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Chapter 5

ELEMENTARY STATISTICS,
EMPIRICAL PROBABILITY
DISTRIBUTIONS, AND MORE
ON SIMULATION

5.1 Connecting Probability with Observations of

Data

Scope of the chapter

In chapter2 to chapter4: axioms of probability, various probability relationships

=⇒ world of mathematical models

=⇒ we now deal with problems of real world

=⇒ 3: sample mean, variance, standard deviation, empirical distribution of random
data etc..

=⇒ realm of statistics

Remark:

1. We will also consider estimation theory, and decision making based on proba-
bilistic concepts in later chapters.

2. Computer simulation of random phenomena will be revisited as well.
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5.2 Sample Mean and Sample Variance

Suppose we take a sample of manufactured items {x1, x2, . . . , xn}, e.g. resistors:

1. population: totality of items {x1, x2, . . . , xn}
2. sample: individual xi’s

Simple Statistics (of interest)

Definition 5.1 Sample mean:
The sample mean of a population is simply the arithmetic average of all the sample
values, i.e.

x =
1

n

n∑

i=1

xi

Remarks:

1. Notice that the sample mean x is a r.v., dependeing on the sample values selected
from the population.

2. Hope that it is close to the actual mean: to be discussed later.....
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Definition 5.2 Sample variance:
The sample variance of a population is defined in a similar manner as the variance
of a random variable discussed in chapter 2, i.e. 1

s2
x =

1

n− 1

n∑

i=1

(xi − x)2

where x is the sample mean defined above.

Remarks:

1. Notice that s2
x is a random variable as sample mean x is a r.v.

2. It represents the measure of the spread of population around the sample mean

3. The square root of sample variance is called the standard deviation:

sx =

√√√√ 1

n− 1

n∑

i=1

(xi − x)2

Example 5.1

Find the sample mean of the following resistance values in Ω; 900, 1013, 939,
1062, 1017, 996, 970, 1079, 1065, and 1049.

Solution:

Applying the definition of the sample mean above, we easily get:

x = 1009 Ω

Example 5.2

Obtain the sample standard deviation of the resistance samples given in the
above example.

Solution:

Using thye definition od sample standard deviation, we obtain:

sx = 58.7Ω

1The reason for division by n− 1 rather than n will bcome apparent in subsequent chapter when
we consider estimation. Note, for a moment, that as n becomes large, the difference is small.
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Note: As the # n of population gets large, computaions involved in the sample
variance becomes tedious, due to the substraction procedure... 2

Computationally efficient way of obtaining s2
x:

Expanding the RHS of the sample variamce, we get

s2
x =

1

n− 1

n∑

i=1

(x2
i − 2xxi + x2

=
1

n− 1

(
n∑

i=1

x2
i − 2x

n∑

i=1

xi + nx2

)

applying the definition of the sample mean above:

s2
x =

1

n− 1




n∑

i=1

x2
i −

2

n

(
n∑

i=1

xi

)2

+
1

n

(
n∑

i=1

xi

)2



=
1

n− 1




n∑

i=1

x2
i −

1

n

(
n∑

i=1

xi

)2



=
n

∑n
i=1 x2

i − (
∑n

i=1 xi)
2

n(n− 1)

Remark: We only need the sums of the sample mean and the squares of the sample
mean, without the tedious step of substraction...

Example 5.3

Redo the example 5-2 following the procedure mentioned above.

Solution:

We get:
∑n

i=1 x2
i = 10, 211, 806,

∑n
i=1 xi = 10, 090, and thus obtain s2

x = 3, 444
and sx = 58.7Ω, which is the same result obtained previously.

2First, you calculate the sample mean, and then substract it from each sample before squaring
and summing again.
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Example 5.4

The residuals are defined as:
di = xi − x

Show that the sum of all rsiduals is equal to zero.

Solution:

From the definition of the sample mean, we have:

n∑

i=1

xi − nx = 0

or
n∑

i=1

(xi − x) = 0

which means
n∑

i=1

di = 0
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5.3 Regression Techniques

Suppose we are given measurements of a pair of data

=⇒ ∃ some relationship b/w the data 3

=⇒ matching the data relation to a simple straight line...

Objective:

Given the measurements of data pairs, {(xi, yi), i = 1, 2, . . . , n}, find a straight line
which is best fit to the data:

y = αx + β

Criterion:

Choose the constants α and β 3: the straight line fit to the data is taken in the sense
of minimum squared error:

(αo, βo) = argmin
(α,β)

ε

where subscript “o” stands for optimum, and the ε is the average squared error defined
as follows:

ε =
1

n− 1

n∑

i=1

(yi − αxi − β)2

3Precise determination of the relationship is not possible due to measurement errors...
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Procedure:(regression technique)

To find (αo, βo) making ε as small as possible, we differentite ε w.r.t. α and β, and
put to zero:

∂ε

∂α
= − 2

n− 1

n∑

i=1

(yi − αoxi − βo)xi = 0

∂ε

∂β
= − 2

n− 1

n∑

i=1

(yi − αoxi − βo) = 0

We can re-arrange the above equations into the followings:

(
n∑

i=1

x2
i

)
αo +

(
n∑

i=1

xi

)
βo =

n∑

i=1

xiyi

(
n∑

i=1

xi

)
αo + nβo =

n∑

i=1

yi

=⇒ Solving for (αo, βo) yields:

αo =

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

yi

n(n− 1)s2
x

βo = y − αox

where s2
x represents the sample variance of the x values.
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For further simplification, define the sample covariance cxy and the sample correlation
coefficient rxy respectively as:

cxy =
1

n− 1

n∑

i=1

(xi − x)(yi − y) and rxy =
cxy

sxsy

where sx and sy represent the sample standard deviation of the data sets {xi} and
{yi}, respectively.

By expanding the product in cxy, we have:

cxy =

n
n∑

i=1

xiyi −
n∑

i=1

xi

n∑

i=1

yi

n(n− 1)

And the constant αo can simply be expressed as:

αo =
cxy

s2
x

=⇒ The regression line which is best fit to the data becomes:

y = αox + βo =
cxy

s2
x

x + y − cxy

s2
x

x

=⇒ The regression line can be arranged into:

y − y =
cxy

s2
x

(x− x)

=⇒ Or, the regression line can be expressed as follows: 4

y − y

sy

= rxy
x− x

sx

4Note that this is a somewaht easier expression to remember...
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Remarks:

1. If rxy = 0 the regression line vanishes, and the data set are called uncorrelated.

2. If rxy = ±1, the data are linearly related as follows:

3. The goodness of the fit is determined by the squared error ε: even though it has
been minimized, the regression line might still not well fit to data, especially
when the correlation b/w/ data is small.

yi = mxi + b

Assignment: Prove the followings:

(a) If the data sets are linealy related, rxy = ±1.

(b) The magnitude of rxy is no greater than 1, i.e., −1 ≤ rxy ≤ 1.

Example 5.5

Find the correaltion coefficient and the regression line for the following data
set:

xi 0.68 0.72 1.27 2.01 2.63 3,06 3.15 4.00 4.03 4.50
yi 12.45 9.93 6.64 10.14 8.93 13.34 11.56 16.72 19.62 15.03

Solution:

From the data set, we can get: rxy = 0.71, x = 2.6, y = 12.44, and sx = 1.39,
sy = 3.88. Thus, the regression line becomes:

y − 12.44

3.88
= 0.71

x− 2.6

1.39

which is in Figure5-1.
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Figure 5.1: Data pairs and regression line for the random data set of Example5-5.
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5.4 Empirical Distribution Functions

Consider a r.v. X with distribution function FX(x), which is unknown. 5 We define
the empirical cumulative distribution function 6 as follows:

Definition 5.3 Empirical Distribution Function:
We have a number of independent samples of a r.v. X, denoted {xi, i = 1, 2, · · · , n}.
Then the empirical distribution function of X is defined as:

F̃X(x|x1, x2, · · · , xn) =
number of samples x1, x2, · · · , xn no greater than x

n

Example 5.6

Obtain the empirical distribution of the resistance samples given in Example5-1.

Solution:

Arranging the samples in ascending order, which are 900, 939, 970, 996, 1013,
1017, 1049, 1062, 1065 and 1079, the empirical distribution can easily be ob-
tained via the above definition. The result is plotted in Figure5-1.

Figure 5.2: The empirical distribution function for resistance samples in Example5-1.

5In chapter 3 when we theoretically discussed r.v.’s, we assumed a certain type of distribution
functions such as Gaussian, exponential etc., even though are are not absolutely sure of it...

6Or simply empirical distribution.
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Note:

1. The empirical distribution function has the same properties of a cdf. (check!)

2. The empirical probability mass function, which vorresponds to the pdf, can
easily be obtaind from the distribution funcrion. (how?)

Simplified way of computing empirical distribution:

When the # of datum is large, we follow the following steps:

(1) We divide the data range into a convenient # of intervals of equal length.

(2) WE plot a histogram counting the number of data within each cell(or interval).

(3) The # of data within each cell is cumulatively summed to get empirical distri-
bution.

Example 5.7

The intervals b/w telephone calls arriving at a certain switching office are
recorded in minutes, which are: 0.026, 0.977, 0.05, 0.183, 0.597, 0.426, 1.327,
0.017, 0.191, 0.938, 0.065, 0.098, 0.271, 0.827, 0.863, 0.101, 0.372, 0.93, 0.343,
0.156, 0.451, 0.637, 0.282, 0.191, 0.14, 0.163, 0.372, 1.048, 0.5, 0.09, 1.675,
0.33, 0.206, 0.426, 1.128, 0.026, 0.041, 0.299, 0.531, 0.376, 0.49, 0.083, 0.575,
0.393, 0.651, 0.009, 0.606, 0.151, 0.283 and 0.815. Find the histogram and the
empirical cdf of these time intervals.

Solution:

Following the steps described above, the result are plotted in Figure5-3. Note
that the histogram appears to be roughly exponentially decreasing...
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Figure 5.3: Empirical distributions for Example5-7: (a) histogram; (b) empirical cdf.

Remarks:

1. Recall the definition of the pdf in chapter 3:

fX(x)∆x = P (x < X ≤ x + ∆x)

' number of data values in (x, x + ∆x)

total number of data values
, ∆x ¿ 1

Based on this, we can figure out that the histogram obtained in above example
does not match the pdf for two reasons:

(a) The histogram is not normalized by the total # of data.

(b) As is obvious in the above equation,, i.e. to get an approximation to the
pdf, we must divide through by ∆x

With these two corrections, replotted hitogram is in Figure5-4, along with the
plot of the following function:

f̃X(x) = 2e−2xu(x)

(cf) The agreement is surprisingly good 7...

7The data values in Example5-7 have been generated via a random number generator producing
exponentilly distributed random variables.

129



Figure 5.4: Normalized histogram to approximate the theoretical pdf.

2. Notice that there ∃ a trade-off b/w # of bins versus the apprearance of the
histogram:

(a) Too many bins, due to too few samples per bin, causes statistical irregu-
larity, and thus make the histogram ragged-looking.

(b) Too few bins causes a low resolution on the abscissa of the histogram.

(cf) Usually rely on trial and error process to select the suitable # of bins8

8Especially in the case of relatively few data samples, as in the case of these examples.....
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5.5 More on Monte Carlo Simulation

Monte Carlo Simulation

Complex computer simulations of systems undergoing random purturbations, using
random number generator...

Example 5.8

Consider an RC circuit with random resistance and capacitance 9, of which the
3-dB cutoff frequency of an RC filter is defined as:

f3 =
1

2πRC

Analyze the possible values of f3.

Solution:

Suppose the nominal value of R is 1000(Ω) w/ ±10% tolerance, i.e. R ∼
U [900, 1100], whereas the capacitance has a nominal value of 1(µF ) w/ ±5%
tolerance, i.e. C ∼ U [0.95, 1.05].

(1) Conventional method:

Without any computer simulations, all we can deduce from the given data
are the nominal value, maximum value, and the minimum value of f3, i.e.:

(i) nominal f3:

f3, nom =
1

2π × 103 × 10−6
=

500

π
≈ 159(Hz)

9This is due to the uncertain manufacturing process...
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(ii) maximum f3:

f3, max =
1

2π × 900× 0.95× 10−6
≈ 186(Hz)

(i) minimum f3:

f3, min =
1

2π × 1100× 1.05× 10−6
≈ 137(Hz)

Therefore, all we can say about f3 is that it would have values of somewhere
in between 127(Hz) and 186(Hz), with its nominal value of 159(Hz).

(2) Monte Carlo simulation:

We generate, say, 5000 values of R and C which are uniformly distributed
within their allowed range about the nominal values, and compute f3 for
each pair of R and C (usually using high level programming languages
3: C++, FORTRAN etc., or utilizing mathematics package 3: MATLAB),
and then plot the histogram of the cutoff frequency... (figure5-5)

Figure 5.5: Histograms for (a) resistance, (b) capacitance, and (c) cutoff frequency.
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Table5.1 MATLAB program for generating histogram.

With this method, we can generate a histogram for f3 to determine the
influence of component variation on cutoff frequency

=⇒ This gives more information that the above conventional method 10

=⇒ (e.g.) estimate of the most likely value of f3 at which the histogram

is its peak.

Additional use of data from MC simulations:

(a) If the RC circuit is part of a larger system, we can find the maximum
or minimum values of the cutoff frequencey, and carry out a worst-case
design 11.

(b) Find the approximate probability that f3 lies in a specified region 12,
for example, from figure5-5(c):

P (140 ≤ f3 ≤ 150) ≈ 900

5000
= 0.18

whereas

P (150 ≤ f3 ≤ 160) ≈ 1600

5000
= 0.32

(c) Design a more suitable system, in this case, the only apparent solution
to provide a more precise circuit is to tighten the tolerances on R and
C.

10We call this conventional method a extreme value analysis.
11This is the case with more complex functional relationships or probabilitic models for the com-

ponent values... Note that, in a simple model as in the above example, we can easily figure out the
extreme values w/o MC simulation.

12Note that, for this purpose, the empirical cdf would be more accurate...
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5.6 Statistical Process Control

In a manufacturing process, there ∃ several steps that take place

♠ Monitor and determine when things have gone worng...

♠ Close down the process and look for the offending steps

: Control Chart

Illustration

Suppose we are manufacturing transistors, the gain of which is of our concern

=⇒ measure the gain, devide the emasurements into lots

=⇒ compute the sample mean of each lot: mi, i = 1, 2, . . . , N

=⇒ compute the sample mean of the sample means13 : m

=⇒ set the upper and lower limits as ±3 sample std of the mi’s from m

=⇒ check if any mi falls outside the control limit.....

=⇒ decide whether the manufacturing process has a problem or not

13i.e. sample mean of entire samples!
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Example 5.9

In a transistor manufacturing process, for 25 lots of size 5, the sample means of
the current gains are measured and plotted in figure5-6 by the ×’s. The sample
mean of the entire 5×25 = 125 transistor gains is 98.8, and the sample standard
deviation of the lot’s sample mean is 6.95. We, then, set the upper and lower
control limits as:

UCL = 98.81 + 3× 6.95 = 119.65

LCL = 98.81− 3× 6.95 = 77.96

Solution:

The corresponding control chart, i.e. the sample means of the 25 lots along w/
the UCL and LCL, is in figure 5-6.

Note that for this particular process, we are well within the contol limits. 14

The MATLAB program producing the control chart is in Table5-2.

Figure 5.6: Control chart for transistor gains: 25 lots of 5 transistor each.

Table5.1 MATLAB program for generating histogram.

14If the sample mean of any lot exceeds or goes below the UCL or LCL, respectively, the process
is said to be out of control, and we seek for the cause of the excursion, and correct it!
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5.7 Convergence of the Sample Mean to the Mean

Recall: The sample mean x of a population, given below, is an estimate of the true
mean µX :

x =
1

n

n∑

i=1

xi (r.v.)

Question: How good this estimate is?

Answer: We get a bound by applying the Chebyshev’s inequality 15...

P (|X − µX | ≥ kσX) ≤ 1

k2

To apply the Chebyshev’s inequality, we need the (1) mean and (2) variance of the
sample mean x:

(1) mean16:

E(x) = µX

15We replace X with x.
16This is shown in problem 4-24a.
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(2) variance:

Var(x) = E{[x− E(x)]2}

=




(
1

n

n∑

i=1

Xi − 1

n

n∑

i=1

µX

)2



=





1

n2

[
n∑

i=1

(Xi − µX)

]2




=
1

n2
E




n∑

i=1

n∑

j=1

(Xi − µX)(Xj − µX)




=
1

n2





n∑

i=1

n∑

j=1

E[(Xi − µX)(Xj − µX)]





=
1

n2

n∑

i=1

E[(Xi − µX)2]

=
1

n2

n∑

i=1

Var(Xi) =
Var(Xi)

n

=
σ2

X

n

where σ2
X is the variance of each sample from the population.

Thus, the Chebyshev’s inequality 17 becomes:

P

(∣∣∣∣∣
1

n

n∑

i=1

xi − µX

∣∣∣∣∣ ≥
kσX√

n

)
≤ 1

k2

17Unfortunately, it is usually true that we also do not know the variance σ2
X of the samples, so we

cannot apply this Chebyshev’s inequality in real estimation problems. We will discuss this subject
in Chapter 6 again.
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Example 5.10

Samples drawn from a population are known to have standard deviation of 2.
We want the probability that the absolute value of the difference b/w their
sample mean and the true mean is greater than 0.5 to be less than 1%.

How many samples should be drawn 18?

Solution:

From the Chebyshev’s inequality, we want:

1

k2
= 0.01 or k2 = 100 or k = 10

and

kσX√
n

=
10× 2√

n
= 0.5 or

√
n =

10× 2

0.5
= 40 or n = 1600

Note that this is a fairly large # of samples.

Remark: If we know something about the distribution of the sample mean x,
the required number of samples can be reduced.....

Recall19 the central limit theorem which says that the sample mean is approx-
imately Gaussian for a large number of samples, and then the LHS of Cheby-
shev’s inequality becomes:

2
∫ ∞

kσX/
√

n

e−ν2/(2σ2
X/n)

√
2πσ2

X/n
dν = 2Q(k) = 0.01

where the substitution u = n1/2ν/σX has been used in the integrand to get the
Q-function expression.

Using the table of Q-function, we find that k = 2.57, and since k must be an
integer, we round it up to 3. Therefore, we have:

kσX√
n

= 0.5 or
3× 2√

n
= 0.5 or

√
n =

3× 2

0.5
= 12 or n = 144

Notice that the # of samples is considerably lass than the previous case.....

18So that the sample mean x, as an estimate of the true mean, maintains the precision given in
the problem...

19In Chapter 4.
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