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Chapter 1

INTRODUCTION

1.1 Overview

Signals and Systems

The theory, analysis, and design of signals and systems. 1

=⇒ applied to many fields of engineering, science, economics and so on...

Objective:
Design signals and systems in order to send fast and accurately the desired information
to the destination.2

Example 1.1

(Systems) (Signals)
Radio and TV music, voice, and image
Telephone networks voice, speech, data
Radar and sonar microwave, laser, sonic wave (target location)
Biomedical instrumentation ECG, CT/MRI images (diagnosis)
Remote sensing microwave, laser (target identification)
Seismic analysis seismic signal (epicenter location)
Microphone acoustic pressure → electrical signal
Loudspeaker electrical signal → acoustic pressure
Sales analysis previous sales → prediction (product control)
Weather forecast previous data(temp.,rainfalls etc) → forecast

† RADAR: RAdio Detection And Ranging
‡ SONAR: SOund NAvigation Ranging

1In a wider sense, signals are the carriers of information, whereas the systems are the pathways
of information. In addition, information itself can be regarded as signal.

2We also need signal processing as well.
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Note: Human can also be considered as a system:

Example 1.2

(sensors) (corresponding signals) (response)
eye scene ?
ear music, speech ?
nose smell ?
tongue taste ?
hand touch(feel) ?

where response depends on the signal processing of each individual’s CPU, i.e.
the brain!!!.

Example 1.3

In baseball game, players and manager exchange signals.

(a) encription

(b) simplification

(c) accuracy

Definition 1.1 SIGNALS :
Input, output, and internal functions that systems process and produce 3: voltage,
current, pressure, brightness(intensity), and displacement etc.

(cf.) Mostly, the independent variable for the signal functions is time, (but not nec-
essarily!), for example two-dimensional images are functions of x and y coordinates.
If the image is a moving image(e.g. video), t must be added.

Definition 1.2 SYSTEMS :
Devices, processes, and algorithms that given an input signal x(t), produce an output
signal y(t).
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Block Diagram(of signals and systems)

y(t) = T [x(t)]

Figure 1.1: Representaion of signals and systems #1

(cf) Multiple input/output system

~y(t) = T [~x(t)]

where

~x(t) = [x1(t), x2(t), · · · , xn(t)]T

~y(t) = [y1(t), y2(t), · · · , ym(t)]T

Figure 1.2: Representaion of signals and systems #2

Note:
Signals and systems are very closely inter-related to each other !!! And so are their
definitions.

Three typical prblems(related to signals and systems)

(1) Know x(t) and T [·], what is y(t)? Analysis (RLC circuit)
(2) Know x(t) and y(t), what is T [·]? Identification (black box)
(3) Know y(t) and T [·], what is x(t)? Synthesis (digital communication)

(cf) Synthesis: Instrumentation or recognition
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Systematic way of solving engineering problems

Figure 1.3: Flow diagram of engineering problem solving

Mathematical Model(to make above problems tractable):
Mathematical equations representing signals and systems to provide quantitative anal-
ysis on signal characteristics and system performance

Example 1.4

Household voltage: Signal

v(t) = 220
√

2 cos[2π60t] −∞ < t < ∞

where 220
√

2 is the peak-to-peak voltage whereas the r.m.s.(root mean square)

voltage is given by V =
√

1
T

∫
T v2(t)dt =

√
2202·2

2
= 220.

Example 1.5

Resistor: System
v(t) = R · i(t)
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Note: The mathematical models of above examples are NOT exact, since

(1) Due to interference noises, v(t) is not perfectly sinusoidal

(2) The resistance R is not constant, and it depends on ambient temperature

Therefore, more accurate mathematical models for the above two examples should
be:

1. v(t) = {220
√

2 + ∆v(t)} cos[2π(60 + ∆f(t))t]

2. v(t, T ) = R(T ) · i(t), where T is the ambient temperatue.

⇓

Practically impossible to describe any physical phenomenon into a perfect mathemat-
ical model.

OBJECTIVE:
Make the mathematical models as simple as possible, but still retain those
parameters that significantly affect the characteristics of signals and systems.

(e.g.) above examples
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Typical categorization of signals and systems (continuous vs. discrete)

Definition 1.3 A CONTINUOUS-time signal has a value defined for each point in
time, and a continuous-time system operates on and produces continuous-time signals

Example 1.6

continuous-time signal

Figure 1.4: Typical continuous-time signal x(t).

Definition 1.4 A DISCRETE-time signal has a value defined only at discrete points
in time, and a discrete-time system operates on and produces discrete-time signals

Example 1.7

discrete-time signal

Figure 1.5: Typical discrete-time signal x[n].

Note:

(1) Discrete-time signal is a sequence of values

(2) Discrete-time signals are usually obtained by sampling continuous-time signals

(3) Sample period needs not be constant, but in most of the cases, we consider
discrete signals equally spaced in time!!! (uniform sampling), i.e., xT (t) = x[n]
where T is constant
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Definition 1.5 A DIGITAL signal is a discrete-time signal which may take on only a
set of countable values, i.e., it is a discrete-time quantized signal, and a digital system
operates on and produces digital signals

Example 1.8

discrete-time signal xd[n] takes on only one of {-2, -1, 0, 1, 2 }

Figure 1.6: Typical digital signal xd[n].

Note:
If you want to represent a discrete-time signal x[n] in a 8-bit computer machine, we
only can use 28 = 256 levels for the value of x[n].
⇒ Quantization error occurs!!!

Example 1.9

Conversion process from continuous-time signal to digital signal via discrete-
time signal

Figure 1.7: Conversion of signals: x(t) → x[n] → xd[n]
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1.2 General Characteristics of Signals

Category of Signals(in terms of their characteristics)3

1.2.1 Deterministic versus Random Signals

Definition 1.6 A DETERMINISTIC signal behaves in a fixed known way w.r.t. 4

time, thus can be modeled as a known function of time t.

(cf.) For a fixed time t, x(t) is completely known.

Definition 1.7 A RANDOM signal takes on one of many possible values at each
time (for which the signal value is defined), and it requires a probabilistic model to be
described.

Example 1.10

x(t) = sin(t): Deterministic

n(t) from random signal generator: Random

3In addition to continuous versus discrete discussed in previous section
4w.r.t.: with respect to
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1.2.2 Periodic versus Aperiodic(Non-periodic) Signals

Definition 1.8 A continuous-time signal x(t) is periodic if and only if (iff):

x(t + T ) = x(t) ∀t

where T is the period of the signal x(t)

(cf.) Likewise, the periodic discrete-time signal is defined as follows:

Definition 1.9 A discrete-time signal x[n] is periodic if and only if (iff):

x[n + N ] = x[n] ∀n

where N(integer) is the period of the signal x[n]

Note:
The smallest value of T and/or N for which above definitions hold is called the
fundamental period and usually denoted as T0 and N0.

Example 1.11

Fundamental period of continuous sinusoid

Figure 1.8: Illustration of the fundamental period of continuous sinusoidal signal x(t).
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1.3 General Characteristics of Systems

Category of Systems(according to their characteristics)

1.3.1 Static versus Dynamic Systems

Definition 1.10 A STATIC system is a system with an output signal which, at any
specific time, depends on the value of the input signal at only that time

y(t0) = f [x(t0)]

Figure 1.9: Static system

Note:
In a static system;

(1) There ∃ NO energy starage elements or memory such as inductor, capacitor etc.

(2) There ∃ NO integrals, derivatives, or signal delay

Definition 1.11 A DYNAMIC system is a system with an output signal which, at
any specific time, depends on the value of the input signal at both the specific time
and at other times

y(t0) = f [x(t0), x(t1), x(t2), . . .]

Figure 1.10: Dynamic system
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Definition 1.12 A CAUSAL system is a system for which the output signal at a
specific time depends only on the input signal at times preceding or equal to the
specified time

y(t0) = f [x(t0), x(t1), x(t2), . . .], where ti < t0 ∀i = 1, 2, . . .

Figure 1.11: Causal system

Note:
A static system is always a causal system!!!

Example 1.12

y(t) =
∫ t

−∞
x(α)dα : causal

Example 1.13

y[n] = αx[n] + βx[n + 1] : non-causal

Figure 1.12: Relation among systems
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1.3.2 Linear Systems

Definition 1.13 A system is called a LINEAR system if it satisfies the following
condition:

T

[
N∑

i=1

aixi(t)

]
=

N∑

i=1

aiT [xi(t)]
∆
=

N∑

i=1

aiyi(t) (1.1)

where ai’s are constants.

y(t) = T [x(t)]

Figure 1.13: Linear system

1.3.3 Time Invariant Systems

Definition 1.14 A system is called a TIME-INVARIANT system if it satisfies the
following condition:

T [x(t− t0)] = y(t− t0) (1.2)

Example 1.14

Determine whether each of the follwing system is linear and/or time invariant:

(1) T [x(t)] = x2(t)
(2) T [x(t)] = ax(t) + b
(3) T [x(t)] = sin{x(t)}
(4) T [x(t)] = e−x(t)

(5) T [x(t)] = ax(t− t0)
(6) T [x(t)] = x(t2)
(7) T [x(t)] = e−tx(t)
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1.3.4 Linear Time Invariant(LTI) Systems

Definition 1.15 A system is called an LTI system if it is both linear and time-
invariant, i.e. if both (1.1) and( 1.2) are satisfied simultaneously!!!

(cf) The definition of LTI system for discrete-time case is similar, and will be
discussed in the later part of this course.

Course Schedule:
We will first discuss the continuous-time signals and systems, and then move on to
the discrete-time signals and systems...
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