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Chapter 10

DISCRETE FOURIER
TRANSFORM

10.1 Representation of DFT

Suppose we are given a finite duration 1 (N point) discrete-time signal x[n] 3:

x[n] = 0 for n < 0, n ≥ N

e.g.

Figure 10.1: Finite duration discrete-time signal x[n].

Following a similar procedure of deriving DTFT from DFS, we formulate the DFT
pair for a finite duration sequence x[n], i.e.

=⇒ We analyze x[n] by constructing a periodic x̃[n], and taking only for
0 ≤ n ≤ N − 1

1DFT is a practical tool for analyzing the frequency distribution of discrete-time signal, since we
only can consider a finite duration sequence in real world!!!
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Define a periodic sequence x̃[n] as a repetition of x[n] for 0 ≤ n ≤ N − 1, such that:

x̃[n] = x[n], 0 ≤ n ≤ N − 1

and
x̃[n] = x̃[n + m ·N ]

Then, we can express x̃[n] as a discrete Fourier series(DFS) pair as follows:

x̃[n] =
N−1∑

k=0

D̃x(k)ej 2πkn
N

D̃x(k) =
1

N

N−1∑

n=0

x̃[n]e−j 2πkn
N

The DFS coefficient D̃x(k) above can then be expressed as:

D̃x(k) =
1

N

N−1∑

n=0

x̃[n]e−j 2πkn
N

=
1

N

N−1∑

n=0

x[n]e−j 2πkn
N

(since x̃[n] = x[n] for 0 ≤ n ≤ N − 1)

Define a new function X(k) of k as:

X(k)
∆
= N · D̃x(k)

=
N−1∑

n=0

x[n]e−j 2πkn
N (10.1)

which is called the discrete Fourier transform(DFT) of a finite duration discrete-time
signal.
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Note:

1. DFS coefficient D̃x(k) in terms of X(k) is expressed as:

D̃x(k) =
1

N
X(k)

2. Essentially, the DFT X(k) of x[n] is merely a scaled version of the DFS coeffi-
cient D̃x(k) of x̃[n].

Then, from the DFS pair of x̃[n], we have:

x̃[n] =
N−1∑

k=0

D̃x(k)ej 2πkn
N

=
1

N

N−1∑

k=0

X(k)ej 2πkn
N

If we take x̃[n] for only for 0 ≤ n ≤ N − 1, we get:

x̃[n] ≡ x[n] =
1

N

N−1∑

k=0

X(k)ej 2πkn
N , 0 ≤ n ≤ N − 1 (10.2)

(10.1) and (10.2) are called the discrete Fourier transform (DFT) pair for a finite
duration discrete-time signal x[n]:

X(k) =
N−1∑

n=0

x[n]e−j 2πkn
N : DFT

x[n] =
1

N

N−1∑

k=0

X(k)ej 2πkn
N , : IDFT
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Remarks:

1. The DFT is, in general, complex. i.e.:

X(k) = Re[X(k)] + jIm[X(k)]

where the real and imaginary parts for real discrete signal x[n] are respectively
expressed as follows:

Re[X(k)] =
N−1∑

n=0

x[n] cos

(
2πkn

N

)

Im[X(k)] = −
N−1∑

n=0

x[n] sin

(
2πkn

N

)

2. The DFT X(k) of x[n] is a sampled version of its DTFT 2 X (ejω), i.e.,

X(k) = X
(
ejω

)∣∣∣
ω= 2πk

N
=kω0

where ω0 = 2π
N

is the sampling space.

(cf.) Recall that D̃x(k) is a sampled version of 1
N

X (ejω), and since X(k) =

N · D̃x(k), it is clear that the DFT is in a close relationship to the DFS and the
DTFT.

3. There exists a very fast algorithm called FFT(Fast Fourier Transform) to com-
pute the DFT of discrete-time signals usually available at most computers
and/or hardwares.

Figure 10.2: Block diagram of FFT

4. DFT is an essential(indispensable) practical tool for digitally processing signals
using digital hardware/software. (reminder: we only deal with finite duration
discrete-time signals in real world.)

2We can consider the finite duration sequence as a non-periodic sequence, and its DTFT is thus:
X

(
ejω

) ∆=
∑∞

n=−∞ x[n]e−jωn =
∑N−1

n=0 x[n]e−jωn
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10.2 Properties of DFT

Since the DFT is in close relation to the DFS and DTFT, its properties are also very
similar to those of DFS ann DTFT.

Let

X(k)
∆
= DFTN [x[n]] =

N−1∑

n=0

x[n]e−j 2πkn
N

where x[n] is an N point finite duration discrete-time signal.

Then, some typical and important properties of the DFT are as follows:

(1) Periodicity:

X(k) is periodic in k with period of N , i.e.

X(k) = X(k + m ·N) m : integer

proof:

RHS
∆
=

N−1∑

n=0

x[n]e−j
2π(k+mN)n

N

=
N−1∑

n=0

x[n]e−j 2πkn
N · e−j 2πmNn

N

=
N−1∑

n=0

x[n]e−j 2πkn
N

= X(k) = LHS

(cf.) Since X(k)
∆
= N · D̃x(k), and D̃x(k) is periodic, it is obvious that X(k) should

be periodic.
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(2) Conjugate Symmetricity:

If x[n] is a real discrete-time signal, then

X(−k) = X∗(k)

i.e.

Re[X(k)] = Re[X(−k)] : even function of k

Im[X(k)] = −Im[X(−k)] : odd function of k

proof:

LHS = X(−k)
∆
=

N−1∑

n=0

x[n]ej 2πkn
N

=

[
N−1∑

n=0

x∗[n]e−j 2πkn
N

]∗

=

[
N−1∑

n=0

x[n]e−j 2πkn
N

]∗

( since x[n] is real)

= X∗(k) = RHS

OR

LHS = X(−k)
∆
=

N−1∑

n=0

x[n]e−j
2π(−k)n

N

=
N−1∑

n=0

x[n]ej 2πkn
N

=
N−1∑

n=0

x[n]

{
cos

(
2πkn

N

)
+ j sin

(
2πkn

N

)}

and

RHS = X∗(k)
∆
=

[
N−1∑

n=0

x[n]e−j 2πkn
N

]∗

=

[
N−1∑

n=0

x[n]

{
cos

(
2πkn

N

)
− j sin

(
2πkn

N

)}]∗

=
N−1∑

n=0

x[n]

{
cos

(
2πkn

N

)
+ j sin

(
2πkn

N

)}

( since x[n] is real)

Therefore,
LHS = RHS
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(3) Combination of (1) and (2):

From (1) and (2), for real discrete-time signal x[n], we have:

X∗(k)
(2)
= X(−k)

(1)
= X(N − k)

i.e.

Re[X(k)] = Re[X(N − k)] : symmetric about k = N
2

Im[X(k)] = −Im[X(N − k)] : anti-symmetric about k = N
2

e.g.

For N = 6,

Figure 10.3: Real and Imaginary parts of DFT for finite duration(N = 6) discrete-
time signal x[n].
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Note:

1. To maintain the periodicity and the conjugate symmetricity simulataneously,
the imaginary part of DFT must be zero at k = 0, k = N , and k = N

2
:

proof:

Let XI(k)
∆
= Im[X(k)], then





XI(k) = XI(k + N) :periodicity

XI(k) = −XI(N − k) :anti-symmetricity

Insert k = 0 in both equations, and then we get





XI(0) = XI(N)

XI(0) = −XI(N)

which means that
XI(0) = XI(N) = 0

2. All the information that we need on the DFT X(k) of N point discrete-time sig-
nal x[n] is the values for half the period of X(k), which is due to the periodicity
and the conjugate symmetricity properties of DFT.

... All we need for DFT X(k) of N point sequence x[n] is X(k) for k =
0, 1, 2, . . . , [N

2
] where [m]=largest integer n 3: n ≤ m

Example 10.1

Find the DFT of the finite duration (N = 8) discrete signal given below:

x[n] =





1 0 ≤ n ≤ 3

0 4 ≤ n ≤ 7 : signal duration N = 8

Figure 10.4: A 8 point discrete signal x[n]
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Solution:

Re [X(k)]: symmetric(N
2
) Im [X(k)]: anti-symmetric(N

2
)

Figure 10.5: Re [X(k)] and Im [X(k)] of 8 point discrete signal x[n]
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Example 10.2

Find the DFT of a finite duration (N = 4) discrete cosine signal given below 3

:

x[n] = cos
(

πn

2

)
where N = 4

Figure 10.6: A 4 point discrete cosine signal x[n]

Solution:

3This cosine sequence can be considered as the uniformly sampled result of a continuous cosine
signal cos(t) with sampling period of Ts = π

2 (sec): i.e. cos(t) −→ cos(nTs) with Ts = π
2 .
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Figure 10.7: DFT X(k) of 4 point discrete cosine signal x[n]
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Example 10.3

Find the DFT of a finite duration (N = 4) discrete sine signal given below 4 :

x[n] = sin
(

πn

2

)
where N = 4

Figure 10.8: A 4 point discrete sine signal x[n]

Solution: Similary as in the previous example, we get

X(k)
∆
= DFT4 [x[n]] = −2jδ[k − 1] + 2jδ[k + 1] : pure imaginary!!!

derivation: assignment

Figure 10.9: DFT X(k) of 4 point discrete sine signal x[n]

4This sine sequence again can be considered as the uniformly sampled result of a continuous sine
signal sin(t) with sampling period of Ts = π

2 (sec): i.e. sin(t) −→ sin(nTs) with Ts = π
2 .
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Example 10.4

Write and run programs to compute the DFT’s of above three examples, and
compare the results with analytical solutions.

FACT:
In general, for N point sinusoidal discrete signals, we have:

DFTN

[
cos

(
2πmn

N

)]
=

N

2
[δ[k −m] + δ[k + m]]

DFTN

[
sin

(
2πmn

N

)]
= −j

N

2
[δ[k −m]− δ[k + m]]

where m is a fixed integer representing the number of cycles within N points.

Note: The above formula indicate that the only frequency component in these si-
nusoidal discrete signal is m times the fundamental frequency ω0 = 2π

N
(radian), i.e.

m · ω0 = m · 2π
N

.
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SUMMARY OF TRANSFORMS:

TIME FREQUENCY

F.S. x(t) =
∑∞

k=−∞ Cx(k)ej 2πkt
T Cx(k) = 1

T

∫
T x(t)e−j 2πkt

T dt

(i) continuous(t) (i) discrete(k)
(ii) periodic(T ) (ii) non-periodic

F.T. x(t) = 1
2π

∫∞
−∞ X(ω)ejωtdω X(ω) =

∫∞
−∞ x(t)e−jωtdt

(i) continuous(t) (i) continuous(ω)
(ii) non-periodic (ii) non-periodic

DFT x[n] = 1
N

∑N−1
k=0 X(k)ej 2πkn

N X(k) =
∑N−1

n=0 x[n]e−j 2πkn
N

(DFS)
(i) discrete(n) (i) discrete(k)

(ii) periodic(N) (ii) periodic(N)

DTFT x[n] = 1
2π

∫ 2π
0 X (ejω) ejωndω X (ejω) =

∑∞
−∞ x[n]e−jωn

(i) discrete(n) (i) continuous(ω)
(ii) non-periodic (ii) periodic(2π)

NOTE:

One domain Other domain

discrete ←→ periodic

continuous ⇐⇒ non-periodic
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