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Chapter 11

SAMPLING THEOREM

11.1 Background

We want to represent a continuous-time signal x(t) by a discrete-time signal x[n],
which is the sampled version of the original continuous-time signal:

x(t) = cos(t)

Figure 11.1: Sampled discrete-time signal x[n] with two different sampling periods
T
′
s ¿ Ts.
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Note:

1. Ts is called the sampling period, and fs = 1
Ts

(Hz) or ωs = 2πfs(rad/sec) is
called the sampling rate or sampling frequency.

2. For Ts = π
2
(sec), the number of samples for one period of x(t) is N = 4, and for

T
′
s = π

8
(sec), it is N

′
= 16 points.

3. The sampled discrete-time signal can be represented in two different ways, i.e.

x[n] = x(nTs)

or

xs(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs)

4. Notice that based on the samples signal x[n], it is much easier to figure out that
the original signal x(t) was a cosine signal for the case of T

′
s = π

8
than the case

of Ts = π
2
.

QUESTION:

How high should the sampling rate(fs
∆
= 1

Ts
) be to faithfully represent the continuous-

time signal x(t) with the sampled discrete-time signal x[n]?

Answer:
As we can see in the above figures, the higher the sampling rate is, the better the
representation is!

But, how high?

Remarks:

1. If fs is too low, the sampled signal x[n] may be ill defined.

2. If fs gets higher, the sampled signal x[n] might be well defined, but since the
number of samples increases, the required hardware(such as memory) and/or
the processing time gets longer, i.e. there 3: trade-offs.

=⇒ We want to find out the minimum required value of fs?
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11.2 Analysis of Sampling

We consider the uniform sampling (i.e. the sampling period Ts is fixed!)

block diagram

x(t)

p(t) =
∞∑

n=−∞
δ(t− nTs) : equally spaced impulse train

xs(t) = x(t) · p(t) =
∞∑

n=−∞
x(nTs)δ(t− nTs)

Figure 11.2: Sampling procedure with corresponding signals.

To analyze the sampling procedure in frequency domain, we first discuss the following
fact:
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FACT: The Fourier transform(F.T.) of p(t) : train of impulses 1

1. Since p(t) is periodic, it can be represented as a Fourier series(F.S.), i.e.

p(t) =
∞∑

k=−∞
Cp(k)ej 2πkt

Ts

where

Cp(k) =
1

Ts

∫ Ts
2

−Ts
2

δ(t)e−j 2πkt
Ts dt =

1

Ts

= fs, ∀k

2. Therefore, we have:

p(t) =
∞∑

k=−∞
fs · ej 2πkt

Ts

and the Fourier transform of p(t) is then

P (ω) =
∫ ∞

−∞
p(t)e−jωtdt

=
∫ ∞

−∞




∞∑

k=−∞
fs · ej 2πkt

Ts


 e−jωtdt

= fs ·
∞∑

k=−∞

∫ ∞

−∞
e−j(ω− 2πk

Ts
)tdt

= fs ·
∞∑

k=−∞
F [1]|ω→ω−kωs

where ωs
∆
=

2π

Ts

= 2πfs ·
∞∑

k=−∞
δ(ω − kωs)

= ωs ·
∞∑

k=−∞
δ(ω − kωs)

(cf.) We can confirm the F.T. of p(t) directly from the relation of F.T. and
F.S. coefficient of periodic signals, which is:

2πCx(k) = X

(
2πk

Ts

)

where x(t) is periodic with period of Ts.

Figure 11.3: Fourier transform of impulse train p(t).

1Note that p(t) is a singular function.
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Now, from the block diagram,

xs(t) = x(t) · p(t) = x(t) ·
∞∑

n=−∞
δ(t− nTs) (11.1)

Take the Fourier transform of (11.1), and we get:

Xs(ω) =
1

2π
[X(ω) ∗ P (ω)]

=
1

2π


X(ω) ∗ ωs ·

∞∑

k=−∞
δ(ω − kωs)




=
ωs

2π

∞∑

k=−∞
{X(ω) ∗ δ(ω − kωs)}

=
ωs

2π

∞∑

k=−∞
X(ω − kωs) : by the sifting property of δ(ω) (11.2)

Pictorially, if the F.T. of the original x(t) has the following form:

Bandlimited signal

Figure 11.4: Fourier transform of the original x(t).

Then, corresponding spectrum Xs(ω) of the sampled signal xs(t) will be as follows,
which is a repetition of X(ω) with period of ωs, scaled by ωs

2π
, i.e.

LPF with BW=ωs

2
, and Gain=2π

ωs

Figure 11.5: Fourier transform of the sampled signal xs(t): NO aliasing.
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This is the case when the lower edge of the second band ( or sidelobe) in Xs(ω) is
greater than or equal to the upper edge of the main band (or mainlobe) in Xs(ω), i.e.

ωs − ωm ≥ ωm ( or equivalently ωs ≥ 2ωm)

and we can recover x(t) from xs(t) by way of a LPF with bandwidth of ωs

2
, and gain

of 2π
ωs

.

However, if the above condition is NOT satisfied, i.e. if:

ωs − ωm < ωm ( or equivalently ωs < 2ωm)

then the spectrum of Xs(ω) will become as follows:

Figure 11.6: Fourier transform of the sampled signal xs(t): ALIASING.

It is obvious that x(t) CANNOT be recovered from xs(t), which means that xs(t)
does not faithfully represent the original x(t), and this phenomenon is called the
ALIASING!!!

From the above discussions, we have the following theorem:

Theorem 11.1 Sampling Theorem:

Let x(t) be a bandlimited continuous-time signal with X(ω) = 0 for |ω| > ωm.
Then, x(t) is uniquely determined by its sampled discrete-time signal x(nTs),
where n = 0,±1,±2, . . .

IF the following condition is met:

ωs ≥ 2ωm (Nyquist Criterion)

where ωs = 2π
Ts

(rad/sec) is the sampling frequency.
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Example 11.1

Usually, the audible signals such as speech, and music signals have typical fre-
quency range from 2(Hz) to 20(KHz). Therefore, to record such audible signals
in digital media like CD, and DAT, we need to sample the signal with at least
fs = 40(KHz) sampling rate.

(e.g.)
Audio CD’s use a sampling rate of 44.1(KHz) for storage of the digital audio
signals!!!
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11.3 Interpolations

Intuition:

1. Recovering the continuous signal x(t) from the sampled signal 2 xs(t).

2. Filling in with interpolated data between x(nTs) and x((n + 1)Ts)

for −∞ < n < ∞.

11.3.1 Time domain interpolation

xs(t) =⇒ x(t)

⇓

Figure 11.7: Time domain interpolation.

As mentioned in the previous section, when we discussed the sampling theorem,
this can be accomplished by passing xs(t) through a low pass filter(LPF) with BW=ωs

2

and Gain=2π
ωs

:

Figure 11.8: Interpolating LPF and spectrum Xs(ω).

(cf.) We assumed that the Nyquist criterion is met during the sampling process.

2Reminder: xs(t) can be expressed in another way 3: {x(nTs)}∞n=−∞
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Let the transfer function of the LPF be H(ω), which should be as follows:

Figure 11.9: The transfer function of the LPF.

Then, the impulse response h(t) of the LPF is:

h(t) = F−1 [H(ω)] =
1

2π

∫ ωs
2

−ωs
2

2π

ωs

· ejωtdω

=
1

2π
· 2π

ωs

[
ejωt

jt

]ωs
2

−ωs
2

=
1

ωs

[
ej ωs

2
t − e−j ωs

2
t

jt

]

=
1

ωs

·
2j sin

(
ωs

2
t
)

jt

=
sin

(
πt
Ts

)

πt
Ts

(where ωs = 2π
Ts

)

∆
= sinc

(
t

Ts

)

OR
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Therefore, x(t) can be considered as the output signal of the following LTI system!!!

Figure 11.10: The LPF as an LTI system with h(t) = sinc
(

t
Ts

)
.

i.e.

x(t) = xs(t) ∗ h(t)

=

[ ∞∑

n=−∞
x(nTs)δ(t− nTs)

]
∗ sinc

(
t

Ts

)

=
∞∑

n=−∞
x(nTs) ·

[
δ(t− nTs) ∗ sinc

(
t

Ts

)]
(by the linearity of system)

=
∞∑

n=−∞
x(nTs) · sinc

(
t− nTs

Ts

)
(by the time invariance of system)

: This is why it is called the sinc interpolation

x(t) =
∞∑

n=−∞
x(nTs) · sinc

(
t− nTs

Ts

)

Figure 11.11: Interpolated signal.
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11.3.2 Frequency domain interpolation

xN [n] =⇒ xMN [n]

where xN [n] is the sampled discrete signal from x(t) using N points.

⇓

Figure 11.12: Frequency domain interpolation, where M = 2.

Procedure:

1. Compute the N point DFT of xN [n], i.e. XN(k) = DFTN [xN [n]]

2. Pad zeros between N
2
≤ k < 3N

2
, and form a 2N point sequence of k, i.e. X2N(k).

3. Take the 2N point inverse DFT of X2N(k), i.e. x2N [n] = DFT−1
2N [X2N(k)]

4. Multiply the resulting sequence by 2.

Then, we get the interpolated discrete-time signal x2N [n], which is twice as close
to the original continuous-time signal x(t).

Figure 11.13: Zero padding in frequency domain interpolation, where M = 2.
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Analysis:

The zero padded 2N point sequence is as below:

X2N(k) =





XN(k), 0 ≤ k ≤ N
2
− 1

0, N
2
≤ k ≤ 3N

2
− 1

XN(k −N) 3N
2
≤ k ≤ 2N − 1

Take 2N -point IDFT of X2N(k), then

x2N [n]
∆
=

1

2N

2N−1∑

k=0

X2N(k)ej 2πkn
2N

=
1

2N





N
2
−1∑

k=0

XN(k)ej
2πk( n

2 )

N +
2N−1∑

k= 3N
2

XN(k −N)ej
2πk( n

2 )

N





( let k
′
= k −N in the second term)

=
1

2N





N
2
−1∑

k=0

XN(k)ej
2πk( n

2 )

N +
N−1∑

k′=N
2

XN(k
′
)ej

2π(k
′
+N)( n

2 )

N





=
1

2N





N
2
−1∑

k=0

XN(k)ej
2πk( n

2 )

N +
N−1∑

k=N
2

XN(k)ej
2πk( n

2 )

N · ejπn





(i) If n = 2m (i.e. ejπn = 1):

x2N [n] =
1

2N

N−1∑

k=0

XN(k)ej
2πk( n

2 )

N =
1

2
xN

[
n

2

]

(ii) if n = 2m + 1 (i.e. ejπn = −1):

x2N [n] =
1

2N





N
2
−1∑

k=0

XN(k)ej
2πk( n

2 )

N −
N−1∑

k=N
2

XN(k)ej
2πk( n

2 )

N





:which are the intermediate values of xN [n]
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(e.g.)N = 5

Figure 11.14: The original and the interpolated sequences x5[n] and x10[n].

Therefore, in order to recover the original amplitude as well, we have to multiply
x2N [n] by factor of 2.

In general, if we pad zeros in XN [k] between N
2
≤ k < (M − 1

2
)N thus making it an

MN point sequence XMN [k], and taking MN -point IDFT, we get:

xMN [n] =





1
M

xN

[
n
M

]
, if n = m ·M

intermediate values if n 6= m ·M

=⇒We have to multiply M to xMN [n] to recover the original amplitude of xN [n]!!!
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