# Contents

| 1 | INTRODUCTION |                                        |                                                 |  |  |  |
|---|--------------|----------------------------------------|-------------------------------------------------|--|--|--|
|   | 1.1          | Overv                                  | iew                                             |  |  |  |
|   | 1.2          | Gener                                  | al Characteristics of Signals                   |  |  |  |
|   |              | 1.2.1                                  | Deterministic versus Random Signals             |  |  |  |
|   |              | 1.2.2                                  | Periodic versus Aperiodic(Non-periodic) Signals |  |  |  |
|   | 1.3          | 1.3 General Characteristics of Systems |                                                 |  |  |  |
|   |              | 1.3.1                                  | Static versus Dynamic Systems                   |  |  |  |
|   |              | 1.3.2                                  | Linear Systems                                  |  |  |  |
|   |              | 1.3.3                                  | Time Invariant Systems                          |  |  |  |
|   |              | 1.3.4                                  | Linear Time Invariant(LTI) Systems              |  |  |  |

## Chapter 1

## INTRODUCTION

## 1.1 Overview

#### Signals and Systems

The theory, analysis, and design of signals and systems. <sup>1</sup>

⇒ applied to many fields of engineering, science, economics and so on...

#### Objective:

Design signals and systems in order to send *fast* and *accurately* the desired information to the destination.<sup>2</sup>

#### Example 1.1

| (Systems) | (Signals | 3) |
|-----------|----------|----|
|           |          |    |

Radio and TV music, voice, and image Telephone networks voice, speech, data

Radar and sonar microwave, laser, sonic wave (target location)

Biomedical instrumentation ECG, CT/MRI images (diagnosis) ECG, CT/MI images (diagnosis) ECG,

Sales analysis previous sales  $\rightarrow$  prediction (product control) Weather forecast previous data(temp.,rainfalls etc)  $\rightarrow$  forecast

† RADAR: RAdio Detection And Ranging ‡ SONAR: SOund NAvigation Ranging

<sup>&</sup>lt;sup>1</sup>In a wider sense, signals are the carriers of *information*, whereas the systems are the pathways of *information*. In addition, information itself can be regarded as signal.

<sup>&</sup>lt;sup>2</sup>We also need *signal processing* as well.

**Note:** Human can also be considered as a system:

#### Example 1.2

| (sensors) | $(corresponding\ signals)$ | (response) |
|-----------|----------------------------|------------|
| eye       | scene                      | ?          |
| ear       | music, speech              | ?          |
| nose      | $\operatorname{smell}$     | ?          |
| tongue    | taste                      | ?          |
| hand      | touch(feel)                | ?          |

where response depends on the signal processing of each individual's CPU, i.e. the brain!!!.

#### Example 1.3

In baseball game, players and manager exchange signals.

- (a) encription
- (b) simplification
- (c) accuracy

#### **Definition 1.1** SIGNALS:

Input, output, and internal functions that systems process and produce  $\ni$ : voltage, current, pressure, brightness(intensity), and displacement etc.

(cf.) Mostly, the independent variable for the signal functions is time, (but not necessarily!), for example two-dimensional images are functions of x and y coordinates. If the image is a moving image(e.g. video), t must be added.

#### **Definition 1.2** SYSTEMS:

Devices, processes, and algorithms that given an input signal x(t), produce an output signal y(t).

#### Block Diagram(of signals and systems)

$$y(t) = T[x(t)]$$

Figure 1.1: Representation of signals and systems #1

#### (cf) Multiple input/output system

$$\vec{y}(t) = T[\vec{x}(t)]$$
 where 
$$\vec{x}(t) = [x_1(t), x_2(t), \dots, x_n(t)]^T$$
 
$$\vec{y}(t) = [y_1(t), y_2(t), \dots, y_m(t)]^T$$

Figure 1.2: Representaion of signals and systems #2

#### Note:

Signals and systems are very closely inter-related to each other !!! And so are their definitions.

Three typical prblems(related to signals and systems)

- (1) Know x(t) and  $T[\cdot]$ , what is y(t)? Analysis (RLC circuit) (2) Know x(t) and y(t), what is  $T[\cdot]$ ? Identification (black box) (3) Know y(t) and  $T[\cdot]$ , what is x(t)? Synthesis (digital communication)
- (cf) Synthesis: Instrumentation or recognition

### Systematic way of solving engineering problems

Figure 1.3: Flow diagram of engineering problem solving

### Mathematical Model(to make above problems tractable):

Mathematical equations representing signals and systems to provide quantitative analysis on  $signal\ characteristics$  and  $system\ performance$ 

### Example 1.4

Household voltage: Signal

$$v(t) = 220\sqrt{2}\cos[2\pi 60t] - \infty < t < \infty$$

where  $220\sqrt{2}$  is the peak-to-peak voltage whereas the r.m.s. (root mean square) voltage is given by  $V=\sqrt{\frac{1}{T}\int_T v^2(t)dt}=\sqrt{\frac{220^2\cdot 2}{2}}=220$ .

## Example 1.5

Resistor: System

$$v(t) = R \cdot i(t)$$

Note: The mathematical models of above examples are NOT exact, since

- (1) Due to interference noises, v(t) is not perfectly sinusoidal
- (2) The resistance R is not constant, and it depends on ambient temperature

Therefore, more accurate mathematical models for the above two examples should be:

- 1.  $v(t) = \{220\sqrt{2} + \Delta v(t)\} \cos[2\pi(60 + \Delta f(t))t]$
- 2.  $v(t,T) = R(T) \cdot i(t)$ , where T is the ambient temperatue.

 $\Downarrow$ 

Practically impossible to describe any physical phenomenon into a perfect mathematical model.

#### **OBJECTIVE:**

Make the mathematical models as *simple* as possible, but still *retain those* parameters that significantly affect the characteristics of signals and systems.

(e.g.) above examples

Typical categorization of signals and systems (continuous vs. discrete)

**Definition 1.3** A CONTINUOUS-time signal has a value defined for each point in time, and a continuous-time system *operates on* and *produces* continuous-time signals

#### Example 1.6

continuous-time signal

Figure 1.4: Typical continuous-time signal x(t).

**Definition 1.4** A DISCRETE-time signal has a value defined only at discrete points in time, and a discrete-time system *operates on* and *produces* discrete-time signals

#### Example 1.7

discrete-time signal

Figure 1.5: Typical discrete-time signal x[n].

#### Note:

- (1) Discrete-time signal is a sequence of values
- (2) Discrete-time signals are usually obtained by sampling continuous-time signals
- (3) Sample period needs not be constant, but in most of the cases, we consider discrete signals equally spaced in time!!! (uniform sampling), i.e.,  $x_T(t) = x[n]$  where T is constant

**Definition 1.5** A DIGITAL signal is a discrete-time signal which may take on only a set of countable values, i.e., it is a discrete-time *quantized* signal, and a digital system operates on and produces digital signals

#### Example 1.8

discrete-time signal  $x_d[n]$  takes on only one of  $\{-2, -1, 0, 1, 2\}$ 

Figure 1.6: Typical digital signal  $x_d[n]$ .

#### Note:

If you want to represent a discrete-time signal x[n] in a 8-bit computer machine, we only can use  $2^8 = 256$  levels for the value of x[n].

 $\Rightarrow Quantization \ error \ occurs!!!$ 

### Example 1.9

Conversion process from continuous-time signal to digital signal via discrete-time signal

Figure 1.7: Conversion of signals:  $x(t) \rightarrow x[n] \rightarrow x_d[n]$ 

## 1.2 General Characteristics of Signals

Category of Signals (in terms of their characteristics)<sup>3</sup>

## 1.2.1 Deterministic versus Random Signals

**Definition 1.6** A DETERMINISTIC signal behaves in a fixed known way w.r.t. <sup>4</sup> time, thus can be modeled as a known function of time t.

(cf.) For a fixed time t, x(t) is completely known.

**Definition 1.7** A RANDOM signal takes on one of many possible values at each time (for which the signal value is defined), and it requires a *probabilistic model* to be described.

#### Example 1.10

 $x(t) = \sin(t)$ : Deterministic

n(t) from random signal generator: Random

<sup>4</sup>w.r.t.: with respect to

<sup>&</sup>lt;sup>3</sup>In addition to continuous versus discrete discussed in previous section

## 1.2.2 Periodic versus Aperiodic(Non-periodic) Signals

**Definition 1.8** A continuous-time signal x(t) is periodic if and only if (iff):

$$x(t+T) = x(t) \quad \forall t$$

where T is the period of the signal x(t)

(cf.) Likewise, the periodic discrete-time signal is defined as follows:

**Definition 1.9** A discrete-time signal x[n] is periodic if and only if (iff):

$$x[n+N] = x[n] \quad \forall n$$

where N(integer) is the period of the signal x[n]

#### Note:

The smallest value of T and/or N for which above definitions hold is called the fundamental period and usually denoted as  $T_0$  and  $N_0$ .

#### Example 1.11

Fundamental period of continuous sinusoid

Figure 1.8: Illustration of the fundamental period of continuous sinusoidal signal x(t).

## 1.3 General Characteristics of Systems

Category of Systems (according to their characteristics)

## 1.3.1 Static versus Dynamic Systems

**Definition 1.10** A STATIC system is a system with an output signal which, at any specific time, depends on the value of the input signal at only that time

$$y(t_0) = f[x(t_0)]$$

Figure 1.9: Static system

#### Note:

In a static system;

- (1) There  $\exists$  NO energy starage elements or memory such as inductor, capacitor etc.
- (2) There  $\exists$  NO integrals, derivatives, or signal delay

**Definition 1.11** A DYNAMIC system is a system with an output signal which, at any specific time, depends on the value of the input signal at both the specific time and at other times

$$y(t_0) = f[x(t_0), x(t_1), x(t_2), \ldots]$$

Figure 1.10: Dynamic system

**Definition 1.12** A CAUSAL system is a system for which the output signal at a specific time depends only on the input signal at times preceding or equal to the specified time

$$y(t_0) = f[x(t_0), x(t_1), x(t_2), \ldots], \text{ where } t_i < t_0 \ \forall i = 1, 2, \ldots$$

Figure 1.11: Causal system

#### Note:

A static system is always a causal system!!!

### Example 1.12

$$y(t) = \int_{-\infty}^{t} x(\alpha)d\alpha$$
 : causal

### Example 1.13

$$y[n] = \alpha x[n] + \beta x[n+1]$$
 : non-causal

Figure 1.12: Relation among systems

## 1.3.2 Linear Systems

**Definition 1.13** A system is called a LINEAR system if it satisfies the following condition:

$$T\left[\sum_{i=1}^{N} a_{i} x_{i}(t)\right] = \sum_{i=1}^{N} a_{i} T\left[x_{i}(t)\right] \stackrel{\Delta}{=} \sum_{i=1}^{N} a_{i} y_{i}(t)$$
(1.1)

where  $a_i$ 's are constants.

$$y(t) = T[x(t)]$$

Figure 1.13: Linear system

## 1.3.3 Time Invariant Systems

**Definition 1.14** A system is called a TIME-INVARIANT system if it satisfies the following condition:

$$T[x(t-t_0)] = y(t-t_0)$$
(1.2)

### Example 1.14

Determine whether each of the following system is *linear* and/or *time invariant*:

- (1)  $T[x(t)] = x^2(t)$
- (2) T[x(t)] = ax(t) + b
- (3)  $T[x(t)] = \sin\{x(t)\}$
- (4)  $T[x(t)] = e^{-x(t)}$
- (5)  $T[x(t)] = ax(t t_0)$
- (6)  $T[x(t)] = x(t^2)$
- (7)  $T[x(t)] = e^{-t}x(t)$

## 1.3.4 Linear Time Invariant(LTI) Systems

**Definition 1.15** A system is called an LTI system if it is both *linear* and *time-invariant*, i.e. if both (1.1) and (1.2) are satisfied simultaneously!!!

(cf) The definition of LTI system for discrete-time case is similar, and will be discussed in the later part of this course.

#### Course Schedule:

We will first discuss the continuous-time signals and systems, and then move on to the discrete-time signals and systems...