## Contents

3 FOURIER SERIES ..... 31
3.1 Concept of Fourier Series ..... 31
3.2 Trigonometric Representation of Fourier Series ..... 33
3.3 Derivation of Fourier Series Coefficients ..... 36
3.4 Complex Representation of Fourier Series ..... 50

## Chapter 3

## FOURIER SERIES

### 3.1 Concept of Fourier Series

## Basic Idea

Given a periodic signal $x(t)$ with fundamental period of $T_{0}$, i.e.:

$$
x(t)=x\left(t+T_{0}\right), \quad \forall t
$$

Let's define the fundamental frequency of $x(t)$ as:

$$
\omega_{0}=\frac{2 \pi}{T_{0}}(\mathrm{rad} / \mathrm{sec}): \text { angular frequency }{ }^{1}
$$

Then, we have the following facts:

1. $\cos \left(\omega_{0} t\right)$ and $\sin \left(\omega_{0} t\right)$ are periodic with period $T_{0}$
2. $\left\{\cos \left(n \omega_{0} t\right)\right\}_{n=1}^{\infty}$ and $\left\{\sin \left(n \omega_{0} t\right)\right\}_{n=1}^{\infty}$ are periodic with period $T_{0}$ (cf. $\frac{T_{0}}{n}<T_{0}$ )
3. Linear combination of periodic $\operatorname{signals}\left(T_{0}\right)$ is also periodic with period of $T_{0}$, i.e.

$$
\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(n \omega_{0} t\right)+b_{n} \sin \left(n \omega_{0} t\right)\right\}
$$

[^0]Therefore, considering a d.c. component $d_{0}$, any periodic $\left(T_{0}\right)$ signal can be represented by a linear combination of harmonically related sine and cosine functions:

$$
\begin{align*}
x(t) & =d_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n}{T_{0}} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n}{T_{0}} t\right) \\
& =d_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{0} t\right) \tag{3.1}
\end{align*}
$$

where $\left\{a_{n}\right\}_{n=1}^{\infty},\left\{b_{n}\right\}_{n=1}^{\infty}$, and $d_{0}$ are to be determined depending on the specific $x(t)$.

## Physical meaning:

$d_{0}, a_{n}$, and $b_{n}$ represent the magnitude(or contribution) of each harmonic frequency component d.c., $\cos \left(n \omega_{0} t\right)$, and $\sin \left(n \omega_{0} t\right)$ respectively in $x(t)!!!$

## Example 3.1

Representation of periodic signal $x(t)$, whose period is $T_{0}=2 \pi(\mathrm{sec})$.

$$
x(t)=\sin (t)+\sin (2 t)
$$

(cf.) The Fourier Series coefficients of $x(t)$ in the above example are $b_{1}=b_{2}=1$, and all other coefficients are zero!

### 3.2 Trigonometric Representation of Fourier Series

Consider a periodic signal $x(t)$, and suppose it satisfies the Dirichlet conditions, i.e.

1. $x(t)=x\left(t+n \cdot T_{0}\right), \quad n$ : integer
2. Dirichlet Conditions:
(a) $x(t)$ has a finite number of finite maxima and minima within the interval $T_{0}$.
(b) $x(t)$ has a finite number of finite discontinuities within $T_{0}$.
(c) $x(t)$ is absolutely integrable over $T_{0}$,i.e.

$$
\int_{T_{0}}|x(t)| d t<\infty
$$

Figure 3.1: A periodic signal satisfying Dirichlet conditions.

Then, $x(t)$ can be expressed as a linear combination of harmonically related sine and cosine functions:

$$
\begin{align*}
x(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cdot \cos \left(\frac{2 \pi n t}{T_{0}}\right)+\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(\frac{2 \pi n t}{T_{0}}\right) \\
& =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cdot \cos \left(n \omega_{0} t\right)+\sum_{n=1}^{\infty} b_{n} \cdot \sin \left(n \omega_{0} t\right) \tag{3.2}
\end{align*}
$$

where $\omega_{0}=\frac{2 \pi}{T_{0}}$ is the fundamental frequency of $x(t)$.

Corresponding F.S. coefficients $\left\{a_{n}\right\}_{n=\mathbf{0}}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ are given as follows:

$$
\begin{gathered}
a_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos \left(\frac{2 \pi n t}{T_{0}}\right) d t=\frac{2}{T_{0}} \int_{T_{0}} x(t) \cos \left(n \omega_{0} t\right) d t \quad \text { :cosine of } n \text {-th harmonic } \\
b_{n}=\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin \left(\frac{2 \pi n t}{T_{0}}\right) d t=\frac{2}{T_{0}} \int_{T_{0}} x(t) \sin \left(n \omega_{0} t\right) d t \quad \text { :sine of } n \text {-th harmonic }
\end{gathered}
$$

Assume $T_{0}=2 \pi(\mathrm{sec})$ from now on $\mathrm{WLOG}^{2}$, then $\omega_{0}=1(\mathrm{rad} / \mathrm{sec})$ and the Fourier series can simply be put as follows:

$$
x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos (n t) d t \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin (n t) d t
\end{aligned}
$$

[^1]
## Example 3.2

Express $x(t)=\cos (t)$ in a Fourier series.

## Solution:

## Example 3.3

(1) $x(t)=\cos ^{2}(t)$
(2) $x(t)=\cos \{\tan (t)\}$
(3) $x(t)=\delta(t), \quad-\frac{\pi}{2}<t \leq \frac{\pi}{2}$, and $x(t)=x(t+2 \pi)$

### 3.3 Derivation of Fourier Series Coefficients

There exist two approaches to derive the trigonometric F.S. coefficients:

1. MSE (Mean Squared Error) minimization
2. Concept of vector based orthonormal basis for signal space
3. MSE minimization: (staightforward, but tedius to do)

First, we define the mean squared error(MSE) of the Fourier series representation of a continuous periodic signal $x(t)$ as:

$$
\mathrm{MSE}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2}(t) d t \quad: \text { we assumed } T_{0}=2 \pi
$$

where the error signal $e(t)$ is $e(t) \triangleq x(t)-x_{F}(t)$, and $x(t)$ is the original signal whereas $x_{F}(t)$ is the F.S. representation of $x(t)$.

## Objective:

We want to find the F.S. coefficients $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$, which minimizes the MSE. (i.e.: we want to have $x_{F}(t)$ be as close as to $x(t)$ )

To achieve our objective, we first compute $e^{2}(t)$, where

$$
\begin{aligned}
e(t) & \triangleq x(t)-x_{F}(t) \\
& =x(t)-\left\{\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)\right\}
\end{aligned}
$$

Then,

$$
\begin{align*}
& e^{2}(t)= x^{2}(t)+\left\{\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)\right\}^{2} \\
&-2 x(t)\left\{\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)\right\} \\
&= x^{2}(t)+\left\{\frac{a_{0}^{2}}{4}+\sum_{n=1}^{\infty} a_{n}^{2} \cos ^{2}(n t)+\sum_{p, q=1}^{\infty} \sum_{p \neq q}^{\infty} a_{p} a_{q} \cos (p t) \cos (q t)\right. \\
&+\sum_{n=1}^{\infty} b_{n}^{2} \sin ^{2}(n t)+\sum_{r, s=1}^{\infty} \sum_{r \neq s}^{\infty} b_{r} b_{s} \sin (r t) \sin (s t) \\
&+a_{0} \sum_{n=1}^{\infty} a_{n} \cos (n t)+a_{0} \sum_{n=1}^{\infty} b_{n} \sin (n t) \\
&\left.+2 \sum_{\alpha=1}^{\infty} \sum_{\beta=1}^{\infty} a_{\alpha} b_{\beta} \cos (\alpha t) \sin (\beta t)\right\}
\end{align*}
$$

We now take a look at MSE $=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2}(t) d t$ term by term using (3.3):
(1) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos ^{2}(n t) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}[1+\cos (2 n t)] d t=\frac{1}{2 \pi} \cdot\left(\frac{1}{2} 2 \pi\right)=\frac{1}{2}$
(2) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin ^{2}(n t) d t=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1}{2}[1-\cos (2 n t)] d t=\frac{1}{2 \pi} \cdot\left(\frac{1}{2} 2 \pi\right)=\frac{1}{2}$
(3) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (n t) d t=0$
(4) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (n t) d t=0$
(5) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (p t) \cos (q t) d t=0 \quad p \neq q$
(6) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \sin (r t) \sin (s t) d t=0 \quad r \neq s$
(7) $\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (\alpha t) \sin (\beta t) d t=0 \quad \forall \alpha, \beta$

For notational convenience, let's compute $2 \pi \mathrm{MSE}$ rather than MSE, then from the above calculation results, we have:

$$
\begin{align*}
2 \pi \mathrm{MSE}= & \int_{0}^{2 \pi} e^{2}(t) d t \\
= & \int_{0}^{2 \pi} x^{2}(t) d t+\int_{0}^{2 \pi} \frac{a_{0}^{2}}{4} d t+\pi \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)-a_{0} \int_{0}^{2 \pi} x(t) d t \\
& -2 \sum_{n=1}^{\infty} a_{n} \int_{0}^{2 \pi} x(t) \cos (n t) d t-2 \sum_{n=1}^{\infty} b_{n} \int_{0}^{2 \pi} x(t) \sin (n t) d t \tag{3.4}
\end{align*}
$$

To get $a_{k}$ 's and $b_{k}$ 's which minimize the MSE, we differentiate (3.4) with respect to $a_{k}, b_{k}$, and put to zero:

1. $a_{0}$

$$
\begin{aligned}
& \frac{\partial(2 \pi \mathrm{MSE})}{\partial a_{0}}=\frac{\partial}{\partial a_{0}}\left\{\frac{a_{0}^{2}}{4} 2 \pi-a_{0} \int_{0}^{2 \pi} x(t) d t\right\} \\
&=\pi a_{0}-\int_{0}^{2 \pi} x(t) d t \\
&=0 \\
& \Longrightarrow a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) d t \quad \text { (twice the d.c. component) }
\end{aligned}
$$

2. $a_{k}$

$$
\begin{aligned}
\frac{\partial(2 \pi \mathrm{MSE})}{\partial a_{k}} & =\frac{\partial}{\partial a_{k}}\left\{\pi \sum_{n=1}^{\infty} a_{n}^{2}-2 \sum_{n=1}^{\infty} a_{n} \cdot \int_{0}^{2 \pi} x(t) \cos (n t) d t\right\} \\
& =2 \pi a_{k}-2 \int_{0}^{2 \pi} x(t) \cos (k t) d t \\
& =2\left\{\pi a_{k}-\int_{0}^{2 \pi} x(t) \cos (k t) d t\right\} \\
& =0 \\
\Longrightarrow \quad a_{k} & =\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos (k t) d t \quad k=1,2,3, \cdots
\end{aligned}
$$

(cf.) Notice that the above formula for $a_{k}$ is valid for $k=\mathbf{0}, 1,2,3, \cdots$.
3. $b_{k}$

$$
\begin{aligned}
\frac{\partial(2 \pi \mathrm{MSE})}{\partial b_{k}} & =\frac{\partial}{\partial b_{k}}\left\{\pi \sum_{n=1}^{\infty} b_{n}^{2}-2 \sum_{n=1}^{\infty} b_{n} \cdot \int_{0}^{2 \pi} x(t) \sin (n t) d t\right\} \\
& =2 \pi b_{k}-2 \int_{0}^{2 \pi} x(t) \sin (k t) d t \\
& =2\left\{\pi b_{k}-\int_{0}^{2 \pi} x(t) \sin (k t) d t\right\} \\
& =0 \\
\Longrightarrow \quad b_{k} & =\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin (k t) d t \quad k=1,2,3, \cdots
\end{aligned}
$$

## Note:

To guarantee that above $a_{k}$, and $b_{k}$ provide the minimum value for MSE, we have to show that MSE is a convex function at those points, i.e.

1. $\frac{\partial^{2}(2 \pi \mathrm{MSE})}{\partial a_{0}^{2}}=\pi>0$
2. $\frac{\partial^{2}(2 \pi \mathrm{MSE})}{\partial a_{k}^{2}}=2 \pi>0$
3. $\frac{\partial^{2}(2 \pi \mathrm{MSE})}{\partial b_{k}^{2}}=2 \pi>0$
(cf.) For your reference, here are some trigonometric identities:

$$
\begin{aligned}
\sin (\alpha+\beta) & =\sin (\alpha) \cos (\beta)+\cos (\alpha) \sin (\beta) \\
\sin (\alpha-\beta) & =\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta) \\
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
\cos (\alpha-\beta) & =\cos (\alpha) \cos (\beta)+\sin (\alpha) \sin (\beta) \\
\cos (\alpha) \cos (\beta) & =\frac{1}{2}\{\cos (\alpha+\beta)+\cos (\alpha-\beta)\} \\
\sin (\alpha) \sin (\beta) & =-\frac{1}{2}\{\cos (\alpha+\beta)-\cos (\alpha-\beta)\} \\
\sin (\alpha) \cos (\beta) & =\frac{1}{2}\{\sin (\alpha+\beta)+\sin (\alpha-\beta)\} \\
\cos (\alpha) \sin (\beta) & =\frac{1}{2}\{\cos (\alpha+\beta)-\cos (\alpha-\beta)\}
\end{aligned}
$$

## 2. Orthonornal basis for a signal space: ${ }^{3}$

## Prerequisites and reviews:

We first review some of the basic concepts of vector spaces, and link them to the concept of signal space.

## (1) Inner Product:

Define an inner product of two signals in a signal space $\mathbf{S}$ as:

$$
\begin{equation*}
<p(t), q(t)>\triangleq \frac{1}{\pi} \int_{0}^{2 \pi} p(t) \cdot q(t) d t \tag{3.5}
\end{equation*}
$$

where $p(t) \in \mathbf{S}$ and $q(t) \in \mathbf{S}$.

Note: Requirements for an inner product definition:
(i) Linearity: $\left\langle\alpha x_{1}+\beta x_{2}, y\right\rangle=\alpha\left\langle x_{1}, y\right\rangle+\beta\left\langle x_{2}, y\right\rangle$
(ii) Symmetry: $\langle x, y\rangle=\langle y, x\rangle$
(iii) Non-degeneray: $\|x\|^{2} \stackrel{\Delta}{=}<x, x>\geq 0$, and $\|x\|^{2}=0$ iff $x=0$

Assignment: Check that (3.5) satisfies the above conditions (i) to (iii).

## (2) Independence:

Signals $\left\{f_{n}(t)\right\}_{n=1}^{\infty} \in \mathbf{S}$ are called independent if the following condition is met:

$$
\sum_{n=1}^{\infty} a_{n} \cdot f_{n}(t)=0 \quad \text { iff } \quad a_{n}=0 \quad \forall n=1,2, \cdots
$$

[^2]
## (3) Orthogonality:

Two signals $f_{n}(t) \in \mathbf{S}$ and $f_{m}(t) \in \mathbf{S}$ are called orthogonal if they satisfiy the follwoing condition:

$$
<f_{n}(t), f_{m}(t)>=a_{n, m} \delta_{n m}
$$

where $\delta_{n m}$ is called the Kronecker delta, and defined as follows:

$$
\delta_{n m} \triangleq \begin{cases}1, & \text { if } n=m \\ 0, & \text { if } n \neq m\end{cases}
$$

## (4) Orthomormality:

Two signals $f_{n}(t) \in \mathbf{S}$ and $f_{m}(t) \in \mathbf{S}$ are called orthonormal if they satisfiy the following condition:

$$
<f_{n}(t), f_{m}(t)>=\delta_{n m}
$$

## (5) Basis:

Basis of a signal space $\mathbf{S}$ is the minimum set of independent signals $\left\{f_{n}(t)\right\}_{n=1}^{N}$ such that any signal $x(t)$ in $\mathbf{S}$ can be represented by a linear combination of $\left\{f_{n}(t)\right\}_{n=1}^{N}$, i.e.

$$
x(t)=\sum_{n=1}^{N} a_{n} \cdot f_{n}(t)
$$

(cf.) Orthonormal basis: basis composed of orthonormal signals.

We now consider a signal space which is composed of periodic signals that can be represented by the Fourier Series, denoted as F:

$$
\begin{equation*}
\mathbf{F}=\left\{x(t) \left\lvert\, x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t)\right.\right\} \quad \text { period }=2 \pi \tag{3.6}
\end{equation*}
$$

Notice that:

1. Signals in $\mathbf{F}$ are linear combinations of $1,\{\cos (n t)\}_{n=1}^{\infty}$, and $\{\sin (n t)\}_{n=1}^{\infty}$
2. 1, $\{\cos (n t)\}_{n=1}^{\infty}$, and $\{\sin (n t)\}_{n=1}^{\infty}$ are independent

And thus 1, $\{\cos (n t)\}_{n=1}^{\infty}$, and $\{\sin (n t)\}_{n=1}^{\infty}$ could be a BASIS for the signal space $\mathbf{F}$.

Now, check the following facts:
(i) $<\sin (n t), \sin (m t)>=\delta_{n m}$
(ii) $<\cos (n t), \cos (m t)>=\delta_{n m}$
(iii) $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=1$
(iv) $<\sin (n t), \cos (m t)>=0, \quad \forall n, m$
(v) $<\frac{1}{\sqrt{2}}, \cos (n t)>=0, \quad \forall n \neq 0$
(vi) $<\frac{1}{\sqrt{2}}, \sin (n t)>=0, \quad \forall n$
$\Longrightarrow$ We can see that:
$\{\cos (n t)\}_{n=1}^{\infty},\{\sin (n t)\}_{n=1}^{\infty}$, and $\frac{1}{\sqrt{2}}$ constitute an orthonormal basis for $\mathbf{F}$

## FACT:

In general, the magnitude(or contribution) of each element $\left\{f_{n}(t)\right\}_{n=1}^{N}$ of an orthonormal basis for a signal $x(t)$ in a signal space $\mathbf{F}$ is the projection of $x(t)$ onto $f_{n}(t)$ 's, and the projection is done by taking the inner product between $x(t)$ and $f_{n}(t)$.

## Example 3.4

A vector $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ in $\mathbf{R}^{3}$ space.

## Example 3.5

A signal $x(t)=1+2 \sin (t)+3 \cos (t)$ in the signal space $\mathbf{F}$.

Now, for any signal $x(t)$ in $\mathbf{F}$,

$$
x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) \in \mathbf{F}
$$

(1) Projection of $x(t)$ onto $\frac{1}{\sqrt{2}}$ : provide $a_{0}$ (d.c. component)

$$
\begin{aligned}
<x(t), \frac{1}{\sqrt{2}}> & =<\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t), \frac{1}{\sqrt{2}}> \\
\text { LHS } & =<x(t), \frac{1}{\sqrt{2}}>=\frac{1}{\sqrt{2}} \frac{1}{\pi} \int_{0}^{2 \pi} x(t) d t \\
\text { RHS }= & <\frac{a_{0}}{2}, \frac{1}{\sqrt{2}}>=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{a_{0}}{2 \sqrt{2}} d t=\frac{a_{0}}{\sqrt{2}} \\
& \Longrightarrow \frac{a_{0}}{\sqrt{2}}=\frac{1}{\sqrt{2}} \frac{1}{\pi} \int_{0}^{2 \pi} x(t) d t \\
& \Longrightarrow a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) d t
\end{aligned}
$$

(2) Projection of $x(t)$ onto $\{\cos (m t)\}_{m=1}^{\infty}$ : provide $a_{m}$ 's

$$
\begin{array}{r}
<x(t), \cos (m t)>=<\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t), \cos (m t)> \\
=<\frac{a_{0}}{2}+\cos (m t)>+\sum_{n=1}^{\infty}<a_{n} \cos (n t), \cos (m t)> \\
+\sum_{n=1}^{\infty}<b_{n} \sin (n t), \cos (m t)> \\
\text { LHS }=<x(t), \cos (m t)>=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos (m t) d t \\
\text { RHS }=<\cos (m t), \cos (m t)>=\frac{1}{\pi} \int_{0}^{2 \pi} \cos ^{2}(m t) d t=a_{m} \\
\Longrightarrow \quad a_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos (m t) d t, \quad m=1,2,3, \cdots
\end{array}
$$

Note:
Notice that the above formula of $a_{m}$ can be used including the d.c. componenet, i.e., for $m=\mathbf{0}, 1,2,3, \cdots$.
(3) Projection of $x(t)$ onto $\{\sin (m t)\}_{m=1}^{\infty}$ : provide $b_{m}$ 's

Similarly, we get $b_{m}$ 's as follows:

$$
b_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin (m t) d t, \quad m=1,2,3, \cdots
$$

derivation: assignment

## NOTE:

In either way, MSE minimization or orthonormal basis for signal space, we get the same formula for the F.S. coefficients!!!

Special properties of F.S. coefficients
(1) Symmetric signal (even function): $x(t)=x(-t)$

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t \\
b_{n} & =0 \quad \forall n=1,2, \cdots
\end{aligned}
$$

Figure 3.2: Symmetric signal $x(t)$
(cf.) Symmetric signals can be expessed using only cosine terms, including the d.c. component
(2) Asymmetric signal (odd function): $x(t)=-x(-t)$

$$
\begin{gathered}
a_{n}=0 \quad \forall n=1,2, \cdots \\
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t
\end{gathered}
$$

Figure 3.3: Asymmetric signal $x(t)$
(cf.) Asymmetric signals can be expessed using only sine terms, and the d.c. component does not exists inherently.
A. $a_{n}=\frac{1}{\pi} \int_{2 \pi} x(t) \cos (n t) d t$

$$
=\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cos (n t) d t
$$

$$
=\frac{1}{\pi} \int_{-\pi}^{0} x(t) \cos (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t \quad\left(\text { let } t^{\prime}=-t \text { in 1st term }\right)
$$

$$
=\frac{1}{\pi} \int_{\pi}^{0} x\left(-t^{\prime}\right) \cos \left(-n t^{\prime}\right)\left(-d t^{\prime}\right)+\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi} x(-t) \cos (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t
$$

(1) Symmetric $x(t): x(t)=x(-t)$

$$
a_{n}=\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t=\frac{2}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t
$$

(2) Asymmetric $x(t): x(t)=-x(-t)$

$$
a_{n}=-\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \cos (n t) d t=0
$$

B. $b_{n}=\frac{1}{\pi} \int_{2 \pi} x(t) \sin (n t) d t$

$$
=\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \sin (n t) d t
$$

$$
=\frac{1}{\pi} \int_{-\pi}^{0} x(t) \sin (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t \quad\left(\text { let } t^{\prime}=-t \text { in 1st term }\right)
$$

$$
=\frac{1}{\pi} \int_{\pi}^{0} x\left(-t^{\prime}\right) \sin \left(-n t^{\prime}\right)\left(-d t^{\prime}\right)+\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t
$$

$$
=-\frac{1}{\pi} \int_{0}^{\pi} x(-t) \sin (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t
$$

(1) Symmetric $x(t): x(t)=x(-t)$

$$
b_{n}=-\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t=0
$$

(2) Asymmetric $x(t): x(t)=-x(-t)$

$$
b_{n}=\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t+\frac{1}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t=\frac{2}{\pi} \int_{0}^{\pi} x(t) \sin (n t) d t
$$

## Intuition:

Symmetric signals can be expressed in a F.S. form using only symmetric(i.e. d.c. and cosine) terms, whereas asymmetric signals need only asymmetric(i.e. sine) terms!!!

## Gibb's Phenomenon

Now, we have a Fourier series representation of a periodic signal $x(t)$ as follows:

$$
\begin{equation*}
x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n t)+\sum_{n=1}^{\infty} b_{n} \sin (n t) \tag{3.7}
\end{equation*}
$$

Notice that:
\& Practically, we cannot use infinite number of coefficients $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=1}^{\infty}$ for (3.7).
\& Therefore, we have to use a finite number of $a_{n}$ 's and $b_{n}$ 's, i.e.

$$
\begin{equation*}
\hat{x}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n t)+\sum_{n=1}^{N} b_{n} \sin (n t) \tag{3.8}
\end{equation*}
$$

This is a truncated Fourier series, and due to the difference(or error) between (3.7) and (3.8), there inevitably happens some overshoots and undershoots in $\hat{x}(t)$.
$\Longrightarrow$ This is called the "GIBB's PHENOMENON"

## Example 3.6

Figure 3.4: A cosine square wave signal.

NOTE:
The more coefficients we use, the better (or closer) Fourier series representation of $x(t)$ by $\hat{x}(t)!!!$

Figure 3.5: Effect of the number of F.S. coefficient.

### 3.4 Complex Representation of Fourier Series

Under the same assumptions(i.e. periodicity and Dirichlet conditions) on $x(t)$ as in the trigonometric representation of Fourier series for $x(t)$, we can express $x(t)$ with a linear combination of harmonically related complex exponentials, i.e.

$$
x(t)=\sum_{k=-\infty}^{\infty} C_{k} \cdot e^{j k t} \quad \text { where } T_{0}=2 \pi(\mathrm{sec})
$$

and the corresponding complex F.S. coefficients $\left\{C_{k}\right\}_{k=-\infty}^{\infty}$ are given:

$$
C_{k}=\frac{1}{2 \pi} \int_{2 \pi} x(t) e^{-j k t} d t
$$

## Note:

In general, $C_{k}$ 's are complex numbers, i.e.:

$$
\begin{aligned}
C_{k} & =\operatorname{Re}\left[C_{k}\right]+j \operatorname{Im}\left[C_{k}\right] \text { (cartesian coordinate) } \\
& =\left|C_{k}\right| e^{j \Phi_{k}} \text { (polar coordinate) : preferred!!! }
\end{aligned}
$$

where

$$
\begin{aligned}
\left|C_{k}\right| & =\sqrt{\operatorname{Re}^{2}\left[C_{k}\right]+\operatorname{Im}^{2}\left[C_{k}\right]} \\
\Phi_{k} & =\arctan \left\{\frac{\operatorname{Im}\left[C_{k}\right]}{\operatorname{Re}\left[C_{k}\right]}\right\}
\end{aligned}
$$

Figure 3.6: Polar form of complex F.S. coefficient $C_{k}$

## Derivation of complex Fourier series

From the well known Euler's formula:

$$
e^{ \pm j \theta}=\cos (\theta) \pm j \sin (\theta)
$$

We have

$$
\begin{gathered}
e^{ \pm j n t}=\cos (n t) \pm j \sin (n t) \\
\Longrightarrow\left\{\begin{array}{l}
\cos (n t)=\frac{1}{2}\left(e^{j n t}+e^{-j n t}\right) \\
\sin (n t)=\frac{1}{2 j}\left(e^{j n t}-e^{-j n t}\right)
\end{array}\right.
\end{gathered}
$$

Then, the triginometric F.S. representation of $x(t)$ becomes:

$$
\begin{align*}
x(t)= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n t)+b_{n} \sin (n t)\right\} \\
= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n}\left(\frac{e^{j n t}+e^{-j n t}}{2}\right)+b_{n}\left(\frac{e^{j n t}-e^{-j n t}}{2 j}\right)\right\} \\
= & \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{\frac{1}{2}\left(a_{n}-j b_{n}\right) e^{j n t}+\frac{1}{2}\left(a_{n}+j b_{n}\right) e^{-j n t}\right\} \quad\left(\mathbf{c f} \cdot \frac{1}{j}=-j\right) \\
& (\text { let } n=k \text { and } n=-k \text { in 1st and 2nd sum respectively }) \\
= & \frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{1}{2}\left(a_{k}-j b_{k}\right) e^{j k t}+\sum_{k=-1}^{-\infty} \frac{1}{2}\left(a_{-k}+j b_{-k}\right) e^{j k t} \tag{3.9}
\end{align*}
$$

Fact: Now, let's take a look at the properties of $a_{k}$ and $b_{k}$ for a moment, and we can check the following facts:

$$
\left\{\begin{array}{l}
a_{-k}=a_{k}  \tag{3.10}\\
b_{-k}=-b_{k} \\
b_{0}=0
\end{array}\right.
$$

proof:

$$
\begin{aligned}
a_{-k} & =\frac{1}{\pi} \int_{2 \pi} x(t) \cos (-k t) d t=\frac{1}{\pi} \int_{2 \pi} x(t) \cos (k t) d t \triangleq a_{k} \\
b_{-k} & =\frac{1}{\pi} \int_{2 \pi} x(t) \sin (-k t) d t=-\frac{1}{\pi} \int_{2 \pi} x(t) \sin (k t) d t \triangleq-b_{k} \\
b_{0} & =\frac{1}{\pi} \int_{2 \pi} x(t) \sin (0) d t=0
\end{aligned} \quad \text { q.e.d. } \quad ~ l
$$

Using (3.10), (3.9) can be expressed as:

$$
\begin{equation*}
x(t)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} \frac{1}{2}\left(a_{k}-j b_{k}\right) e^{j k t}+\sum_{k=-1}^{-\infty} \frac{1}{2}\left(a_{k}-j b_{k}\right) e^{j k t} \tag{3.11}
\end{equation*}
$$

Now, let

$$
C_{k} \triangleq \frac{1}{2}\left(a_{k}-j b_{k}\right)
$$

Then,

$$
\left\{\begin{array}{l}
C_{0}=\frac{1}{2}\left(a_{0}-j b_{0}\right)=\frac{1}{2} a_{0} \quad\left(\text { cf. } b_{0}=0\right) \\
e^{j 0 t}=e^{0}=1
\end{array}\right.
$$

Therefore, (3.11) becomes:

$$
\begin{aligned}
x(t) & =\frac{a_{0}}{2}+\sum_{k=1}^{\infty} C_{k} e^{j k t}+\sum_{k=-1}^{-\infty} C_{k} e^{j k t} \\
& =\sum_{k=-\infty}^{\infty} C_{k} e^{j k t}
\end{aligned}
$$

## : Complex F.S. representation

Corresponding coefficient $C_{k}$ is given by:

$$
\begin{aligned}
C_{k} & \triangleq \frac{1}{2}\left(a_{k}-j b_{k}\right) \\
& =\frac{1}{2}\left\{\frac{1}{\pi} \int_{0}^{2 \pi} x(t) \cos (k t) d t-j \frac{1}{\pi} \int_{0}^{2 \pi} x(t) \sin (k t) d t\right\} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t)\{\cos (k t)-j \sin (k t)\} d t \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) e^{-j k t} d t
\end{aligned}
$$

## NOTE:

In general, with an arbitrary period $T$, i.e.

$$
x(t)=x(t+T)
$$

then, the complex Fourier series representation of $x(t)$ is given as:

$$
\begin{aligned}
& x(t)=\sum_{k=-\infty}^{\infty} C_{k} \cdot e^{j \frac{2 \pi k t}{T}} \\
& C_{k}=\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi k t}{T}} d t
\end{aligned}
$$

which is called the "General Expression for a Complex F.S."

## Remarks:

1. Once we compute $C_{k}$ 's for positive $k$ 's $(k=1,2, \cdots)$, then $C_{-k}$ 's can be readily obtained as:

$$
C_{-k}=C_{k}^{*}
$$

proof:

$$
\begin{aligned}
C_{-k} & =\frac{1}{2}\left(a_{-k}-j b_{-k}\right) \\
& =\frac{1}{2}\left(a_{k}+j b_{k}\right) \quad\left(a_{k} \text { is even, and } b_{k} \text { is odd w.r.t. } \mathrm{k}\right) \\
& =\left\{\frac{1}{2}\left(a_{k}-j b_{k}\right)\right\}^{*} \\
& =C_{k}^{*}
\end{aligned}
$$

2. If $x(t)$ is a symmetric signal of $t$ (i.e. $x(t)=x(-t)$ ), then $C_{k}$ is pure real, i.e. $C_{k}=\operatorname{Re}\left[C_{k}\right]$, since $b_{k}$ 's are all zero for even function of $t$.
3. If $x(t)$ is an asymmetric signal of $t$ (i.e. $x(t)=-x(-t)$ ), then $C_{k}$ is pure imaginary, i.e. $C_{k}=j \operatorname{Im}\left[C_{k}\right]$, since $a_{k}$ 's are all zero for odd function of $t$.
4. Let's define the general expression for the complex exponentials as:

$$
\phi_{k}(t) \triangleq \frac{1}{\sqrt{2 \pi}} e^{j k t}
$$

Then, if we define the inner product between $\phi_{n}(t)$ and $\phi_{m}(t)$ as:

$$
<\phi_{n}(t), \phi_{m}(t)>\triangleq \int_{0}^{2 \pi} \phi_{n}(t) \phi_{m}^{*}(t) d t
$$

We can check $\left\{\phi_{k}(t)\right\}_{k=-\infty}^{\infty}$ form an orthonormal basis for a signal space $\mathbf{F}_{1}$, which is composed of periodic signals represented by complex F.S.:

$$
\mathbf{F}_{1}=\left\{x(t) \mid x(t)=\sum_{k=-\infty}^{\infty} C_{k} \cdot e^{j k t}\right\}
$$

## Assignment:

(a) Show that $\left\{\phi_{k}(t)\right\}_{k=-\infty}^{\infty}$ form a basis for $\mathbf{F}_{1}$.
(b) Prove the orthonormality between $\phi_{n}(t)$ and $\phi_{m}(t)$.
(c) Derive $C_{k}$ using projection onto each basis signal(i.e. taking inner product between $x(t)$ and each $\left\{\phi_{k}(t)\right\}_{k=-\infty}^{\infty}$
derivation of $C_{k}$ :

## Example 3.7

Determine whether the signal $x(t)$ given below can be expressed in a Fourier series, and if it does have its own F.S., find the complex Fourier series coefficient $C_{k}$ of it.

$$
x(t)=\left\{\begin{array}{ll}
1, & -1 \leq t<1 \\
0, & 1 \leq t<3
\end{array} \text { and } T=4(\mathrm{sec})\right.
$$

Figure 3.7: A train of pulses $x(t)$

Remarks: Notice that $x(t)$ is an even function of $t$, and thus
(i) $b_{k}=0$, i.e. $C_{k}$ must be pure real!
(ii) d.c. component of $x(t)$ is obviously $\frac{1}{2}=C_{0}$ from above!

## Solution:

(a) Notice that $C_{k}$ indeed is pure real, and $C_{0}=\frac{1}{2}$. [(i), and (ii)]
(b) Check that $C_{-k}=C_{k}^{*}=C_{k}$, i.e.

$$
C_{-k}=\frac{1}{2} \operatorname{sinc}\left(\frac{-k}{2}\right)=\frac{1}{2} \operatorname{sinc}\left(\frac{k}{2}\right)=C_{k}=C_{k}^{*}
$$

Figure 3.8: Complex F.S. coefficient $C_{k}$ of cosine square wave $x(t)$

## Example 3.8

Repeat the above example for the following $x(t)$.

$$
x(t)=\left\{\begin{array}{ll}
1, & 0 \leq t<\pi \\
-1, & -\pi \leq t<0
\end{array} \quad \text { and } T=2 \pi(\mathrm{sec})\right.
$$

Figure 3.9: A sine square wave $x(t)$

Remarks: Notice that $x(t)$ is now an odd function of $t$, and thus
(i) $a_{k}=0$, i.e. $C_{k}$ must be pure imaginary!
(ii) d.c. component of $x(t)$ is obviously $C_{0}=0$ from above!

## Solution:

## discussion:

(a) Notice that $C_{k}$ indeed is pure imaginary, and $C_{0}=0$ [(i), and (ii)], i.e.:

$$
C_{0}=\lim _{k \rightarrow 0} \frac{1-\cos (\pi k)}{j \pi k}=\lim _{k \rightarrow 0} \frac{\pi \sin (\pi k)}{j \pi}=0 \text { (by L'Hospital's law) }
$$

(b) Check that $C_{-k}=C_{k}^{*}$, i.e.

$$
C_{-k}=j \cdot \frac{\cos (-\pi k)-1}{-\pi k}=-j \cdot \frac{\cos (\pi k)-1}{\pi k}=C_{k}^{*}
$$

Figure 3.10: Complex F.S. coefficient $C_{k}$ of sine square wave $x(t)$


[^0]:    ${ }^{1}$ Corresponding cyclic frequency is $f_{0}=\frac{1}{T_{0}}=\frac{\omega_{0}}{2 \pi}(\mathrm{~Hz})$

[^1]:    ${ }^{2}$ WLOG: Without Loss Of Generality

[^2]:    ${ }^{3}$ We apply the concept of the vector space to a signal space

