Contents

2	LIN	VEAR TIME INVARIANT(LTI) SYSTEMS	21
	2.1	Input/output Relation in LTI system: Convolution integral	21
	2.2	Typical Causal LTI System	26

Chapter 2

LINEAR TIME INVARIANT(LTI) SYSTEMS

2.1 Input/output Relation in LTI system: Convolution integral

h(t) is the internal function representing the system characteristics

Figure 2.1: LTI system

FACT:

The input/output signals of the LTI system are related by a convolution integral:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau \stackrel{\Delta}{=} x(t) * h(t)$$
 (2.1)

where h(t) is the *impulse response* of the system $T[\cdot]$.

System impulse response: h(t)

Definition 2.1 The impulse response h(t) of an LTI system is defined as the output signal when the input signal is the *unit impulse function* $\delta(t)$, i.e.,

$$h(t) \stackrel{\Delta}{=} T[\delta(t)]$$

Figure 2.2: Concept of impulse response for an LTI system

Unit impulse function(Dirac delta function): $\delta(t)$

Definition 2.2 The unit impulse function is defined as follows:

$$\delta(t) \stackrel{\Delta}{=} \lim_{\Delta \to 0} \delta_{\Delta}(t)$$

where the unit pulse $\delta_{\Delta}(t)$ is

$$\delta_{\Delta}(t) \stackrel{\Delta}{=} \left\{ egin{array}{ll} rac{1}{\Delta}, & 0 \leq t < \Delta \\ 0, & ext{otherwise} \end{array} \right.$$

Figure 2.3: Concept of unit impulse function

Then, we can re-define the unit impulse function $\delta(t)$ using following two conditions:

(a) magnitude:

$$\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & \text{elsewhere} \end{cases}$$

(b) area:

$$\int_{-\infty}^{\infty} \delta(t)dt = 1 \quad \text{(unit area)}$$

Figure 2.4: Representation of unit impulse function

Check: validity of the definition of h(t) using (2.1)

$$y(t) = \delta(t) * h(t) = \int_{-\infty}^{\infty} \delta(\tau)h(t-\tau)d\tau = h(t)\int_{-\infty}^{\infty} \delta(\tau)d\tau = h(t)$$

which is the impulse response of the LTI system.

Figure 2.5: Validity of impulse response

Brief Derivation of (2.1)

Any continuous-time signal x(t) can be represented as follows:

$$x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \cdot \Delta$$

where

$$\delta_{\Delta}(t - k\Delta) = \begin{cases} \frac{1}{\Delta}, & k\Delta \le t < (k+1)\Delta \\ 0, & \text{otherwise} \end{cases}$$

Figure 2.6: Approximated representation of continuous x(t)

The output signal y(t) is expressed as:

$$y(t) = T[x(t)]$$

$$= T \left[\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t - k\Delta) \cdot \Delta \right]$$
(2.2)

Here, let $h_{\Delta}(t) \stackrel{\Delta}{=} T[\delta_{\Delta}(t)]$, then as $\Delta \to 0$, we have:

- (1) $\lim_{\Delta \to 0} h_{\Delta}(t) = T[\lim_{\Delta \to 0} \delta_{\Delta}(t)] = T[\delta(t)] = h(t)$
- (2) $k\Delta \longrightarrow \tau$ (continuous variable)
- (3) $\Delta \longrightarrow d\tau$ (infinitesimal increment)
- (4) $\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} \longrightarrow \int_{-\infty}^{\infty}$

Using the above facts, and due to the *linearity* and *time-invariance* properties of an LTI system, the output signal y(t) of an LTI system (2.2) becomes:

$$y(t) = T\left[\lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta)\delta_{\Delta}(t-k\Delta) \cdot \Delta\right]$$

$$= \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta)T\left[\delta_{\Delta}(t-k\Delta)\right] \cdot \Delta \quad \text{(linearity)}$$

$$= \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta)h_{\Delta}(t-k\Delta) \cdot \Delta \quad \text{(time-invariance)}$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$\stackrel{\triangle}{=} x(t) * h(t) \qquad (2.3)$$

Another expression of the convolution

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$
(2.4)

Let $t - \tau = t'$ (change of variable from τ to t'), then

- (1) $\tau = t t'$
- (2) $t' \to \infty \text{ as } \tau \to -\infty$
- (3) $t' \to -\infty$ as $\tau \to \infty$
- (4) $d\tau = -dt'$

And (2.4) becomes:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$= \int_{-\infty}^{\infty} x(t-t')h(t')(-dt')$$

$$= \int_{-\infty}^{\infty} h(t')x(t-t')dt'$$

$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

$$\stackrel{\triangle}{=} h(t) * x(t)$$
(2.5)

Therefore, the output y(t) of an LTI system can be obtained by:

$$y(t) = h(t) * x(t) \stackrel{OR}{=} x(t) * h(t)$$

Note:

The choice between (2.3) and (2.5) to compute y(t) is entirely depending on the easiness of calculation w.r.t. the associated x(t) and h(t)!!!

Example 2.1

Find the output signal y(t) of an LTI system, when the input and the impulse response of the system are given repectively as follows:

$$x(t) = \sin(t)$$

$$h(t) = \begin{cases} 1, & 0 \le t < 1 \\ 0, & \text{otherwise} \end{cases}$$

2.2 Typical Causal LTI System

FACT:

If the impulse response of an LTI system satisfies:

$$h(t) = 0, \quad \text{for } t < 0$$

Then, the system is a *causal* system.

Proof:

Figure 2.7: Input and output of a causal LTI system

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$
$$= \int_{-\infty}^{\mathbf{t}} x(\tau)h(t - \tau)d\tau \quad \forall t$$

Note:

Notice that the output y(t) depends only on $x(\tau)$ for $\tau \leq t$, and thus the system is causal!!!

Example 2.2

Analysis of an LTI system(time domain)

Figure 2.8: LTI system

For an LTI system with the input and the impulse response given below, find the output.

$$x(t) = \begin{cases} e^{-at}, & t \ge 0\\ 0, & \text{otherwise} \end{cases}$$

$$h(t) = \begin{cases} e^{-bt}, & t \ge 0\\ 0, & \text{otherwise} \end{cases}$$

where a > 0 and b > 0.

Solution:

Figure 2.9: Input, impulse response, and convolution integral

We have to compute the convolution integral between h(t) and x(t) as:

$$y(t) = h(t) * x(t)$$
$$= \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$

Figure 2.10: Output signal y(t)

Note:

Comparing the input x(t) and the output y(t), we can notice that the system operates as a LPF(Low Pass Filter)!!!

Assignment: Try y(t) = x(t) * h(t), and see if you get the same result!

Example 2.3

Analysis of an LTI system(time domain)

Repeat the above example given the input and the impulse response as follows:

$$x(t) = \begin{cases} 1, & 0 \le t \le 2 \\ 0, & \text{elsewhere} \end{cases}$$

$$h(t) = \begin{cases} 2, & 1 \le t \le 3\\ 0, & \text{elsewhere} \end{cases}$$

Solution:

Figure 2.11: Input, impulse response, and convolution integral

We now try to compute the convolution integral between x(t) and h(t) as:

$$y(t) = x(t) * h(t)$$
$$= \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

Figure 2.12: Output signal y(t)

Comparing the input x(t) and the output y(t), we can notice that the system as well operates as a LPF(Low Pass Filter) as in the previous example!!!

Assignment: Try y(t) = h(t) * x(t), and see if you get the same result!

Assignment: Which one (y(t) = h(t) * x(t)) or y(t) = x(t) * h(t) is easier to compute for you in example 2.1?