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Chapter 9

INTRODUCTION TO RANDOM
PROCESSES

9.1 Introduction

Recall: A r.v. is a function mapping each point in S to a point in R1.

=⇒ A random process is a function mapping each point in S to a function of time.

(e.g.)

1. A random variable: X(ζ)

2. A random process: X(t, ζ)

Figure: Illustration of the concept of a r.p..
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Remark:

1. For a given ζ = ζ1, we get a specific time function: called a sample function

X(t, ζ1)
d
= x1(t)

2. For a fixed time t = t1 from an index set I, we get a random variable: X(t1, ζ)
d
=

X1

3. If both t and ζ are fixed, we get a constant: X(t1, ζ1) = constant

4. The totality of the sample function is called the ensemble

5. We usually denote the r.p. as X(t) WLOG

Definition 9.1 Random Process:
A r.p. is a family of random variables: {X1, X2, X3, · · ·}

Category of r.p.: X(t, ζ)

(1) Discrete random sequence: t and X are both discrete

(2) Continuous random sequence: t is discrete and X is continuous

(3) Continuous random process: t and X are continuous

(4) Discrete random process: t is continuous and X is discrete

(cf) Mostly, we deal w/ type (3) and (4), i.e. continuous random process and discrete
random process.....
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9.2 Examples of Random Processes

Example 9.1 Discrete random sequence: discrete-time/discrete-valued

Let I = {0, 1, 2, . . .}, and at each tk ∈ I a fair coin is flipped. If a head comes
up, amplitude value of 1 is assigned, whereas amplitude -1 is assigned if a tail
is obtained. (figure 9-1)

Figure 9.1: A discrete random sequence.(sample functions)

Example 9.2 Continuous random sequence: discrete-time/continuous-valued

A r.p described by the following recurrence relationship:

Xk+1 = Xk + ek, k = 0, 1, 2, · · ·
where {e0, e1, · · ·} is a sequence of mutually independent r.v.’s.

Sample functions are shown in figure 9-2 for the case of ek ∼ U [−1, 1].

Figure 9.2: A continuous random sequence.(sample functions)
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Example 9.3 Continuous random process: continuous-time/continuous-valued

A family of waveforms expressed as:

X(t, Θ) = A cos(ω0t + Θ)

where A and ω0 are constants, Θ is a r.v..

Sample functions are shown in figure 9-3 for the case of Θ ∼ U [0, 2π].

(cf) Although the sample functions look deterministic, it is a r.p. since the
phase is random: observe the ensemble for a fixed t.

Figure 9.3: A continuous random process.(sample functions)

Example 9.4 Discrete random process: continuous-time/discrete-valued

An example of the discrete r.p. can be obtained by hard limiting the X(t, Θ) in
example 9-3 by setting the amplitude to 1 if greater than zero, and to -1 if not.
(Sample functions are shown in figure 9-4 for this case.)

Figure 9.4: A discrete random process.(sample functions)
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9.3 Statistical Descriptions of Random Processes

9.3.1 Probability Density Functions

Definition 9.2 The first order p.d.f. at a given time t1:
The first order pdf fX(x, t1) of a r.p. X(t) at time t = t1 is defined as the pdf of the

r.v. X(t1)
∆
= X1 of which interpretation is as follows:

fX(x, t)dx = P [x < X(t) ≤ x + dx at time t]

Definition 9.3 The joint p.d.f. at two time instances t1 and t2:
The joint pdf fX1X2(x1, t1; x2, t2) of a r.p. X(t) at times t = t1 and t = t2 is defined

as the joint pdf of two r.v.’s X(t1)
∆
= X1 and X(t2)

∆
= X2 of which interpretation is

as follows:

fX1,X2(x1, t1; x1, t2)dx1dx2 = P [x1 < X(t1) ≤ x1 + dx1 and x2 < X(t2) ≤ x2 + dx2]

...

...

...

=⇒ A complete statistical description of a r.p. requires the joint pdf at N arbitrary
time instants...

=⇒ Needs tremendous amount od data (except fo special case 3: Gaussian r.p.)

=⇒ Often we settle for less, in the way of statistical description (e.g. certain averages)
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9.3.2 Ensemble Averages

The averages for a r.p. are obtained by the pdf’s discussed just before.....

Definition 9.4 The first order average of X(t):
The first order averages are obtained using the first order pdf. Let g[X(t)] be some
function of the r.p. X(t), then the average of it is defined as:

E{g[X(t)]} =
∫ ∞

−∞
g(x)fX(x, t)dx

(cf) Note that E{g[X(t)]}, in general, is a function of time t...

Examples 1

(1) Mean of a r.p.: E{X(t)}

(2) Mean square of a r.p.: E{X2(t)}

Extending the idea to two time instances, we have:

Definition 9.5 The second order average of X(t):
The 2nd order averages are obtained using the second order pdf.

E{h[X(t1), X(t2)]} =
∫ ∞

−∞

∫ ∞

−∞
h(x1, x2)fX1,X2(x1, t1; x2, t2)dx1dx2

where h(·, ·) is a function of two variables.

(cf) Note that E{h[X(t1), X(t2)]}, in general, is a function of both t1 and t2...

1Each can be calculated by: E{X(t)} =
∫∞
−∞ xfX(x, t)dx and E{X2(t)} =

∫∞
−∞ x2fX(x, t)dx,

respectively.
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Autocorrelation function of a r.p. 2

An important two-time average is the autocorrelation function, which is obtained by
letting h[X(t1), X(t2)] = X(t1)X(t2), so that:

RX(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
x1x2fX1,X2(x1, t1; x2, t2)dx1dx2

Note:

(1) The autocorrelation function of a r.p. X(t) at times t1 and t2 is the autocorre-
lation of two r.v.’s X(t1) = X1 and X(t2) = X2

(2) Likewise, the autocovariance is the covariance of the r.v.’s X(t1) = X1 and
X(t2) = X2

Example 9.5

For the following r.p., find the statistical average mean and autocorrelation
function.

X(t, Θ) = A cos(ω0t + Θ)

where A and ω0 are constants, Θ is a r.v. 3: Θ ∼ U [0, 2π].

Solution:

Using the concept of the average of a function of a r.v., we have:

E[X(t; θ)] = E[g(θ)] = E[A cos(ω0t + Θ)] =
∫ 2π

0
A cos(ω0t + θ)

dθ

2π
= 0

2This is called the ensemble-average autocorrelation function, compared to the time-average
autocorrelation function to be discussed shortly...
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Similarly, the autocorrelation function w/ t1 = t and t2 = t + τ is as follows:

RX(t, t + τ) = E[X(t)X(t + τ)]

= E{A cos(ω0t + Θ)A cos[ω0(t + τ) + Θ]}

=
∫ 2π

0
A cos(ω0t + θ)A cos[ω0(t + τ) + θ]

dθ

2π

=
A2

2

∫ 2π

0
[cos(ω0τ) + cos(2ω0t + ω0τ + 2θ)]

dθ

2π

=
A2

2

[∫ 2π

0
cos(ω0τ)

dθ

2π
+

∫ 2π

0
cos(2ω0t + ω0τ + 2θ)

dθ

2π

]

=
A2

2
cos(ω0τ)

= RX(τ)

Remark:

(1) Notice that the autocorrelation function depends only on τ = t2 − t1.

(2) The mean squared value is E[X2(t)] = RX(0) = A2/2.

9.3.3 Strictly Stationary Random Processes

Definition 9.6 Strict Sense Stationarity(sss):
A r.p. X(t) is called strict sense stationary if it satisfies:

fX(x1, x2, · · · , xN ; t1, t2, · · · , tN) = fX(x1, x2, · · · , xN ; t2 − t1, t3 − t1, · · · , tN − t1)

Note:

(1) The time we pick for the origin makes no difference

(2) The 1st order pdf is independent of time, i.e. fX(x; t) = fX(x; t + ∆) ∀ ∆.

(3) The mean and the mean square are independent of time.

(4) The autocorrelation function depends only on the time difference τ = t2 − t1,

i.e. RX(t1, t2) = RX(t2 − t1)
∆
= RX(τ).

(5) Higher order time averages will be functions of the time difference as well.
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9.3.4 Wide-Sense-Stationary Random Processes

Definition 9.7 Wide Sense Stationarity(wss):
A r.p. X(t) is called wide sense stationary if it satisfies the following two conditions:

E [X(t)] = constant

RX(t1, t2) = RX(τ) where τ = t2 − t1

Note:

(1) Higher order ensemble averages may not be functions of time differences, com-
pared to sss case.

(2) If a r.p. is sss, then it is wss, BUT not vice versa. 3

(3) The X(t) in example 9-5 is WSS. (why?)

9.3.5 Time Averages

For a stationary r.p., we can find averages over time, such that:

1. Time average mean:

〈X(t)〉 = lim
T→∞

1

2T

∫ T

−T
X(t)dt

2. Time average mean square value:

〈
X2(t)

〉
= lim

T→∞
1

2T

∫ T

−T
[X(t)]2dt

3. Time average autocorrelation function:

RX(τ) = 〈X(t)X(t + τ)〉 = lim
T→∞

1

2T

∫ T

−T
X(t)X(t + τ)dt

Remark: Since the average is over time, the r.p. must be stationary.

3An exception is the case of a Gaussian r.p., where wss Gaussian r.p. is also sss.
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9.3.6 Ergodic Processes

Definition 9.8 Ergodic Random Process 4:
A r.p. X(t) is called ergodic if all statistical averages are equal to the their time
average equivalents.

Example 9.6

Consider a r.p. defined by:

X(t) = A, −∞ < t < ∞

where A is a r.v..

Determine whether X(t) is an ergodic r.p. or not.

Solution:

The ensemble average of X(t) is:

E [X(t)] = E [A] = mA = constant

The time average, on the other hand, is:

〈X(t)〉 = lim
T→∞

1

2T

∫ T

−T
Adt = lim

T→∞
1

2T
A(2T ) = A = r.v.

Therefore, the r.p. is NOT ergodic.

Note:
Notice that for a r.p. X(t) to be ergodic, time averages should have a zero variance,
i.e. should be constants, which means that each sample function must represents the
whole r.p.!!!

4The ergodicity of a r.p. sometimes must be assumed like it or not, since the time averages are
what we can implement practically.....
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Example 9.7

For the following r.p., find the time average mean and autocorrelation function.

X(t, Θ) = A cos(ω0t + Θ)

where A and ω0 are constants, Θ is a r.v. 3: Θ ∼ U [0, 2π].

Solution:

The time average mean is:

〈X(t)〉 = lim
T→∞

1

2T

∫ T

−T
A cos(ω0t + Θ)dt = 0 (why?)

Similarly, the time average autocorrelation function is given as:

RX(τ) = 〈X(t)X(t + τ)〉

= lim
T→∞

1

2T

∫ T

−T
A cos(ω0t + θ)A cos[ω0(t + τ) + θ]dt

=
A2

2
lim

T→∞
1

2T

∫ T

−T
[cos(ω0τ) + cos(2ω0t + ω0τ + 2θ)]dt

=
A2

2
lim

T→∞
1

2T

{∫ T

−T
cos(ω0τ)dt +

∫ T

−T
cos(2ω0t + ω0τ + 2θ)dt

}

=
A2

2
cos(ω0τ)

Note:

(1) Notice that time and ensemble mean & autocorrelation functions are same.

(2) Is this r.p. then ergodic? We cannot say for sure 5...

(3) The r.p.’s like this is called ergodic in the wide sense, where the time and
ensemble averages are equal up to and including second order(i.e. the mean,
variance, and autocorrelation function).

5Because it is necessary for all possible statistical averages to be equal to the corresponding time
averages for a r.p. to be ergodic!
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9.4 Autocorrelation Function Properties

One of the most important two-time average for a r.p. is the autocorrelation function
defined by:

RX(t1, t2) = E [X(t1)X(t2)]

=
∫ ∞

−∞

∫ ∞

−∞
x1x2fX1,X2(x1, t1; x2, t2)dx1dx2

FACT: The autocorrelation function for a stationary r.p. depends only on difference
of the two time instants, t1 and t2, at which the joint average is taken, i.e.:

RX(t1, t2) = RX(t2 − t1)
∆
= RX(τ)

In addition to this.....

Properties of RX(τ) for a stationary r.p. X(t)

1. The autocorrelation is maximum at the origin, i.e.:

|RX(τ)| ≤ RX(0)

2. The autocorrelation is an even function, i.e.:

RX(−τ) = RX(τ)

3. If X(t) is ergodic, the mean square of X(t) is the limiting value of the autocor-
relation at infinity if it exists, i.e.

lim
τ→∞RX(τ) = {E[X(t)]}2

4. The autocorrelation of a periodic r.p. is also periodic w/ the same period, i.e.
if X(t + T ) = X(t) then:

RX(τ) = RX(τ + T )
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5. The Fourier transform of the autocorrelation, referred to as power spectral den-
sity 6, is real and non-negative, i.e.:

SX(f)
∆
= F {RX(τ)} ≥ 0

(cf) If, in addition, X(t) is ergodic, the average power of the r.p. can be
evaluated by either the time-autocorrealtion or the ensemble autocorrelation at
τ = 0:

RX(0) = lim
T→∞

1

2T

∫ T

−T
X2(t)dt =

〈
X2(t)

〉 (by ergodicity)
= E[X2(t)] = RX(0)

Sketch of Proof:

1. Consider the following non-negative quantity,

[X(t)±X(t + τ)]2 ≥ 0

Developing the LHS, we have:

X2(t)± 2X(t)X(t + τ) + X2(t + τ) ≥ 0

Taking the mathematical expectation term by term, we get

E[X2(t)]± 2E[X(t)X(t + τ)] + E[X2(t + τ)] ≥ 0

Since the r.p. X(t) is assumed to be stationary, it can be expressed as:

RX(0)± 2RX(τ) + RX(0) ≥ 0

Rearranging the inequality, we obtain

−RX(0) ≤ RX(τ) ≤ RX(0)

which is the property 1.

6This is called the Wiener-Kinchine theorem.
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2. This can be proved via the change of variable as t
′
= t + τ in the definition of

the statistical autocorrelation function as:

RX(τ) = E[X(t)X(t + τ)] = E[X(t
′ − τ)X(t

′
)] = E[X(t

′
)X(t

′ − τ)]
∆
= RX(−τ)

3. We justify this heuristically by noting that as |τ | → ∞, the r.v.’s X(t) and
X(t + τ) become statistically independent if the process is not periodic, hence:

lim
τ→∞E[X(t)X(t + τ)] = E[X(t)]E[X(t + τ)] = {E[X(t)]}2

4. Suppose X(t) = X(t + T ), then:

RX(τ + T )
∆
= E [X(t)X(t + τ + T )] = E [X(t)X(t + τ)]

∆
= RX(τ)

which means that RX(τ) is also periodic w/ period T .

5. self study

(cf) The power spectral denisty(PSD) SX(f) represents the denisty of power in the
r.p. with frequency, and when integrated over all frequency, we obtain the total
average power of the process; for instance, consider the r.p. discussed in example 9-3,
i.e., X(t) = A cos(ω0t + Θ) where Θ ∼ U(0, 2π) of ehich the autocorrelation function
is as follows:

RX(τ) =
A2

2
cos(ω0τ)

The corresponding PSD is then:

SX(f) =
A2

4
[δ(f − f0) + δ(f + f0)]

Integrating over all f , we obtain the average power of the r.p. as:

∫ ∞

−∞
SX(f)df =

A2

4

[∫ ∞

−∞
δ(f − f0)df +

∫ ∞

−∞
δ(f + f0)df

]
=

A2

4
(1 + 1) =

A2

2
(watts)

Note that this is the same result as computed via the autocorrelation function as:

RX(0) = E[X2(t)] = A2/2 (watts)
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Example 9.8 Self Study

Example 9.9

Consider a r.p. with sample functions having the properties:

(a) The values taken on any time instant t0 is either A or −A w/ equal prob-
ability.

(b) The number k of switching instants in any interval T obeys a Poisson
distribution.

Pk =
(αT )k

k!
e−αT , k = 0, 1, 2, . . .

Find the autocorrelation function and the PSD of the r.p..

Figure 9.5: Sample function from a random telegraph wave process.

Solution:

Let τ be any positive time interval,i.e. τ > 0, then the statistical average
autocorrealtion function is given as:

RX(τ) = E[X(t)X(t + τ)]

= A2P [X(t)andX(t + τ)have same sign]

+(−A2)P [X(t)andX(t + τ)have opposite sign]

= A2P [even number of switching instants in(t, t + τ)]

−A2P [odd number of switching instants in(t, t + τ)]
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Using the Poisson distribution, the above RX(τ) can be written as:

RX(τ) = A2
∞∑

k=0,even

(ατ)k

k!
e−ατ − A2

∞∑

k=1,odd

(ατ)k

k!
e−ατ

= A2e−ατ
∞∑

k=0

(−ατ)k

k!

= A2e−ατe−ατ

= A2e−2ατ

For negative τ , we use the fact that RX(−τ) = RX(τ) and the overall autocor-
relation function can be expressed as:

RX(τ) = A2e−2α|τ |

Note:

(1) The average power of the r.p. is Ptele.wave = RX(0) = A2 (watts).

(2) The square of its mean is zero since {E[X(t)]}2 = limτ→∞ RX(τ) = 0,
which implies that the mean is zero as well.

By taking the Fourier transform of the autocorrelation function, the PSD can
be obtained as:

SX(f) =
A2/α

1 + (πf/α)2

Figure 9.6: The autocorrelation function and the PSD of a random telegraph signal
with α = 0.5.
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Recall that when integrated over all frequencies, the PSD should give the aver-
age power of the r.p., which is checked below by carrying out the integral:

P =
∫ ∞

−∞
A2/α

1 + (πf/α)2
df

= 2
∫ ∞

0

A2/α

1 + (πf/α)2
df

=
2A2

π

∫ ∞

0

du

1 + u2

=
2A2

π
tan−1 u

∣∣∣
∞
0

= A2

= Ptele.wave
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9.5 Cross-correlation and Covariance Functions

9.5.1 Joint Random Processes

It is often of interest to consider two related r.p.’s 3: X(t) and Y (t)

(e.g.) The input and the output r.p.’s of a system, such as a filter...

=⇒ We need the joint pdf of the values of each at an arbitrary number N of time
instants:

fXY (x1, t1; x2, t2; . . . ; xN , tN ; y1, t1; y2, t2; . . . ; yN , tN)

Remarks:

1. If fXY is independent of time origin, or a function of only the time differences
t2 − t1, t3 − t1, . . . , tN − t1, then the r.p. is called to be jointly stationary in
strict sense.

2. If their joint moments of second order (e.g. variances, cross-correlation defined
below as E[X(t1)Y (t2)]) are either constants or functions of time differences,
the r.p. is said to be jointly stationary in wide sense.
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9.5.2 Cross-Correlation Function

Definition 9.9 Cross-correlation Function:
Consider two wide-sense stationary r.p.’s X(t) and Y (t). Their cross-correlation
function at t1 = t and t2 = t + τ is defined as:

RXY (τ) = E[X(t1)Y (t2)] = E[X(t)Y (t + τ)]

Remarks:

1. Two r.p.’s X(t) and Y (t) are called orthogonal if their cross-correlation function
is zero:

RXY (τ) = 0 ∀ τ

2. For two statistically independent r.p.’s X(t) and Y (t), RXY (τ) can be expressed
as:

RXY (τ) = E[X(t)]E[Y (t + τ)] statistically independent r.p.’s

= E[X(t)]E[Y (t)] stationary and independent

In this case, the r.p.’s are called to be uncorrelated

3. RXY (τ) for two jointly stationary r.p.’s has the following properties:

(a) RXY (−τ) = RXY (τ)

(b) |RXY (τ)| ≤ [RX(0)RY (0)]1/2

(c) |RXY (τ)| ≤ 1
2
[RX(0+)RY (0)]

proof: assignment
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Example 9.10

Consider the following r.p. discussed in example 9-3 as an input to a filter that
simply modifies the amplitude of each sample function to B and shifts the phase
by a fixed amount φ. For the following r.p., find the time average mean and
autocorrelation function.

X(t, Θ) = A cos(ω0t + Θ)

where A and ω0 are constants, Θ is a r.v. 3: Θ ∼ U [0, 2π].

Find the input and output autocorrelation functions and the croos-correlation
function b/w the input and the output.

Figure: The input and the output r.p.’s of the given system.

Solution:

Recall that, in example 9-5, the autocorrelation of the input X(t) has been
found to be:

RX(τ) =
A2

2
cos(ω0τ)

Therefore, it is clear that the autocorrelation function of the output is

RY (τ) =
B2

2
cos(ω0τ)

The cross-correlation function is found from

RXY (τ) = E[X(t)Y (t + τ)] = E{A cos(ω0t + θ)B cos[ω0(t + τ) + θ + φ]}

=
AB

2
E{cos(ω0τ + φ)B cos[ω0(2t + τ) + 2θ + φ]}

=
AB

2
cos(ω0τ + φ)

A similar derivation shows that

RY X(τ) =
AB

2
cos(ω0τ − φ)

Check: The properties of RXY (τ) (assignment)
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Example 9.11

Find the autocorrelation function of the r.p. Z(t) defined below as the sum of
two r.p.’s.

Z(t)
∆
= X(t) + Y (t)

Solution:

The desired autocorrelation function can be written as:

RZ(τ) = E{[X(t) + Y (t)][X(t + τ) + Y (t + τ)]}

Multiplying out the two sums and taking expectation term by term, we get

RZ(τ) = E{[X(t)X(t + τ) + X(t)Y (t + τ) + Y (t)X(t + τ) + Y (t)Y (t + τ)]}

= RX(τ) + RXY (τ) + RY X(τ) + RY (τ)

= RX(τ) + RXY (τ) + RXY (−τ) + RY (τ)

Note: If X(t) and Y (t) are orthogonal, then

(a) The autocorrelation becomes:

RZ(τ) = RX(τ) + RY (τ)

(b) The power in the sum of two r.p.’s is the sum of powers in separate r.p.’s,
i.e.

PZ = PX + PY

220



9.5.3 Covariance Function

The covariance function of two jointly wide-sense stationary r.p.’s is defined as:

CXY (τ) = E{[X(t)− E(X(t))][Y (t + τ)− E(Y (t + τ))]}

This can be simplified to

CXY (τ) = E[X(t)Y (t + τ)]− E[X(t)]E[Y (t + τ)]

= RXY (τ)− µXµY

where RXY (τ) is their cross-correlation function, µX = E[X(t)] and µY = E[Y (t)].

NOTE: If X(t) and Y (t) are uncorrelated, then CXY (τ) = 0 ∀ τ .
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9.6 Gaussian Random Processes

A r.p. X(t) is called Gaussian if:

(1) The 1st order pdf at an arbitrary time t is Gaussian, i.e.:

fX(x; t) =
e−(x−µX)2/2σ2

X

√
2πσ2

X

where µX and σ2
X are functions of time t.

(2) The joint pdf at two arbitrary times, t1 and t2 is Gaussian, i.e.:

fX1X2(x1, x2; t1, t2))

=
exp

[
− (x1−µX1

)2/σ2
X1
−2r(x1−µX1

)(x2−µX2
)/σX1

σX2
+(x2−µX2

)2/σ2
X2

2(1−r2)

]

2πσX1σX2

√
1− r2

where µX1 , σ2
X1

and µX2 , σ2
X2

are functions of t1 and t2 respectively, and r =
r(t1, t2).

...

(N) The joint pdf at N arbitrary time instants is the N -fold generalization of the
above...

=⇒ We will mainly focus on this second order pdf here...
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For a stationary Gaussian r.p. with zero mean, the 2nd order pdf becomes:

f(x1, x2; τ) =
exp

{
−x2

1−2r(τ)x1x2+x2
2

2σ2[1−r2(τ)]

}

2πσ2
√

1− r2(τ)

Note:

1. x1 and x2 denote the values of r.v.’s X(t) at times t = t1 and t = t2 = t + τ .

2. Since the r.p. is stationary, the joint pdf does not depend on both time instants
t and t + τ , but only on their difference τ .

3. The variances are time independent, i.e. σ2
X1

= σ2
X1

∆
= σ2, since the r.p. is

stationary.

4. The function r(τ) is the normalized autocorrelation function (or covariance 7),
called the correlation coefficient function, given by

r(τ) =
R(τ)

σ2
=

R(τ)

R(0)
=

E[X(t)X(t + τ)]

E[X2(t)]

Remark: The two fold pdf of a stationary Gaussian r.p. X(t) with zero mean can
be COMPLETELY specified by the parameter σ2 and the function r(τ)!!!

Useful properties of Gaussian r.p.:

(1) Any linear opeartion on a Gaussian r.p. produces another Gaussian r.p..

(2) Sum of two or more Gaussian r.p.’s, independent or not, is also a Gaussian r.p..

(3) The superposition of a large number of r.p.’s that are not Gaussian will tend to
be a Gaussian r.p.. (dur to the central limit theorem...)

=⇒ Gaussian r.p.’s are important models for analysis and design of systems
subject to random variation such as random noise, measurement errors,
and corrupted signals.....

7This is because the means are assumed to be zero...
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Example 9.12

Consider the integrator-thresholder in fig 9-7. The input is either one of the
following signals with equal probability:

Y (t) = A + N(t), 0 ≤ t ≤ T

Y (t) = −A + N(t), 0 ≤ t ≤ T

where A and T are constants, and the noise N(t) is a zero mean Gaussian r.p.
with its autocorrelation function as 8:

R(τ) = σ2r(τ) =
N0

2
δ(τ)

The putput of the integrator at the end of T seconds is compared to a threshold
of zero, and the decision on whether the signal component is A or −A is made.
Determine the followings:

(a) The probability of making an error given that A was really sent.

(b) The probability of making an error given that −A was really sent.

(c) The average probability of making and error, and plot it as a function of
A2T/N0 which correspond to the signal-to-noise ratio(SNR).

Figure 9.7: Integrator-threshold device for detecting a constant signal in Gaussian
noise.

Solution:

The output of the integrator can be written as:

Z = ±AT + NI

where NI is a Gaussian r.v. given by:

NI =
∫ T

0
N(t)dt

8Such a r.p. is called white since all frequencies are present in equal power and therefore resembles
white light in this respect...
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Notice that NI is Gaussian since it is the result of a linear operation on a
Gaussian r.p..(recall!)

The pdf of NI , therefore, can be completely specified by finding its mean and
variance.....

The mean of NI is given by

E[NI ] = E

[∫ T

0
N(t)dt

]
=

∫ T

0
E[N(t)]dt = 0

The variance of NI is same as the second moment since the mean of NI turned
out to be zero 9, i.e.:

σ2
Z = E[N2

I ] = E





[∫ T

0
N(t)dt

]2


 = E

[∫ T

0

∫ T

0
N(t)N(ζ)dtdζ

]

=
∫ T

0

∫ T

0
E[N(t)N(ζ)]dtdζ =

∫ T

0

∫ T

0

N0

2
r(ζ − t)dtdζ

=
∫ T

0

∫ T

0

N0

2
δ(ζ − t)dtdζ =

∫ T

0

N0

2
dt =

N0T

2

(a) The probability of an error given that A was really sent is then:

P (E|Apresent) = P (AT + NI < 0) = P (NI < −AT )

=
∫ −AT

−∞
e−z2/2σ2

Z

√
2πσ2

Z

=
∫ ∞

AT

e−z2/2σ2
Z

√
2πσ2

Z

Make a change of variable as

u =
z

σZ

Then the above error probability can be written as:

P (E|Apresent) =
∫ ∞

AT/σZ

e−u2/2

√
2π

dz = Q
(

AT

σZ

)

(b) By symmetry, the probability of an error given −A was sent is the same,
i.e.:

P (E| − Apresent) = Q
(

AT

σZ

)

9Also notice that the variances of Z and NI are the same...
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(c) The average error probability becomes:

PE =
1

2
P (E|Apresent) +

1

2
P (E| − Apresent)

= Q
(

AT

σZ

)
= Q




√
2A2T

N0




where the variance of Z is substituted as σ2
Z = N0T

2
.

(cf) The quantity A2T/N0 is called the signal-to-noise ratio, and denoted
as SNR for abbreviation.

Figure 9.8: Probability of error vs. SNR.
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9.7 Discrete-Time Random Processes: The Au-

toregressive Process

Consider a discrete-time r.p. defined by the following difference equation:

Xk+1 = αXk + (1− α)Nk, k = 0, 1, 2, . . .

where α is a parameter in [0, 1], and Nk are iid 10 r.v.’s, which are assumed to be
Gaussian with zero mean and variance of σ2

n.

First order autoregressive r.p.
The above r.p. is called 1st order autoregressive r.p. if Xk+1 depends only on the
immediate preceding sample Xk.

For several values of k, we have:

X1 = αX0 + (1− α)N0 = (1− α)N0

X2 = αX1 + (1− α)N1

X3 = αX2 + (1− α)N2

X4 = αX3 + (1− α)N3

where the initial value of Xk at k = − is assumed to be zero.

Substitution of each equation into the immediately following equation gives:

X4 = (1− α)(α3N0 + α2N1 + αN2 + N3)

Using the fact that Nk’s are iid and have zero mean, we find the variance of X4 to be

Var(X4) = (1− α)2[α6Var(N0) + α4Var(N1) + α2Var(N2) + α0Var(N3)

= (1− α)2(1 + α2 + α4 + α6)σ2
n

Generalizing to arbitrary k from the above patter, we surmise that

Var(Xk) = (1− α)2(1 + α2 + · · ·+ α2(k−1))σ2
n

= (1− α)2 1− α2k

1− α2
σ2

n =
1− α

1 + α
(1− α2k)σ2

n

which can be proved by the procedure of mathematical induction11.

10independent, identically distributed
11Here, the summation formula for geometric series

∑k−1
n=0 xn = 1−xk

1−x has be use.
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The process has a startup period that approaches to steady-state behavior as the
index k increases...

=⇒ The variance of Xk versus k provides a good indication of the duration until
approaching the steady state.

=⇒ The speed of this approach to steady state depends on α, i.e. the settling-out
period is short for α close to 0, whereas for α close to 1 the settling-out period is
longer...[figure 9-9(α = 0.5) and 9-10(α = 0.95)]

Figure 9.9: A sample function and the variance of and autoregressive Xk vs. k with
α = 0.5

Figure 9.10: A sample function and the variance of and autoregressive Xk vs. k with
α = 0.95

Remark: As k increases, the r.p. “forgets” its transient, and approaches to a sta-
tionary behavior.....
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We now investigate the autocorrelation function of the 1st order autoregressive r.p.
Xk, and we start with RX(0) as:

RX(0) = E(X2
k) = E{[αXk + (1− α)Nk]

2}

= E[α2X2
k + 2α(1− α)XkNk + (1− α)2N2

k ]

= α2E(X2
k) + (1− α)2σ2

n = α2RX(0) + (1− α)2σ2
n

where the fact that Nk is zero mean and independent of Xk has been used, i.e.
E[XkNk] = 0.

Solving above w.r.t. RX(0), we obtain

RX(0) =
1− α

1 + α
σ2

n

Now consider RX(1), which can be wriiten as:

RX(1) = E(XkXk+1)

= E{Xk[αXk + (1− α)Nk]}

= αE(X
[
k2) + (1− α)EXkNk)

= αRX(0)

Repeating the procedure, we can show, in general, that:

RX(M) = α|M |RX(0) = α|M |1− α

1 + α
σ2

n
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Figure 9.11: Normalized RX(M) of an autoregressive r.p. for α = 0.5 and α = 0.95.

Recall: The autocorrelation function shows the interdependence b/w samples of the
r.p..

=⇒ The process “forgets” about its past (or unable to predict its future) – more so
as α becomes smaller.
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