Contents

12 MISCELLANEOUS TOPICS 205
12.1 An Efficient Way of Computing Two DFT's of Real Sequences Simul- taneously 205

Chapter 12

MISCELLANEOUS TOPICS

12.1 An Efficient Way of Computing Two DFT's of Real Sequences Simultaneously

As we mentioned before, there exists a fast algorithm for computing DFT, called the FFT(Fast Fourier Transform) algorithm, which usually requires two input arguments and gives two outputs, i.e.

Figure 12.1: DFT and equivalent FFT
In most of the times or cases, however, the input sequence $x[n]$ is a real discretetime signal.
$\Longrightarrow \operatorname{Im}[x[n]]=0 \quad \forall n=0,1,2, \ldots, N-1$
\Longrightarrow Waste of resources!!!
\Longrightarrow Instead of putting zeros in $\operatorname{Im}[x[n]]$ array, we input another real sequence in it, by forming a complex sequence $g[n]$, i.e.

$$
g[n]=x_{1}[n]+j x_{2}[n] \quad \text { :complex sequence }
$$

Figure 12.2: FFT of two real discrete-time signals.

Objective:

We want to get $\operatorname{Re}\left[X_{1}(k)\right], \operatorname{Im}\left[X_{1}(k)\right], \operatorname{Re}\left[X_{2}(k)\right]$, and $\operatorname{Im}\left[X_{2}(k)\right]$ from $\operatorname{Re}[G(k)]$ and $\operatorname{Im}[G(k)]$.

Method:

Now,

$$
\begin{align*}
X_{1}(k) & =\sum_{n=0}^{N-1} x_{1}[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\left\{\sum_{n=0}^{N-1} x_{1}[n] \cos \left(\frac{2 \pi k n}{N}\right)\right\}+j\left\{-\sum_{n=0}^{N-1} x_{1}[n] \sin \left(\frac{2 \pi k n}{N}\right)\right\} \\
& \triangleq \operatorname{Re}\left[X_{1}(k)\right]+j \operatorname{Im}\left[X_{1}(k)\right] \tag{12.1}
\end{align*}
$$

Likewise, we have

$$
\begin{align*}
X_{2}(k) & =\sum_{n=0}^{N-1} x_{2}[n] e^{-j \frac{2 \pi k n}{N}} \\
& =\left\{\sum_{n=0}^{N-1} x_{2}[n] \cos \left(\frac{2 \pi k n}{N}\right)\right\}+j\left\{-\sum_{n=0}^{N-1} x_{2}[n] \sin \left(\frac{2 \pi k n}{N}\right)\right\} \\
& \triangleq \operatorname{Re}\left[X_{2}(k)\right]+j \operatorname{Im}\left[X_{2}(k)\right] \tag{12.2}
\end{align*}
$$

Let's take the DFT of $g[n]$,

$$
\begin{align*}
G(k)= & \sum_{n=0}^{N-1} g[n] e^{-j \frac{2 \pi k n}{N}} \\
= & \sum_{n=0}^{N-1}\left\{x_{1}[n]+j x_{2}[n]\right\} \cdot\left\{\cos \left(\frac{2 \pi k n}{N}\right)-j \sin \left(\frac{2 \pi k n}{N}\right)\right\} \\
= & \sum_{n=0}^{N-1}\left\{x_{1}[n] \cos \left(\frac{2 \pi k n}{N}\right)+x_{2}[n] \sin \left(\frac{2 \pi k n}{N}\right)\right\} \\
& +j \sum_{n=0}^{N-1}\left\{-x_{1}[n] \sin \left(\frac{2 \pi k n}{N}\right)+x_{2}[n] \cos \left(\frac{2 \pi k n}{N}\right)\right\} \\
\triangleq & \operatorname{Re}[G(k)]+j \operatorname{Im}[G(k)] \tag{12.3}
\end{align*}
$$

From (12.1), (12.2), and (12.3), we have the following simultaneous equations:

$$
\begin{align*}
& \operatorname{Re}[G(k)]=\operatorname{Re}\left[X_{1}(k)\right]-\operatorname{Im}\left[X_{2}(k)\right] \tag{12.4}\\
& \operatorname{Im}[G(k)]=\operatorname{Im}\left[X_{1}(k)\right]+\operatorname{Re}\left[X_{2}(k)\right] \tag{12.5}
\end{align*}
$$

Since we have four unknowns with two equations, we must find other two equations to solve:

Notice that:
(i) $x_{1}[n]$ and $x_{2}[n]$ are real.
(ii) $G(k)$ is periodic in k with period of N.

Therefore, from the properties of DFT of real discrete signals, such that the real part and the imaginary part of DFT are "symmetric" and "anti-symmetric", respectively, we have:

$$
\begin{gathered}
X_{1}(-k)=X_{1}^{*}(k) \\
X_{2}(-k)=X_{2}^{*}(k) \\
G(-k)=G(N-k)
\end{gathered}
$$

Plugging $-k$ in place of k in (12.4) and (12.5), we get:

$$
\begin{gather*}
\operatorname{Re}[G(-k)]=\operatorname{Re}[G(N-k)]=\operatorname{Re}\left[X_{1}(k)\right]+\operatorname{Im}\left[X_{2}(k)\right] \tag{12.6}\\
\operatorname{Im}[G(-k)]=\operatorname{Im}[G(N-k)]=-\operatorname{Im}\left[X_{1}(k)\right]+\operatorname{Re}\left[X_{2}(k)\right] \tag{12.7}
\end{gather*}
$$

Solving (12.4), (12.5), (12.6), and (12.7) simultaneously, we get

$$
\left\{\begin{array}{l}
\operatorname{Re}\left[X_{1}(k)\right]=\frac{1}{2}\{\operatorname{Re}[G(k)]+\operatorname{Re}[G(N-k)]\} \\
\operatorname{Im}\left[X_{1}(k)\right]=\frac{1}{2}\{\operatorname{Im}[G(k)]-\operatorname{Im}[G(N-k)]\} \\
\operatorname{Re}\left[X_{2}(k)\right]=\frac{1}{2}\{\operatorname{Im}[G(k)]+\operatorname{Im}[G(N-k)]\} \\
\operatorname{Im}\left[X_{2}(k)\right]=\frac{1}{2}\{-\operatorname{Re}[G(k)]+\operatorname{Re}[G(N-k)]\}
\end{array}\right\}
$$

where $k=0,1,2, \ldots, N-1$ (one period).
i.e.

Figure 12.3: Algorithm of computing DFT's of two real discrete-time signals.
\Longrightarrow We compute two DFT's $X_{1}(k)$ and $X_{2}(k)$ simultaneously, using FFT routine only once!!!

Assignment:

Write a computer program to implemet the above algorithm, and check the result with those of individual DFT's.

