yes, since it meets all required properties to be a joint cdf. (see figure4-2.)

(b) According to the FACT mentioned above, we have:

P (−10 ≤ X ≤ 2, 3 ≤ Y ≤ 5)

= FXY (2, 5)− FXY (−10, 5)− FXY (2, 3) + FXY (−10, 3)

where the value of each term can be calculated as:

FXY (2, 5) = (1− e−2)(1− e−5) = 0.859

FXY (−10, 5) = 0

FXY (2, 3) = (1− e−2)(1− e−3) = 0.822

FXY (−10, 3) = 0

Thus the desired probability is:

P (−10 ≤ X ≤ 2 3 ≤ Y ≤ 5) = 0.037

Figure 4.2: Plot of the bivariate cdf of Example 4-1.
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4.3 Bivariate PDF

Definition 4.2 Bivariate or joint pdf:
The bivariate, or joint probability density function of two r.v.’s X and Y is defined
in terms of their joint cdf as:

fXY (x, y) =
∂2FXY (x, y)

∂x∂y

Note: We assume that the joint cdf is everywhere differentiable in this definition.

Example 4.2

Find the joint pdf corresponding to the cdf in Example 4-1.

Solution:

Carrying out the differentiation, we obtain

fXY (x, y) = e−xe−yu(x)u(y) = e−(x+y)u(x)u(y)

which is plotted in figure4-3.

Figure 4.3: The joint pdf of Example 4-2.
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Properties the joint pdf: 2

1. The joint cdf in terms of the joint pdf can be expressed as follows:

FXY (x, y) =
∫ y

−∞

∫ x

−∞
fXY (u, v)dudv

2. The volume under the joint pdf is unity, i.e.:

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy = 1

3. The joint pdf is non-negative, i.e.:

fXY (x, y) ≥ 0

4. The marginal cdf in terms of the joint pdf is in the following forms:

FX(x) =
∫ ∞

−∞

∫ x

−∞
fXY (u, v)dudv

FY (y) =
∫ y

−∞

∫ ∞

−∞
fXY (u, v)dudv

5. By differentiating above double integrals w.r.t. x and y respectively, we obtain:

fX(x) =
∫ ∞

−∞
fXY (x, y)dy

fY (y) =
∫ ∞

−∞
fXY (x, y)dx

where these fX(x) and fY (y) are called the marginal pdf’s.

2(Cf.) The Leibnitz Rule:

Let

g(x) =
∫ β(x)

α(x)

f(x, u)du

where f(x, u) is a continuous function w.r.t. x and u, then the derivative of g(x) can be expressed
in the following form:

dg(x)
dx

= f (x, β(x))
dβ(x)

dx
− f (x, α(x))

dα(x)
dx

+
∫ β(x)

α(x)

∂

∂x
f(x, u)du
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FACT:
The probability of X and Y lying in a certain range, in terms of the joint pdf, can
be found from the following relationship:

P (x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2) =
∫ x2

x1

∫ y2

y1

fXY (x, y)dxdy

Verification: assignment

Example 4.3

Consider the function of two variables:

fXY (x, y) =

{
Axy, 0 < x < y, 0 < y < 1
0, otherwise

(a) Find A such that this is a proper pdf.

(b) Find the probability that 0 < X < 0.5 and 0.5 < Y < 1.

(c) Obtain the marginal pdf’s for X and Y

Solution:

(a) Since the volume under the joint pdf is unity, we compute

∫ ∞

−∞

∫ ∞

−∞
fXY (x, y)dxdy =

∫ 1

0

∫ y

0
Axydxdy =

A

2

∫ 1

0
y3dy =

A

8
= 1

from which we get A = 8.

Figure: Integration region to obtain A.
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(b) From the FACT mentioned above, the probability can be calculated as:

P (0 < X < 0.5, 0.5 < Y < 1) = 8
∫ 1

0.5

∫ 0.5

0
xydxdy = 0.375

(c) The marginal pdf of X is obtained by integrating the joint pdf over all y
as:

fX(x) =
∫ 1

x
8xydy = 8x

y2

2

∣∣∣∣∣
1

x

= 4x(1− x2), 0 < x < 1

and zero elsewhere. (Refer the above figure to deduce the integration
limits...)

Likewise, the marginal pdf for Y can be obtained by iontegrating the joint
pdf overall x as:

fY (y) =
∫ y

0
8xydx = 8y

x2

2

∣∣∣∣∣
y

0

= 4y3, 0 < y < 1

and zero elsewhere.

Assignment: Verify that both fX(x) and fY (y) integrate to 1, as they
should.

Example 4.4 Self study
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4.4 Discrete Random Variable Pairs

Suppose pairs of r.v.’s (X,Y ) take on the exhaustive set of values {(xi, yj), i =
1, 2, · · · ,m, j = 1, 2, · · · , n} with associated probabilities {Pij, i = 1, 2, · · · ,m, j =
1, 2, · · · , n}.

=⇒ Since the set of values are exhaustive. we have:

m∑

i=1

n∑

j=1

Pij = 1

=⇒ The probability mass function consists of point above the xy-plane.

Figure 4.4: The probability mass function for the case of m = n = 3.

Example 4.5

Let X and Y be the numbers shown on a pair of fair dice thrown. Find the
joint probability mass function of X and Y .

Solution:

Assuming that the dice roll independently to each other, we have the joint
probability mass function as:

P (X = i, Y = j) = P (X = i)P (Y = j) =
1

6
× 1

6
=

1

36
, i, j = 1, 2, · · · , 6

A plot of this pmf consists of lines 1
36

high at points (1, 1), (1, 2), · · · , (6, 6) on
the xy-plane.
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Corresponding joint cdf can then be found from the double summation as:

FXY (x, y) =





∑
i≤x

∑
j≤y

1
36

, i, j ≤ 6

1, i and j > 6

Assignment: Plot this joint cdf as vertical planes parallel to the xand y axis...

Example 4.6

Referring to the rolling of a pair of dice, determine the joint probability mass
function of two discrete r.v.’s defined as follows:

X = sum of numbers shown, Y = difference of numbers shown

Solution:

Construct a table of sums and differences as in Table 4-1, from which we deduce
the set of joint probabilities listed in Table 4-2, which define the joint probability
mass function.

Table 4-1: Sum and differences(in parentheses) when a pair of dice are thrown.

Table 4-2: The joint probability mass function of Example 4-6.
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The marginal pmf of X and Y may be obtained by summing over the columns
and the rows, respectively. The probability mass function of X, for example, is
given as 3:

P (X = 2) = 1
36

, P (X = 3) = 2
36

, P (X = 4) = 3
36

, P (X = 5) = 4
36

,

P (X = 6) = 5
36

, P (X = 7) = 6
36

, P (X = 8) = 5
36

, P (X = 9) = 4
36

P (X = 10) = 3
36

, P (X = 11) = 2
36

, P (X = 12) = 1
36

,

3When plotted, this would look similar to Figure 3-5, except that we have lines here in place of
impulses.
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4.5 Conditional CDF and Conditional PDF

Often, it might be convenient or necessary to condition the outcomes of r.v.’s on the
occurrence of a hypothesis 3:

1. Rain or no rain

2. Noise alone present or signal+noise present

3. Random variable Z being in a certain region

Recall: The conditional probability (Chapter 2)

Definition 4.3 The Conditional CDF:
Given two r.v.’s X and Y , let A = {X ≤ x}, and B = {Y ∈ Ry}, then the conditional
cdf of X given the event {Y ∈ Ry} is denoted and defined as the following conditional
probability:

FX(x|Y ∈ Ry)
∆
= P (X ≤ x|Y ∈ Ry) =

P (X ≤ x, Y ∈ Ry)

P (Y ∈ Ry)

Extending the idea, we take the events A and B to be:

A = {x < X ≤ x + ∆x}
B = {y < Y ≤ y + ∆y}, |∆x|, |∆y| ¿ 1

Then, the conditional probability of A given B becomes:

P (x < X ≤ x + ∆x|y < Y ≤ y + ∆y) =
P (x < X ≤ x + ∆x, y < Y ≤ y + ∆y)

P (y < Y ≤ y + ∆y)

' fXY (x, y)∆x∆y

fY (y)∆y

= fX|Y (x|y)∆x

where the approximation comes from the mean value theorem.

From this result, we have the following definition of the conditional pdf of X given
Y = y.
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Definition 4.4 The conditional PDF:
The conditional pdf of X given Y = y is defined as follows:

fX|Y (x|y)
∆
=

fXY (x, y)

fY (y)

Interpretation: fX|Y (x|y)∆x represents the probability that r.v. X is in a ∆x
interval around x, given that Y is in a small ∆y interval around y!!!

Likewise, we define the conditional pdf of Y given X = x to be:

fY |X(y|x) =
fXY (x, y)

fX(x)

Properties of conditional cdf and pdf:
( same as those of regular cdf and pdf... )

(e.g.)

∫ ∞

−∞
fX|Y (x|y)dx =

∫ ∞

−∞
fXY (x, y)

fY (y)
dx =

fY (y)

fY (y)
= 1

Example 4.7

Obtain the conditional pdf of X given Y for the joint pdf of Example 4-3.

Solution:

From example 4-3, we already have the joint pdf and the marginal pdf, and
thus we obtain:

fX|Y (x|y) =
fXY (x, y)

fY (y)
=





2x
y2 , 0 < x < y, 0 < y < 1

0 otherwise
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Example 4.8

A certain signal may or may not be present in noise, where the voltage at the
output of the detector has the following pdf’s respectively depending on the
presence of the signal.

fX|S(x|S) =
e−(x−2)2/8

√
8π

fX|S̄(x|S̄) =
e−x2/8

√
8π

A threshold of 1 volt is set at the output of the detector, and the decision
that the signal was present is made if the detector output is greater than the
threshold.

(a) What is the probability that, if present, the signal is not detected (called
the probability of miss)?

(b) What is the probability that if the signal was not present, the decision is
that it was present (called the probability of false alarm)?

Solution:

(a) This corresponds to the probability that the r.v. X does not cross the
threshold given the signal was present, which, in terms of the first condi-
tional pdf, is as follows 4:

Pmiss =
∫ 1

−∞
e−(x−2)2/8

√
8π

dx =
∫ −0.5

−∞
e−u2/2

√
2π

du =
∫ ∞

0.5

e−u2/2

√
2π

du

= Q(0.5) = 0.309

Figure: The pdf’s fX|S(x|S) and fX|S̄(x|S̄).

4A change of variable u = (x− 2)/2 and the symmetricity of the integrand along with the table
of Q-function has been used.
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(b) The probability of the false alarm is the probability that noise alone crosses
the threshold, which, in terms of the second pdf above, is as follows:

PFA =
∫ ∞

1

e−x2/8

√
8π

dx =
∫ ∞

0.5

e−u2/2

√
2π

du = Q(0.5) = 0.309

Note:

(1) High error probabilities. (Typical values for communication systems
are 10−2 ∼ 10−8)

(2) Pmiss = PFA since the threshold is set halfway b/w two mean val-
ues(i.e. 0 and 2), and the Gaussian pdf is even.

(3) How can we make these error probabilities smaller?

(i) Increase the mean of the signal present pdf(i.e. 2).

(ii) Decrease the variance of both pdf’s(i.e. 4), which corresponds to
decreasing the noise.

Example 4.9 Self study
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4.6 Statistically Indenpendent Random Variables

Recall: Two events A and B are called to be statistically independent if:

P (A ∩B) = P (A) · P (B)

Applying directly to two r.v.’s via definition of the joint cdf, we have:

FXY (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) = FX(x)FY (y)

From the definition of the joint pdf, and by differentiating the above w.r.t. x and y,
we have:

fXY (x, y) = fX(x)fY (y)

Or, from the definition of the conditional pdf, it follows:

fX|Y (x|y) = fX(x)

fY |X(y|x) = fY (y)

Summary: Any one of these statements defines statistically independent random
variables; all are equivalent.
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Example 4.10

The r.v.’s discussed in example 4-1 and 4-2 are statistically independent, since
their joint cdf and pdf’s factor, i.e.

FXY (x, y) = [1− exp(−x)][1− exp(−y)]u(x)u(y)

= [1− exp(−x)]u(x)[1− exp(−y)]u(y)

= FX(x)FY (y)

and
fXY (x, y) = e−(x+y)u(x)u(y) = e−xu(x)e−yu(y) = fX(x)fY (y)

Example 4.11

The r.v.’s X and Y in example 4-3 are NOT statistically independent, since the
joint pdf is:

fXY (x, y) =

{
8xy, 0 < x < y, 0 < y < 1
0, otherwise

whereas the marginal pdf’s for X and Y are respectively as:

fX(x) = 4x(1− x2), 0 < x < 1

fY (y) = 4y3, 0 < y < 1

and therefore:

fXY (x, y) 6= fX(x)fY (y)
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4.7 Averages of Functions of Two Random Vari-

ables

Recall: Given a function of two r.v.’s. e.g. g(X,Y ), it is also a r.v..

Extending the definition of the expectation for functions of a single r.v., we have:

1. Continuous r.v.:

E[g(X,Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(x, y)fXY (x, y)dxdy

where fXY (x, y) is the joint pdf of X and Y .

2. Discrete r.v.:

E[g(X,Y )] =
m∑

i=1

n∑

j=1

g(xi, yj)P (X = xi, Y = yj)

where P (X = xi, Y = yj) is the joint pmf of X and Y .

Properties:

1. Suppose g(X,Y ) = g1(X)g2(Y ), and X and Y are statistically indenpendent,
then:

E[g(X,Y )] = E[g1(X)g2(Y )] =
∫ ∞

−∞

∫ ∞

−∞
g1(x)g2(y)dxdy

=
∫ ∞

−∞
g1(x)fX(x)dx

∫ ∞

−∞
g2(y)fY (y)dy

= E[g1(X)]E[g2(Y )]
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2. If g(X,Y ) = a1g1(X,Y ) + a2g2(X,Y ) where a1 and a2 are constants, then:

E[a1g1(X,Y ) + a2g2(X,Y )]

=
∫ ∞

−∞

∫ ∞

−∞
[a1g1(x, y) + a2g2(x, y)]fXY (x, y)dxdy

=
∫ ∞

−∞
a1g1(x, y)fXY (x, y)dxdy +

∫ ∞

−∞
a2g2(x, y)fXY (x, y)dxdy

= a1E[g1(X,Y )] + a2E[g2(X,Y )]

This is called the linearity property, and it holds whether or not X and Y are
statistically independent.

Example 4.12

Given the joint pdf:

fXY (x, y) =
αβ

4
exp(−α|x| − β|y|)

(a) Find the expectation of g(X,Y ) = XY .

(b) Obtain the expectation of h(X,Y ) = X2 + Y 2.

Solution:

(a) Since the joint pdf can be expressed as fXY (x, y) = fX(∗x)fY (y), X and
Y are statistically indenpendent, and thus:

E(XY ) = E(X)E(Y ) = 0

Note that E[X] = E[Y ] = 0 since each pdf is an even function.

(b) From the linearity property above, we have:

E(X2 + Y 2) = E(X2) + E(Y 2)

where E[X2] can be calculated as:

E(X2) =
∫ ∞

−∞
x2α

2
exp(−α|x|)dx

= α
∫ ∞

0
x2 exp(−αx)dx =

1

α2

∫ ∞

0
u2 exp(−u)du =

2

α2

Similarly, we get E(Y 2) = 2
β2 , and therefore we have:

E(X2 + Y 2) =
2

α2
+

2

β2
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4.8 Some Special Averages of Functions of Two

Random Variables

Joint Moments

The mn-th joint moments of two r.v.’s X and Y are defined as:

mmn = E[XmY n], m, n = 1, 2, · · ·

(cf)

1. Special cases are means of Xand Y , obtained by setting m = 1, n = 0 and
m = 0, n = 1 respectively.

2. If X and Y are independent, then mmn = E[Xm]E[Y n], ∀m,n

Example 4.13

Find the joint moments of the r.v.’s whose joint pmf ius shown in fig. 4-4, if

x1 = 1, x2 = 2, x3 = 3, y1 = 3, y2 = 3, y3 = 4

Solution:

Inserting the given values into the definition of the joint moments, we have:

E(XmY n) = 1m3n × 0.2 + 2m3n × 0.6 + 3m4n × 0.2

and several special cases are provided in Table 4-3.

Table 4.3 Joint moments for X and Y whose joint pmf is shown in figure 4-4.
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Joint Central Moments

The mn-th joint central moments of two r.v.’s X and Y are defined as:

µmn = E[(X − µX)m(Y − µY )n], m, n = 1, 2, · · ·
where µX and µY are the means of X and Y respectively. The special cases of m = 2,
n = 0 and m = 0, n = 2 give the variances σ2

X and σ2
Y of X and Y , respectively.

Covariance

This is a special case of the joint central moments with m = n = 1, i.e.:

CXY = E[(X − µX)(Y − µY )]

By expanding the expectation, thsi can be put into another form as:

CXY = E[XY ]− µXµY = RXY − µXµY

where RXY is called the correlation of X and Y , which corresponds to a special case
of the joint moments for the case of m = n = 1.

(cf) Two r.v.’s X and Y are called uncorrelated if:

CXY = 0

or equivalently if:
RXY = E[X] · E[Y ]

Correlation Coefficient

The correlation coefficient is defined as:

ρXY =
CXY

σXσY

where CXY denores the covariance of X and Y .
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properties of ρXY

1. Its absolute value is bounded by unity:

−1 ≤ ρXY ≤ 1

proof: Consider the following non-negative quantity:

E

[(
X − µX

σX

± Y − µY

σY

)2
]
≥ 0

By expanding the square, and taking the expectation term by term, we get:

1± 2ρXY + 1 ≥ 0

which is equivalent to the above statement.

Assignment: detailed derivation

2. If X and Y are statistically independent, then:

ρXY = 0

proof: We show CXY = 0, from which it follows that ρXY = 0. For statistically
independent r.v.’s X and Y , the covariance can be shown to be zero as:

CXY = E[(X − µX)(Y − µY )] = [E(X)− µX ][E(Y )− µY ]

= (µX − µX)(µY − µY )

= 0
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(cf)

(a) Two r.v.’s X and Y are uncorrelated if ρXY = 0.

(b) If two r.v.’s are statistically independent, then they are uncorrelated, but
NOT vice versa. 5

X and Y are independent
O−→ X and Y are uncorrelated

( . . . )
X←− ( . . . )

3. If Y = aX + b, where a and b are constants, then:

ρXY = 0

proof: We can show that

µY = aµX + b σY = ±aσX

and thus the covariance can be expressed as:

CXY = E{(X − µX)[aX + b− (aµX + b)]} = aE[(X − µX)2] = aσ2
X

Substituting these into the definition of the correlation coefficient, we have:

ρXY =
CXY

σXσY

=
aσ2

X

±aσXσX

= ±1

Example 4.14

Find the correlation, covariance, and correlation coefficient for the r.v.’s w/
joint pdf given in example 4-3, i.e.

fXY (x, y) =

{
8xy, 0 < x < y, 0 < y < 1
0, otherwise

5The only exceptional case is when X and Y are jointly Gaussian. In this case, uncorrelatedness
implies the statistical independence.
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Solution:

By definition, the correlation is given as:

RXY = E[XY ] =
∫ 1

0

∫ y

0
xy(8xy)dxdy =

4

9

and the means of X and Y are respectively

µX =
∫ 1

0
x[4x(1− x2)]dx =

8

15
and µY =

∫ 1

0
y(4y3)dy =

4

5

where the marginal pdf’s obtained in example 4-3 were used.

The covariance is then:

CXY =
4

9
− 8

15

4

5
=

4

225

To get correlation coefficient, we first calculate the mean square values as:

E[X2] =
∫ 1

0
x2[4x(1− x2)]dx =

1

3
and E[Y 2] =

∫ 1

0
y2(4y3)dy =

2

3

and the variances are

σ2
X =

1

3
−

(
8

15

)2

=
11

225
and σ2

Y =
2

3
−

(
4

5

)2

=
2

75

from which the correlation coefficient is given by:

ρXY =
4/225

(
√

11/15)(
√

2/5
√

3)
= 2

√
2/33 = 0.4924

Joint Characteristic Function

Generalizing the characteristic functionn of a single r.v. to the bivariate case, the
joint characteristic function of two r.v.’s X and Y is defined as:

MXY (ju, jv) = E[ej(uX+vY )] = E(ejuXejvY )
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Special cases:

1. If X and Y are statistically independent, the joint characteristic function is the
product of their individual characteristic functions, i.e.:

MXY (ju, jv) E(ejuX)E(ejvY ) = MX(ju)MY (jv)

2. Let X and Y be two independent r.v.’s, and defined a new r.v. Z as the sum,
i.e.

Z = X + Y

Then, the characteristic function of the newly defined r.v. Z is also the product
of each individual characteristic functions as:

MZ(jv) = E[ejv(X+Y )] = E(ejvXejvY )

= E(ejvX)E(ejvY ) = MX(jv)MY (jv)

(cf) Notice the similarity and difference in the form of the characteristic function
b/w above two cases.....

Example 4.15

Find the joint characteristic function for the pdf given in example 4-2:

fXY (x, y) = e−xe−yu(x)u(y) = e−(x+y)u(x)u(y)

Solution:

Since we showed that X and Y are independent in example 4-10, the joint
charateristic function can be expressed as the product of marginal characteristic
function, where the c.f. of X is:

MX(ju) =
∫ ∞

−∞
ejuxe−xu(x)dx =

∫ ∞

0
e−(1−ju)xdx = − e−(1−ju)x

1− ju

∣∣∣∣∣

∞

0

=
1

1− ju

Similary, we get the c.f. of Y as:

MY (jv) =
1

1− jv

Therefore, the joint characteristic function is:

MXY (ju, jv) =
1

(1− ju)(1− jv)
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4.9 Joint Gaussian PDF

Two r.v.’s X and Y are called jointly Gaussian if their joint pdf is in the following
form:

fXY (x, y) =
exp

[
− (x−µX)2/σ2

X−2r(x−µX)(y−µY )/σXσY +(y−µY )2/σ2
Y

2(1−r2)

]

2πσXσY

√
1− r2

where various parameters in the above joint pdf can be shown to be:

µX = E(X) = mean of X

µY = E(Y ) = mean of Y

σ2
X = E[(X − µX)2] = variance of X

σ2
Y = E[(Y − µY )2] = variance of Y

r =
E[(X − µX)(Y − µY )]

σXσY

= correlation coefficient of X and Y

proof: assignment

=⇒ fXY (x, y) is a bell-shaped volume above xy-plane centered at x = µX and y = µY

(Figure 4-7)

=⇒ Cuts through fXY (x, y) parallel to xy-plane are ellipses, whose fatness depends
on σX and σY (Figure 4-6)
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Consider a special case via change of variables as:

xn =
x− µX

σX

and yn =
y − µY

σY

Then the joint pdf becomes 6:

fXY (x, y) =
exp[−(x2 − 2rxy + y2)/2(1− r2)]

2π
√

1− r2

which corresponds to a joint Gaussian pdf for which the r.v.’s have zero means and
unit variances, i.e. normalized bivariate Gaussian pdf.

The lines of constant probability density(i.e. family of ellipses) can then be expressed
as follows 7:

x2 − 2rxy + y2 = K

Figure 4.5: Equal probability density contours for a joint Gaussian pdf w/ µX =
µY = 0, and σX = σY = 1.

=⇒ To get an idea of the effect of the standard deviations of X and Y , consider the
contours shown below where σX = 1.25 and σY = 1.

Figure 4.6: Equal probability density contours for a joint Gaussian pdf w/ µX =
µY = 0, and σX = 1.25 & σY = 1.

6We drop the subscripts for notational convenience.
7These family of ellipses have their major and minor axes NOT parallel to x and y coordinates.

To make them parallel, the x and y axes must be rotated by θ = ±π
4 . Read textbook.....
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Figure 4.7: Three dimensional representation of normalized bivariate Gaussian pdf’s.

Now, consider the case when r = 0, i.e. X and Y are uncorrelated.

Then, the joint pdf become:

fXY (x, y) =
exp[−(x− µX)2/2σ2

X − (y − µY )2/2σ2
Y ]

2πσXσY

=
exp[−(x− µX)2/2σ2

X ] exp[−(y − µY )2/2σ2
Y ]√

2πσ2
X

√
2πσ2

Y

= fX(x) · fY (y)

which means that Xand Y are statistically independent.

conclusion: Uncorrelated Gaussian random variables are also statistically indepen-
dent, which is NOT generally true.

Example 4.16

Measurements on a random voltage at two time instants( denoted as X and Y
respectively) showed that their means are zero and the variances are 4 watts.
Assuming X and Y are uncorrelated Gaussian r.v.’s, write down the joint pdf.

Solution:

We are given that:
µX = µY = 0

σ2
X = σ2

Y = 4

and since X and Y are uncorrelated Gaussian r.v.’s, they are also statistically
independent, and therefore the joint pdf becomes:

fXY (x, y) =
e−(x2+y2)/2(4)

2π(4)
=

e−(x2+y2)/8

8π
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4.10 Functions of Two Random Variables

Consider a function of two r.v.’s, say

Z = g(X,Y )

=⇒ Given the joint pdf fXY (x, y), we wish to find the pdf of Z

=⇒ We first find the dcf of Z as:

FZ(z) = P (Z ≤ z) = P [g(X,Y ) ≤ z]

=⇒ Differentiate the dcf to find the pdf of Z

Remark: The condition g(X,Y ) ≤ z defines some region in xy-plane, and we have
to integrate the joint pdf fXY (x, y) of X and Y over this region.

Example 4.17

Let the transformation be:

Z =
√

X2 + Y 2

Find the pdf of Z assuming that X and Y are independent Gaussian r.v.’s w/
zero means and variances σ2.
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Solution:

We evaluate

P (
√

X2 + Y 2 ≤ z) = FZ(z) =
∫

R(z)

∫ e−(x2+y2)/2σ2

2πσ2
dxdy

where the region R(z) is the area inside the circle(figure 4-8):

x2 + y2 = z2

We change the cartesian coordinate to polar coordinate via the change of vari-
ables as follows:

x = r cos θ and y = r sin θ

or,

r =
√

x2 + y2 and θ = tan−1 y

x

where the differential area dxdy transforms to rdrdθ, and the region R(z) be-
comes as the region corresponding to 0 ≤ r ≤ z and 0 ≤ θ ≤ 2π.

Thus the cdf FZ(z) becomes:

FZ(z) =
∫ 2π

θ=0

∫ z

0

e−r2/2σ2

2πσ2
rdrdθ =

∫ 2π

0

[
e−r2/2σ2

2π

]z

0

dθ

=
∫ 2π

0
(1− e−z2/2σ2

)
dθ

2π
= 1− e−z2/2σ2

, z ≥ 0

This is called a Rayleigh pdf 8.

Figure 4.8: Area of integration.

Figure 4.9: Rayleigh pdf w/ σ = 1.

8The mean is E(Z) = (π/2)1/2σ, while the variance is σ2
Z = (2−π/2)σ2: derivation (assignment).
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Example 4.18

Given the transformation:

Z = X + Y

Find the pdf of Z in terms of fX and fY , where X and Y are independent r.v.’s.

Solution:

We first evaluate the cdf FZ(z) as follows:

FZ(z) = P (X + Y ≤ z) =
∫ ∞

−∞

∫ z−y

−∞
fXY (u, v)dudv

where the area of integration is shown in figure 4-10.

Differentiating and using statistical independence, we obtain 9 ( assignment)

fZ(z) =
∫ ∞

−∞
fX(z − y)fY (y)dy = fX(z) ∗ fY (z)

Figure 4.10: Integration region for the pdf of sum of two independent r.v.’s.

Remark: The pdf of the sum of two statistically independent r.v’s is the con-
volution 10 of their separate pdf’s!!!

Suppose both X and Y are uniformly distributed as U [−0.5, 0.5], then the pdf
of Z is as follows: (assignment)

fZ(z) =





0, z < −1
1 + z, −1 ≤ z ≤ 0
1− z, 0 < z ≤ 1
0, z > 1

Example 4.19 Self study

9You may need to use the Leibnitz rule here...
10Recall that the characteristic function of Z is the product of individual charateristic functions,

i.e. MZ(jv) = MX(jv)MY (jv). Can you explain it from the viewpoints of the above result...?
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4.11 Transformation of a Pair of Random Vari-

ables

Suppose we are given a pair of r.v.’s X and Y , whose joint pdf is known. We define
another pair of r.v.’s U and V via the following transformations:

U = g(X,Y )

V = h(X,Y )

=⇒ The probability of (X,Y ) being in some region R in xy-plane is:

P [(X,Y ) ∈ R] =
∫

R

∫
fXY (x, y)dxdy

=⇒ Assuming (1) transformation is one-to-one, and the region R in xy-plane trans-
forms into some region R∗ in uv-plane; (2) inverse transformations x = g−1(u, v) and
y = h−1(u, v) have continuous 1st partial derivatives, we have 11:

∫

R

∫
fXY (x, y)dxdy =

∫

R∗

∫
fXY [g−1(u, v), h−1(u, v)]

∣∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∣ dudv

∆
=

∫

R∗

∫
fUV (u, v)dudv

where

J =
∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∂g−1(u,v)
∂u

∂g−1(u,v)
∂v

∂h−1(u,v)
∂u

∂h−1(u,v)
∂v

∣∣∣∣∣∣∣∣

is called the Jacobian.

Remark: Therefore, the pdf of U and V in terms of the pdf of X and Y is as follows:

fUV (u, v) = fXY [g−1(u, v), h−1(u, v)]

∣∣∣∣∣
∂(x, y)

∂(u, v)

∣∣∣∣∣

11From the calculus of transformation of variables in double integrals (Kreyzig, 1988)
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Example 4.20

Suppose two Gaussian r.v.’s X and Y have zero mean, variance of 2, and cor-
relation coefficient 0.7. Determine the joint pdf of U and V defined as follows:

U = X − Y and Y = X + 2Y

Solution:

We are given that the joint pdf of X and Y is:

fXY (x, y) =
exp

{
− (x2/2)−[2(0.7)xy/2]+(y2/2)

2(1−(0.7)2)

}

2π(2)
√

1− (0.7)2

= 0.111e−(0.495x2−0.686xy+0.495y2)

Solving the transformation w.r.t. x and y, we obtain:

x =
2

3
u +

1

3
v and y = −1

3
u +

1

3
v

The Jacobian is

J

(
x y
u v

)
=

∣∣∣∣∣∣∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

2
3

1
3

−1
3

1
3

∣∣∣∣∣∣∣
=

1

3

Therefore, the joint pdf of U and V is as follows:

fUV (u, v) =
0.111

3
exp{−[0.495(0.667u + 0.333v)2 − 0.686(0.667u + 0.333v)

(−0.333u + 0.333v) + 0.495(−0.333u + 0.333v)2]}
= 0.037 exp{−(0.423u2 + 0.333uv + 0.0325v2)}
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Example 4.21

Given two indpendent, zero mean Gaussian r.v.’s X and Y w/ variances σ2,
find the joint pdf of the following r.v.’s represented as polar coordinates:

R =
√

X2 + Y 2 and Θ = tan−1 Y

X

Solution:

The transformation from polar to cartesian coordinates is:

x = r cos θ and y = r sin θ, r ≥ 0, 0 ≤ θ < 2π

The Jacobian is then:

J =

∣∣∣∣∣∣∣

cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣∣∣
= r

Using the known values of µX = µY = 0 and σ2
X = σ2

Y = σ2, along with the
Jacobian J , the joint pdf of R and Θ can be expressed as follows:

fRΘ(r, θ) =
r

2πσ2
e−r2/2σ2

, r ≥ 0, 0 ≤ θ < 2π

To obtain the marginal pdf’s, we integrate the above joint pdf over θ and r
respectively:

fR(r) =
r

σ2
e−r2/2σ2

, r ≥ 0 and fΘ(θ) =
1

2π
, 0 ≤ θ < 2π

Note:

(a) R is the Rayleigh r.v., whereas Θ is the uniform r.v..

(b) R and Θ are statistically independent, since fRΘ(r, θ) = fR(r) · fΘ(θ).
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4.12 Sum of Independent Random Variables: The

Central Limit Theorem

Recall: The pdf of the sum of two independent r.v.’s is the convolution of their
respective pdf’s...

=⇒ Carrying this on to four r.v.’s by defining

Z1 = X1 + X2 and Z2 = X3 + X4

=⇒ Then, fZ1 = fX1 ∗ fX2 and fZ2 = fX3 ∗ fX4

=⇒ The pdf of four independent r.v.’s can be found by convolving the fZ1 and fZ2 :

Z = Z1 + Z2 = X1 + X2 + X3 + X4

fZ = fZ1 ∗ fZ2 = fX1 ∗ fX2 ∗ fX3 ∗ fX4

=⇒ Can be continued to more than four r.v.’s...

Note: The pdf of the sum resembles a Gaussian pdf relatively closely!!!!!

Example 4.22

Suppose all four independent r.v.’s have the same pdf as follows:

fXi
(xi) =





1, |xi| ≤ 1
2

0, otherwise

Find the pdf of their sum.
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Solution:

The convolution by pairs gives the pdf’s:

fZi
(zi) =





1− |zi|, |zi| ≤ 1
i = 1, 2

0, otherwise

Convolution of Z1 and Z2 for z ≥ 0 gives 12:

fZ(z) =





(1− z)− 1
3
(1− z)3 + 1

6
z3, 0 ≤ z ≤ 1

1
6
(2− z)3, 1 ≤ z ≤ 2

(a) The mean and variance of Z are 0 and 4
12

= 1
3
. (assignment)

(b) Camparison of fZ(z) to the pdf of a Gaussian r.v. w/ mean 0, and variance
1
3
. (figure 4-11)

Figure 4.11: Camparison b/w pdf’s of the sum of four independent r.v’s and the
Gaussian r.v. w/ same mean and variance.

12Since the pdf is even, we can use fZ(−z) = fZ(z) for z < 0.
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Central Limit Theorem

Let X1, X2, X3, · · · , XN be independent r.v.’s with means m1,m2,m3, · · · ,mN and
standard deviations σ1, σ2, σ3, · · · , σN respectively. Then

Z =
1√
N

N∑

i=1

Xi −mi

σi

approaches a Gaussian r.v. w/ zero mean and unit variance as N becomes large,
provided that:

lim
N→∞

σi

σ
= 0

Remark:

1. The above condition ensures that no one r.v. in the sum dominates.

2. The pdf of the component r.v. need not be of any specific type.

3. The pdf of the component r.v. need not all be identical.

Example 4.23 Self study

113



4.13 Weak Law of Large Numbers

Weak law of large numbers:

The probability of the average of n independent values of a r.v. X differing from their
means µX = E[X] by more than an arbitrary ε > 0 goes to zero as n →∞ 13, i.e.

lim
n→∞P

[∣∣∣∣∣
1

n

n∑

i=1

Xi − E(X)

∣∣∣∣∣ ≥ ε

]
= 0, ε > 0

proof:

Consider the Chebyshev’s inequality, which is rewritten below 14:

P (|X − µX | ≥ ε) ≤ σ2
X

ε2

Applying the inequality to the average Sn of n independent r.v.’s:

Sn = (1/n)
n∑

i=1

Xi

we obtain:

P (|Sn − E(Sn)| ≥ ε) ≤ σ2
Sn

ε2

Assignment:

1. The mean of Sn is E(Sn) = µX

2. The variance of Sn is σ2
X

Therefore, the above Chebyshev’s inequality becomes:

P (|Sn − µX | ≥ ε) ≤ σ2
X

nε2

As n →∞ w/ σX and ε fixed, the RHS goes to zero.....

q.e.d.

Example 4.24 Self study

13This means that the sample mean approaches to the actual(or mathematical) average, as the
number of samples becomes large...

14We obtain this Chebyshev’s inequality by letting kσX = ε in the original inequality.
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4.14 Extension to More Than Two Random Vari-

ables

Remark: All the definitions given in this chapter regarding joint r.v.’s can be ex-
tended directly from two to N > 2 r.v.’s.

Let X1, X2, X3, · · · , XN be N r.v.’s, then:

(1) The joint cdf:

FN(x1, x2, · · · , xN) = P (X1 ≤ x1, X2 ≤ x2, · · · , XN ≤ xN)

(2) The joint pdf:

fN(x1, x2, · · · , xN) =
∂N

∂x1∂x2 · · · ∂xN

FN(x1, x2, · · · , xN)

(3) The marginal pdf:

fN−1(x1, · · · , xm−1, xm+1, · · · , xN) =
∫ ∞

xm=−∞
fN(x1, x2, · · · , xN)dxm

(4) The conditional pdf:

fN(x1, x2, · · · , xj|xj+1, · · · , xN) =
fN(x1, x2, · · · , xN)

fN−j(xj+1, · · · , xN)

(5) The mathematical expectation of a function of r.v.’s:

E[g(X1, X2, · · · , XN)]

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
g(X1, X2, · · · , XN)fN(x1, x2, · · · , xN)dx1dx2 · · · dxN
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FACT:

It is generally difficult to find explicit expressions for joint cdf’s and pdf’s, except for
one case ehich is the N fold jointly Gaussian pdf below:

fX(x) = |C|−1/2(2π)−N/2 exp
[
1

2
(x−m)tC−1(x−m)

]

where the subscript t denotes the transpose, and x and m are column matrices defined
as:

x =




x1

x2
...

xN




and m =




m1

m2
...

mN




The matrix C is the covariance matrix w/ elements of:

Cij = E[(Xi −mi)(Xj −mj)], i, j = 1, 2, · · · , N
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