Contents

10 DISCRETE FOURIER TRANSFORM 178
10.1 Representation of DFT 178
10.2 Properties of DFT 182

Chapter 10

DISCRETE FOURIER TRANSFORM

10.1 Representation of DFT

Suppose we are given a finite duration ${ }^{1}$ (N point) discrete-time signal $x[n] \ni$:

$$
x[n]=0 \quad \text { for } n<0, n \geq N
$$

e.g.

Figure 10.1: Finite duration discrete-time signal $x[n]$.

Following a similar procedure of deriving DTFT from DFS, we formulate the DFT pair for a finite duration sequence $x[n]$, i.e.
\Longrightarrow We analyze $x[n]$ by constructing a periodic $\tilde{x}[n]$, and taking only for $0 \leq n \leq N-1$

[^0]Define a periodic sequence $\tilde{x}[n]$ as a repetition of $x[n]$ for $0 \leq n \leq N-1$, such that:

$$
\tilde{x}[n]=x[n], \quad 0 \leq n \leq N-1
$$

and

$$
\tilde{x}[n]=\tilde{x}[n+m \cdot N]
$$

Then, we can express $\tilde{x}[n]$ as a discrete Fourier series(DFS) pair as follows:

$$
\begin{aligned}
\tilde{x}[n] & =\sum_{k=0}^{N-1} \tilde{D}_{x}(k) e^{j \frac{2 \pi k n}{N}} \\
\tilde{D}_{x}(k) & =\frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j \frac{2 \pi k n}{N}}
\end{aligned}
$$

The DFS coefficient $\tilde{D}_{x}(k)$ above can then be expressed as:

$$
\begin{aligned}
\tilde{D}_{x}(k)= & \frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j \frac{2 \pi k n}{N}} \\
= & \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& (\text { since } \tilde{x}[n]=x[n] \text { for } 0 \leq n \leq N-1)
\end{aligned}
$$

Define a new function $X(k)$ of k as:

$$
\begin{align*}
X(k) & \triangleq N \cdot \tilde{D}_{x}(k) \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \tag{10.1}
\end{align*}
$$

which is called the discrete Fourier transform(DFT) of a finite duration discrete-time signal.

Note:

1. DFS coefficient $\tilde{D}_{x}(k)$ in terms of $X(k)$ is expressed as:

$$
\tilde{D}_{x}(k)=\frac{1}{N} X(k)
$$

2. Essentially, the DFT $X(k)$ of $x[n]$ is merely a scaled version of the DFS coefficient $\tilde{D}_{x}(k)$ of $\tilde{x}[n]$.

Then, from the DFS pair of $\tilde{x}[n]$, we have:

$$
\begin{aligned}
\tilde{x}[n] & =\sum_{k=0}^{N-1} \tilde{D}_{x}(k) e^{j \frac{2 \pi k n}{N}} \\
& =\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}}
\end{aligned}
$$

If we take $\tilde{x}[n]$ for only for $0 \leq n \leq N-1$, we get:

$$
\begin{equation*}
\tilde{x}[n] \equiv x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}}, \quad 0 \leq n \leq N-1 \tag{10.2}
\end{equation*}
$$

(10.1) and (10.2) are called the discrete Fourier transform (DFT) pair for a finite duration discrete-time signal $x[n]$:

$$
\begin{gathered}
X(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \quad: \text { DFT } \\
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}}, \quad: \text { IDFT }
\end{gathered}
$$

Remarks:

1. The DFT is, in general, complex. i.e.:

$$
X(k)=\operatorname{Re}[X(k)]+j \operatorname{Im}[X(k)]
$$

where the real and imaginary parts for real discrete signal $x[n]$ are respectively expressed as follows:

$$
\begin{aligned}
& \operatorname{Re}[X(k)]=\sum_{n=0}^{N-1} x[n] \cos \left(\frac{2 \pi k n}{N}\right) \\
& \operatorname{Im}[X(k)]=-\sum_{n=0}^{N-1} x[n] \sin \left(\frac{2 \pi k n}{N}\right)
\end{aligned}
$$

2. The DFT $X(k)$ of $x[n]$ is a sampled version of its DTFT ${ }^{2} X\left(e^{j \omega}\right)$, i.e.,

$$
X(k)=\left.X\left(e^{j \omega}\right)\right|_{\omega=\frac{2 \pi k}{N}=k \omega_{0}}
$$

where $\omega_{0}=\frac{2 \pi}{N}$ is the sampling space.
(cf.) Recall that $\tilde{D}_{x}(k)$ is a sampled version of $\frac{1}{N} X\left(e^{j \omega}\right)$, and since $X(k)=$ $N \cdot \tilde{D}_{x}(k)$, it is clear that the DFT is in a close relationship to the DFS and the DTFT.
3. There exists a very fast algorithm called FFT(Fast Fourier Transform) to compute the DFT of discrete-time signals usually available at most computers and/or hardwares.

Figure 10.2: Block diagram of FFT
4. DFT is an essential(indispensable) practical tool for digitally processing signals using digital hardware/software. (reminder: we only deal with finite duration discrete-time signals in real world.)

[^1]
10.2 Properties of DFT

Since the DFT is in close relation to the DFS and DTFT, its properties are also very similar to those of DFS ann DTFT.

Let

$$
X(k) \triangleq \operatorname{DFT}_{N}[x[n]]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
$$

where $x[n]$ is an N point finite duration discrete-time signal.

Then, some typical and important properties of the DFT are as follows:

(1) Periodicity:

$X(k)$ is periodic in k with period of N, i.e.

$$
X(k)=X(k+m \cdot N) \quad m: \text { integer }
$$

proof:

$$
\begin{aligned}
\mathrm{RHS} & \triangleq \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi(k+m N) n}{N}} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \cdot e^{-j \frac{2 \pi m N n}{N}} \\
& =\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}} \\
& =X(k)=\mathrm{LHS}
\end{aligned}
$$

(cf.) Since $X(k) \triangleq N \cdot \tilde{D}_{x}(k)$, and $\tilde{D}_{x}(k)$ is periodic, it is obvious that $X(k)$ should be periodic.

(2) Conjugate Symmetricity:

If $x[n]$ is a real discrete-time signal, then

$$
X(-k)=X^{*}(k)
$$

i.e.

$$
\begin{aligned}
\operatorname{Re}[X(k)] & =\operatorname{Re}[X(-k)] \quad: \text { even function of } k \\
\operatorname{Im}[X(k)] & =-\operatorname{Im}[X(-k)] \quad \text { : odd function of } k
\end{aligned}
$$

proof:

$$
\begin{aligned}
& \text { LHS }=X(-k) \triangleq \sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi k n}{N}} \\
&= {\left[\sum_{n=0}^{N-1} x^{*}[n] e^{-j \frac{2 \pi k n}{N}}\right]^{*} } \\
&= {\left[\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}\right]^{*} } \\
&(\text { since } x[n] \text { is real }) \\
&= X^{*}(k)=\text { RHS }
\end{aligned}
$$

OR

$$
\begin{aligned}
\text { LHS }=X(-k) & \triangleq \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi(-k) n}{N}} \\
& =\sum_{n=0}^{N-1} x[n] e^{j \frac{2 \pi k n}{N}} \\
& =\sum_{n=0}^{N-1} x[n]\left\{\cos \left(\frac{2 \pi k n}{N}\right)+j \sin \left(\frac{2 \pi k n}{N}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{RHS}=X^{*}(k) \triangleq & {\left[\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}\right]^{*} } \\
= & {\left[\sum_{n=0}^{N-1} x[n]\left\{\cos \left(\frac{2 \pi k n}{N}\right)-j \sin \left(\frac{2 \pi k n}{N}\right)\right\}\right]^{*} } \\
= & \sum_{n=0}^{N-1} x[n]\left\{\cos \left(\frac{2 \pi k n}{N}\right)+j \sin \left(\frac{2 \pi k n}{N}\right)\right\} \\
& (\text { since } x[n] \text { is real })
\end{aligned}
$$

Therefore,
LHS = RHS
(3) Combination of (1) and (2):

From (1) and (2), for real discrete-time signal $x[n]$, we have:

$$
X^{*}(k) \stackrel{(2)}{=} X(-k) \stackrel{(1)}{=} X(N-k)
$$

i.e.

$$
\begin{gathered}
\operatorname{Re}[X(k)]=\operatorname{Re}[X(N-k)] \quad: \text { symmetric about } k=\frac{N}{2} \\
\operatorname{Im}[X(k)]=-\operatorname{Im}[X(N-k)] \quad: \text { anti-symmetric about } k=\frac{N}{2}
\end{gathered}
$$

e.g.

For $N=6$,

Figure 10.3: Real and Imaginary parts of DFT for finite duration $(N=6)$ discretetime signal $x[n]$.

Note:

1. To maintain the periodicity and the conjugate symmetricity simulataneously, the imaginary part of DFT must be zero at $k=0, k=N$, and $k=\frac{N}{2}$:

proof:

Let $X_{I}(k) \triangleq \operatorname{Im}[X(k)]$, then

$$
\left\{\begin{array}{l}
X_{I}(k)=X_{I}(k+N) \quad \text { :periodicity } \\
X_{I}(k)=-X_{I}(N-k) \quad \text { :anti-symmetricity }
\end{array}\right.
$$

Insert $k=0$ in both equations, and then we get

$$
\left\{\begin{array}{l}
X_{I}(0)=X_{I}(N) \\
X_{I}(0)=-X_{I}(N)
\end{array}\right.
$$

which means that

$$
X_{I}(0)=X_{I}(N)=0
$$

2. All the information that we need on the DFT $X(k)$ of N point discrete-time signal $x[n]$ is the values for half the period of $X(k)$, which is due to the periodicity and the conjugate symmetricity properties of DFT.
$\therefore \quad$ All we need for DFT $X(k)$ of N point sequence $x[n]$ is $X(k)$ for $k=$ $0,1,2, \ldots,\left[\frac{N}{2}\right]$ where $[m]=$ largest integer $n \ni: n \leq m$

Example 10.1

Find the DFT of the finite duration $(N=8)$ discrete signal given below:

$$
x[n]=\left\{\begin{array}{ll}
1 & 0 \leq n \leq 3 \\
0 & 4 \leq n \leq 7
\end{array} \quad: \text { signal duration } N=8\right.
$$

Figure 10.4: A 8 point discrete signal $x[n]$

$$
\underline{\operatorname{Re}[X(k)]: \operatorname{symmetric}\left(\frac{N}{2}\right)} \quad \underline{\operatorname{Im}[X(k)]: \text { anti-symmetric }\left(\frac{N}{2}\right)}
$$

Figure 10.5: $\operatorname{Re}[X(k)]$ and $\operatorname{Im}[X(k)]$ of 8 point discrete signal $x[n]$

Example 10.2

Find the DFT of a finite duration $(N=4)$ discrete cosine signal given below ${ }^{3}$

$$
x[n]=\cos \left(\frac{\pi n}{2}\right) \quad \text { where } N=4
$$

Figure 10.6: A 4 point discrete cosine signal $x[n]$

Solution:

[^2]Figure 10.7: DFT $X(k)$ of 4 point discrete cosine signal $x[n]$

Example 10.3

Find the DFT of a finite duration $(N=4)$ discrete sine signal given below ${ }^{4}$:

$$
x[n]=\sin \left(\frac{\pi n}{2}\right) \quad \text { where } N=4
$$

Figure 10.8: A 4 point discrete sine signal $x[n]$

Solution: Similary as in the previous example, we get

$$
X(k) \triangleq \operatorname{DFT}_{4}[x[n]]=-2 j \delta[k-1]+2 j \delta[k+1] \quad: \text { pure imaginary!!! }
$$

derivation: assignment

Figure 10.9: DFT $X(k)$ of 4 point discrete sine signal $x[n]$

[^3]
Example 10.4

Write and run programs to compute the DFT's of above three examples, and compare the results with analytical solutions.

FACT:
In general, for N point sinusoidal discrete signals, we have:

$$
\begin{gathered}
\operatorname{DFT}_{N}\left[\cos \left(\frac{2 \pi m n}{N}\right)\right]=\frac{N}{2}[\delta[k-m]+\delta[k+m]] \\
\operatorname{DFT}_{N}\left[\sin \left(\frac{2 \pi m n}{N}\right)\right]=-j \frac{N}{2}[\delta[k-m]-\delta[k+m]]
\end{gathered}
$$

where m is a fixed integer representing the number of cycles within N points.

Note: The above formula indicate that the only frequency component in these sinusoidal discrete signal is m times the fundamental frequency $\omega_{0}=\frac{2 \pi}{N}$ (radian), i.e. $m \cdot \omega_{0}=m \cdot \frac{2 \pi}{N}$.

SUMMARY OF TRANSFORMS:

	TIME	FREQUENCY
F.S.	$x(t)=\sum_{k=-\infty}^{\infty} C_{x}(k) e^{\frac{2 \pi k t}{T}}$ (i) continuous (t) (ii) periodic (T)	$C_{x}(k)=\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi k t}{T}} d t$ (i) discrete (k) (ii) non-periodic
F.T.	$x(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(\omega) e^{j \omega t} d \omega$ (i) continuous (t) (ii) non-periodic	$X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t$ (i) continuous (ω) (ii) non-periodic
$\begin{gathered} \text { DFT } \\ \text { (DFS) } \end{gathered}$	$x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j \frac{2 \pi k n}{N}}$ (i) discrete (n) (ii) periodic (N)	$X(k)=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}$ (i) discrete (k) (ii) periodic (N)
DTFT	$x[n]=\frac{1}{2 \pi} \int_{0}^{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega$ (i) discrete (n) (ii) non-periodic	$X\left(e^{j \omega}\right)=\sum_{-\infty}^{\infty} x[n] e^{-j \omega n}$ (i) continuous (ω) (ii) periodic (2π)

NOTE:

One domain		Other domain
discrete	\longleftrightarrow	periodic
continuous	\Longleftrightarrow	non-periodic

[^0]: ${ }^{1}$ DFT is a practical tool for analyzing the frequency distribution of discrete-time signal, since we only can consider a finite duration sequence in real world!!!

[^1]: ${ }^{2}$ We can consider the finite duration sequence as a non-periodic sequence, and its DTFT is thus: $X\left(e^{j \omega}\right) \triangleq \sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}=\sum_{n=0}^{N-1} x[n] e^{-j \omega n}$

[^2]: ${ }^{3}$ This cosine sequence can be considered as the uniformly sampled result of a continuous cosine signal $\cos (t)$ with sampling period of $T_{s}=\frac{\pi}{2}(\mathrm{sec}):$ i.e. $\cos (t) \longrightarrow \cos \left(n T_{s}\right)$ with $T_{s}=\frac{\pi}{2}$.

[^3]: ${ }^{4}$ This sine sequence again can be considered as the uniformly sampled result of a continuous sine signal $\sin (t)$ with sampling period of $T_{s}=\frac{\pi}{2}(\mathrm{sec})$: i.e. $\sin (t) \longrightarrow \sin \left(n T_{s}\right)$ with $T_{s}=\frac{\pi}{2}$.

