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Chapter 3

FOURIER SERIES

3.1 Concept of Fourier Series

Basic Idea

Given a periodic signal x(t) with fundamental period of T0, i.e.:

x(t) = x(t + T0), ∀ t

Let’s define the fundamental frequency of x(t) as:

ω0 =
2π

T0

(rad/sec): angular frequency1

Then, we have the following facts:

1. cos(ω0t) and sin(ω0t) are periodic with period T0

2. {cos(nω0t)}∞n=1 and {sin(nω0t)}∞n=1 are periodic with period T0 (cf. T0

n
< T0)

3. Linear combination of periodic signals(T0) is also periodic with period of T0, i.e.

∞∑

n=1

{an cos(nω0t) + bn sin(nω0t)}

1Corresponding cyclic frequency is f0 = 1
T0

= ω0
2π (Hz)
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Therefore, considering a d.c. component d0, any periodic(T0) signal can be repre-
sented by a linear combination of harmonically related sine and cosine functions:

x(t) = d0 +
∞∑

n=1

an cos
(

2πn

T0

t
)

+
∞∑

n=1

bn sin
(

2πn

T0

t
)

= d0 +
∞∑

n=1

an cos (nω0t) +
∞∑

n=1

bn sin (nω0t) (3.1)

where {an}∞n=1, {bn}∞n=1, and d0 are to be determined depending on the
specific x(t).

Physical meaning:
d0, an, and bn represent the magnitude(or contribution) of each harmonic frequency
component d.c., cos(nω0t), and sin(nω0t) respectively in x(t)!!!

Example 3.1

Representation of periodic signal x(t), whose period is T0 = 2π(sec).

x(t) = sin(t) + sin(2t)

(cf.) The Fourier Series coefficients of x(t) in the above example are b1 = b2 = 1, and
all other coefficients are zero!
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3.2 Trigonometric Representation of Fourier Se-
ries

Consider a periodic signal x(t), and suppose it satisfies the Dirichlet conditions, i.e.

1. x(t) = x(t + n · T0), n: integer

2. Dirichlet Conditions:

(a) x(t) has a finite number of finite maxima and minima within the interval
T0.

(b) x(t) has a finite number of finite discontinuities within T0.

(c) x(t) is absolutely integrable over T0,i.e.

∫

T0

|x(t)|dt < ∞

Figure 3.1: A periodic signal satisfying Dirichlet conditions.
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Then, x(t) can be expressed as a linear combination of harmonically related sine and
cosine functions:

x(t) =
a0

2
+

∞∑

n=1

an · cos
(

2πnt

T0

)
+

∞∑

n=1

bn · sin
(

2πnt

T0

)

=
a0

2
+

∞∑

n=1

an · cos (nω0t) +
∞∑

n=1

bn · sin (nω0t) (3.2)

where ω0 = 2π
T0

is the fundamental frequency of x(t).

Corresponding F.S. coefficients {an}∞n=0 and {bn}∞n=1 are given as follows:

an =
2

T0

∫

T0

x(t) cos
(

2πnt

T0

)
dt =

2

T0

∫

T0

x(t) cos(nω0t)dt :cosine of n-th harmonic

bn =
2

T0

∫

T0

x(t) sin
(

2πnt

T0

)
dt =

2

T0

∫

T0

x(t) sin(nω0t)dt :sine of n-th harmonic

Assume T0 = 2π(sec) from now on WLOG2, then ω0 = 1(rad/sec) and the Fourier
series can simply be put as follows:

x(t) =
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

where

an =
1

π

∫ 2π

0
x(t) cos(nt)dt

bn =
1

π

∫ 2π

0
x(t) sin(nt)dt

2WLOG: Without Loss Of Generality
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Example 3.2

Express x(t) = cos(t) in a Fourier series.

Solution:

Example 3.3

(1) x(t) = cos2(t)

(2) x(t) = cos {tan(t)}

(3) x(t) = δ(t), −π
2

< t ≤ π
2
, and x(t) = x(t + 2π)
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3.3 Derivation of Fourier Series Coefficients

There exist two approaches to derive the trigonometric F.S. coefficients:

1. MSE (Mean Squared Error) minimization

2. Concept of vector based orthonormal basis for signal space

1. MSE minimization: (staightforward, but tedius to do)

First, we define the mean squared error(MSE) of the Fourier series representation of
a continuous periodic signal x(t) as:

MSE =
1

2π

∫ 2π

0
e2(t)dt : we assumed T0 = 2π

where the error signal e(t) is e(t)
∆
= x(t)−xF (t), and x(t) is the original signal whereas

xF (t) is the F.S. representation of x(t).

Objective:
We want to find the F.S. coefficients {an}∞n=0 and {bn}∞n=1, which minimizes the MSE.
(i.e.: we want to have xF (t) be as close as to x(t))

To achieve our objective, we first compute e2(t), where

e(t)
∆
= x(t)− xF (t)

= x(t)−
{

a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

}
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Then,

e2(t) = x2(t) +

{
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

}2

−2x(t)

{
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

}

= x2(t) +





a2
0

4
+

∞∑

n=1

a2
n cos2(nt) +

∞∑

p,q=1

∞∑

p6=q

apaq cos(pt) cos(qt)

+
∞∑

n=1

b2
n sin2(nt) +

∞∑

r,s=1

∞∑

r 6=s

brbs sin(rt) sin(st)

+a0

∞∑

n=1

an cos(nt) + a0

∞∑

n=1

bn sin(nt)

+2
∞∑

α=1

∞∑

β=1

aαbβ cos(αt) sin(βt)





−a0x(t)− 2x(t)
∞∑

n=1

an cos(nt)− 2x(t)
∞∑

n=1

bn sin(nt) (3.3)

We now take a look at MSE = 1
2π

∫ 2π
0 e2(t)dt term by term using (3.3):

(1) 1
2π

∫ 2π
0 cos2(nt)dt = 1

2π

∫ 2π
0

1
2
[1 + cos(2nt)] dt = 1

2π
·
(

1
2
2π

)
= 1

2

(2) 1
2π

∫ 2π
0 sin2(nt)dt = 1

2π

∫ 2π
0

1
2
[1− cos(2nt)] dt = 1

2π
·
(

1
2
2π

)
= 1

2

(3) 1
2π

∫ 2π
0 cos(nt)dt = 0

(4) 1
2π

∫ 2π
0 sin(nt)dt = 0

(5) 1
2π

∫ 2π
0 cos(pt) cos(qt)dt = 0 p 6= q

(6) 1
2π

∫ 2π
0 sin(rt) sin(st)dt = 0 r 6= s

(7) 1
2π

∫ 2π
0 cos(αt) sin(βt)dt = 0 ∀α, β

For notational convenience, let’s compute 2πMSE rather than MSE, then from the
above calculation results, we have:

2πMSE =
∫ 2π

0
e2(t)dt

=
∫ 2π

0
x2(t)dt +

∫ 2π

0

a2
0

4
dt + π

∞∑

n=1

(
a2

n + b2
n

)
− a0

∫ 2π

0
x(t)dt

−2
∞∑

n=1

an

∫ 2π

0
x(t) cos(nt)dt− 2

∞∑

n=1

bn

∫ 2π

0
x(t) sin(nt)dt (3.4)
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To get ak’s and bk’s which minimize the MSE, we differentiate (3.4) with respect to
ak, bk, and put to zero:

1. a0

∂(2πMSE)

∂a0

=
∂

∂a0

{
a2

0

4
2π − a0

∫ 2π

0
x(t)dt

}

= πa0 −
∫ 2π

0
x(t)dt

= 0

=⇒ a0 =
1

π

∫ 2π

0
x(t)dt (twice the d.c. component)

2. ak

∂(2πMSE)

∂ak

=
∂

∂ak

{
π

∞∑

n=1

a2
n − 2

∞∑

n=1

an ·
∫ 2π

0
x(t) cos(nt)dt

}

= 2πak − 2
∫ 2π

0
x(t) cos(kt)dt

= 2
{
πak −

∫ 2π

0
x(t) cos(kt)dt

}

= 0

=⇒ ak =
1

π

∫ 2π

0
x(t) cos(kt)dt k = 1, 2, 3, · · ·

(cf.) Notice that the above formula for ak is valid for k = 0, 1, 2, 3, · · ·.

3. bk

∂(2πMSE)

∂bk

=
∂

∂bk

{
π

∞∑

n=1

b2
n − 2

∞∑

n=1

bn ·
∫ 2π

0
x(t) sin(nt)dt

}

= 2πbk − 2
∫ 2π

0
x(t) sin(kt)dt

= 2
{
πbk −

∫ 2π

0
x(t) sin(kt)dt

}

= 0

=⇒ bk =
1

π

∫ 2π

0
x(t) sin(kt)dt k = 1, 2, 3, · · ·
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Note:
To guarantee that above ak, and bk provide the minimum value for MSE, we have to
show that MSE is a convex function at those points, i.e.

1. ∂2(2πMSE)
∂a2

0
= π > 0

2. ∂2(2πMSE)
∂a2

k
= 2π > 0

3. ∂2(2πMSE)
∂b2

k
= 2π > 0

(cf.) For your reference, here are some trigonometric identities:

sin(α + β) = sin(α) cos(β) + cos(α) sin(β)

sin(α− β) = sin(α) cos(β)− cos(α) sin(β)

cos(α + β) = cos(α) cos(β)− sin(α) sin(β)

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

cos(α) cos(β) =
1

2
{cos(α + β) + cos(α− β)}

sin(α) sin(β) = −1

2
{cos(α + β)− cos(α− β)}

sin(α) cos(β) =
1

2
{sin(α + β) + sin(α− β)}

cos(α) sin(β) =
1

2
{cos(α + β)− cos(α− β)}
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2. Orthonornal basis for a signal space: 3

Prerequisites and reviews:

We first review some of the basic concepts of vector spaces, and link them to the
concept of signal space.

(1) Inner Product:

Define an inner product of two signals in a signal space S as:

< p(t), q(t) >
∆
=

1

π

∫ 2π

0
p(t) · q(t)dt (3.5)

where p(t) ∈ S and q(t) ∈ S.

Note: Requirements for an inner product definition:

(i) Linearity: < αx1 + βx2, y >= α < x1, y > +β < x2, y >

(ii) Symmetry: < x, y >=< y, x >

(iii) Non-degeneray: ||x||2 ∆
=< x, x >≥ 0, and ||x||2 = 0 iff x = 0

Assignment: Check that (3.5) satisfies the above conditions (i) to (iii).

(2) Independence:

Signals {fn(t)}∞n=1 ∈ S are called independent if the following condition is met:

∞∑

n=1

an · fn(t) = 0 iff an = 0 ∀n = 1, 2, · · ·

3We apply the concept of the vector space to a signal space
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(3) Orthogonality:

Two signals fn(t) ∈ S and fm(t) ∈ S are called orthogonal if they satisfiy the follwoing
condition:

< fn(t), fm(t) >= an,mδnm

where δnm is called the Kronecker delta, and defined as follows:

δnm
∆
=





1, if n = m

0, if n 6= m

(4) Orthomormality:

Two signals fn(t) ∈ S and fm(t) ∈ S are called orthonormal if they satisfiy the
following condition:

< fn(t), fm(t) >= δnm

(5) Basis:

Basis of a signal space S is the minimum set of independent signals {fn(t)}N
n=1 such

that any signal x(t) in S can be represented by a linear combination of {fn(t)}N
n=1,

i.e.

x(t) =
N∑

n=1

an · fn(t)

(cf.) Orthonormal basis: basis composed of orthonormal signals.
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We now consider a signal space which is composed of periodic signals that can be
represented by the Fourier Series, denoted as F:

F =

{
x(t)|x(t) =

a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt)

}
period = 2π (3.6)

Notice that:

1. Signals in F are linear combinations of 1, {cos(nt)}∞n=1, and {sin(nt)}∞n=1

2. 1, {cos(nt)}∞n=1, and {sin(nt)}∞n=1 are independent

And thus 1, {cos(nt)}∞n=1, and {sin(nt)}∞n=1 could be a BASIS for the signal space F.

Now, check the following facts:

(i) < sin(nt), sin(mt) >= δnm

(ii) < cos(nt), cos(mt) >= δnm

(iii) < 1√
2
, 1√

2
>= 1

(iv) < sin(nt), cos(mt) >= 0, ∀n,m

(v) < 1√
2
, cos(nt) >= 0, ∀n 6= 0

(vi) < 1√
2
, sin(nt) >= 0, ∀n

=⇒ We can see that:

{cos(nt)}∞n=1 , {sin(nt)}∞n=1 , and
1√
2

constitute an orthonormal basis for F

FACT:
In general, the magnitude(or contribution) of each element {fn(t)}N

n=1 of an orthonor-
mal basis for a signal x(t) in a signal space F is the projection of x(t) onto fn(t)’s,
and the projection is done by taking the inner product between x(t) and fn(t).
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Example 3.4

A vector ~a = (a1, a2, a3) in R3 space.

Example 3.5

A signal x(t) = 1 + 2 sin(t) + 3 cos(t) in the signal space F .
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Now, for any signal x(t) in F,

x(t) =
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt) ∈ F

(1) Projection of x(t) onto 1√
2
: provide a0 (d.c. component)

< x(t),
1√
2

> = <
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt),
1√
2

>

LHS =< x(t),
1√
2

>=
1√
2

1

π

∫ 2π

0
x(t)dt

RHS =<
a0

2
,

1√
2

>=
1

π

∫ 2π

0

a0

2
√

2
dt =

a0√
2

=⇒ a0√
2

=
1√
2

1

π

∫ 2π

0
x(t)dt

=⇒ a0 =
1

π

∫ 2π

0
x(t)dt

(2) Projection of x(t) onto {cos(mt)}∞m=1: provide am’s

< x(t), cos(mt) > = <
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt), cos(mt) >

= <
a0

2
+ cos(mt) > +

∞∑

n=1

< an cos(nt), cos(mt) >

+
∞∑

n=1

< bn sin(nt), cos(mt) >

LHS =< x(t), cos(mt) >=
1

π

∫ 2π

0
x(t) cos(mt)dt

RHS =< cos(mt), cos(mt) >=
1

π

∫ 2π

0
cos2(mt)dt = am

=⇒ am =
1

π

∫ 2π

0
x(t) cos(mt)dt, m = 1, 2, 3, · · ·
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Note:
Notice that the above formula of am can be used including the d.c. componenet, i.e.,
for m = 0, 1, 2, 3, · · ·.

(3) Projection of x(t) onto {sin(mt)}∞m=1: provide bm’s

Similarly, we get bm’s as follows:

bm =
1

π

∫ 2π

0
x(t) sin(mt)dt, m = 1, 2, 3, · · ·

derivation: assignment

NOTE:
In either way, MSE minimization or orthonormal basis for signal space,
we get the same formula for the F.S. coefficients!!!
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Special properties of F.S. coefficients

(1) Symmetric signal (even function): x(t) = x(−t)

an =
2

π

∫ π

0
x(t) cos(nt)dt

bn = 0 ∀n = 1, 2, · · ·

Figure 3.2: Symmetric signal x(t)

(cf.) Symmetric signals can be expessed using only cosine terms, including the d.c.
component

(2) Asymmetric signal (odd function): x(t) = −x(−t)

an = 0 ∀n = 1, 2, · · ·

bn =
2

π

∫ π

0
x(t) sin(nt)dt

Figure 3.3: Asymmetric signal x(t)

(cf.) Asymmetric signals can be expessed using only sine terms, and the d.c. com-
ponent does not exists inherently.
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Proof:

A. an =
1

π

∫

2π
x(t) cos(nt)dt

=
1

π

∫ π

−π
x(t) cos(nt)dt

=
1

π

∫ 0

−π
x(t) cos(nt)dt +

1

π

∫ π

0
x(t) cos(nt)dt (let t

′
= −t in 1st term)

=
1

π

∫ 0

π
x(−t

′
) cos(−nt

′
)(−dt

′
) +

1

π

∫ π

0
x(t) cos(nt)dt

=
1

π

∫ π

0
x(−t) cos(nt)dt +

1

π

∫ π

0
x(t) cos(nt)dt

(1) Symmetric x(t): x(t) = x(−t)

an =
1

π

∫ π

0
x(t) cos(nt)dt +

1

π

∫ π

0
x(t) cos(nt)dt =

2

π

∫ π

0
x(t) cos(nt)dt

(2) Asymmetric x(t): x(t) = −x(−t)

an = − 1

π

∫ π

0
x(t) cos(nt)dt +

1

π

∫ π

0
x(t) cos(nt)dt = 0

B. bn =
1

π

∫

2π
x(t) sin(nt)dt

=
1

π

∫ π

−π
x(t) sin(nt)dt

=
1

π

∫ 0

−π
x(t) sin(nt)dt +

1

π

∫ π

0
x(t) sin(nt)dt (let t

′
= −t in 1st term)

=
1

π

∫ 0

π
x(−t

′
) sin(−nt

′
)(−dt

′
) +

1

π

∫ π

0
x(t) sin(nt)dt

= − 1

π

∫ π

0
x(−t) sin(nt)dt +

1

π

∫ π

0
x(t) sin(nt)dt

(1) Symmetric x(t): x(t) = x(−t)

bn = − 1

π

∫ π

0
x(t) sin(nt)dt +

1

π

∫ π

0
x(t) sin(nt)dt = 0

(2) Asymmetric x(t): x(t) = −x(−t)

bn =
1

π

∫ π

0
x(t) sin(nt)dt +

1

π

∫ π

0
x(t) sin(nt)dt =

2

π

∫ π

0
x(t) sin(nt)dt
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F.S. representation of a symmetric signal x(t)

Intuition:
Symmetric signals can be expressed in a F.S. form using only symmetric(i.e. d.c. and
cosine) terms, whereas asymmetric signals need only asymmetric(i.e. sine) terms!!!

Gibb’s Phenomenon

Now, we have a Fourier series representation of a periodic signal x(t) as follows:

x(t) =
a0

2
+

∞∑

n=1

an cos(nt) +
∞∑

n=1

bn sin(nt) (3.7)

Notice that:

♣ Practically, we cannot use infinite number of coefficients {an}∞n=0 and {bn}∞n=1

for (3.7).

♣ Therefore, we have to use a finite number of an’s and bn’s, i.e.

x̂(t) =
a0

2
+

N∑

n=1

an cos(nt) +
N∑

n=1

bn sin(nt) (3.8)

This is a truncated Fourier series, and due to the difference(or error) between
(3.7) and (3.8), there inevitably happens some overshoots and undershoots in
x̂(t).

=⇒ This is called the “GIBB’s PHENOMENON”

48



Example 3.6

Figure 3.4: A cosine square wave signal.

NOTE:
The more coefficients we use, the better (or closer) Fourier series representation of
x(t) by x̂(t)!!!

Figure 3.5: Effect of the number of F.S. coefficient.
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3.4 Complex Representation of Fourier Series

Under the same assumptions(i.e. periodicity and Dirichlet conditions) on x(t) as in
the trigonometric representation of Fourier series for x(t), we can express x(t) with a
linear combination of harmonically related complex exponentials, i.e.

x(t) =
∞∑

k=−∞
Ck · ejkt where T0 = 2π(sec)

and the corresponding complex F.S. coefficients {Ck}∞k=−∞ are given:

Ck =
1

2π

∫

2π
x(t)e−jktdt

Note:

In general, Ck’s are complex numbers, i.e.:

Ck = Re[Ck] + jIm[Ck] (cartesian coordinate)

= |Ck|ejΦk (polar coordinate) : preferred !!!

where
|Ck| =

√
Re2[Ck] + Im2[Ck]

Φk = arctan

{
Im[Ck]

Re[Ck]

}

Figure 3.6: Polar form of complex F.S. coefficient Ck
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Derivation of complex Fourier series

From the well known Euler’s formula:

e±jθ = cos(θ)± j sin(θ)

We have
e±jnt = cos(nt)± j sin(nt)

=⇒




cos(nt) = 1
2
(ejnt + e−jnt)

sin(nt) = 1
2j

(ejnt − e−jnt)

Then, the triginometric F.S. representation of x(t) becomes:

x(t) =
a0

2
+

∞∑

n=1

{an cos(nt) + bn sin(nt)}

=
a0

2
+

∞∑

n=1

{
an

(
ejnt + e−jnt

2

)
+ bn

(
ejnt − e−jnt

2j

)}

=
a0

2
+

∞∑

n=1

{
1

2
(an − jbn)ejnt +

1

2
(an + jbn)e−jnt

}
(cf .

1

j
= −j)

( let n = k and n = −k in 1st and 2nd sum respectively)

=
a0

2
+

∞∑

k=1

1

2
(ak − jbk)e

jkt +
−∞∑

k=−1

1

2
(a−k + jb−k)e

jkt (3.9)

Fact: Now, let’s take a look at the properties of ak and bk for a moment, and we can
check the following facts: 




a−k = ak

b−k = −bk

b0 = 0
(3.10)

proof:

a−k =
1

π

∫

2π
x(t) cos(−kt)dt =

1

π

∫

2π
x(t) cos(kt)dt

∆
= ak

b−k =
1

π

∫

2π
x(t) sin(−kt)dt = − 1

π

∫

2π
x(t) sin(kt)dt

∆
= −bk

b0 =
1

π

∫

2π
x(t) sin(0)dt = 0 q.e.d.
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Using (3.10), (3.9) can be expressed as:

x(t) =
a0

2
+

∞∑

k=1

1

2
(ak − jbk)e

jkt +
−∞∑

k=−1

1

2
(ak − jbk)e

jkt (3.11)

Now, let

Ck
∆
=

1

2
(ak − jbk)

Then,





C0 = 1
2
(a0 − jb0) = 1

2
a0 (cf. b0 = 0)

ej0t = e0 = 1

Therefore, (3.11) becomes:

x(t) =
a0

2
+

∞∑

k=1

Cke
jkt +

−∞∑

k=−1

Cke
jkt

=
∞∑

k=−∞
Cke

jkt

: Complex F.S. representation

Corresponding coefficient Ck is given by:

Ck
∆
=

1

2
(ak − jbk)

=
1

2

{
1

π

∫ 2π

0
x(t) cos(kt)dt− j

1

π

∫ 2π

0
x(t) sin(kt)dt

}

=
1

2π

∫ 2π

0
x(t) {cos(kt)− j sin(kt)} dt

=
1

2π

∫ 2π

0
x(t)e−jktdt
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NOTE:
In general, with an arbitrary period T , i.e.

x(t) = x(t + T )

then, the complex Fourier series representation of x(t) is given as:

x(t) =
∞∑

k=−∞
Ck · ej 2πkt

T

Ck =
1

T

∫

T
x(t)e−j 2πkt

T dt

which is called the “General Expression for a Complex F.S.”
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Remarks:

1. Once we compute Ck’s for positive k’s (k = 1, 2, · · ·), then C−k’s can be readily
obtained as:

C−k = C∗
k

proof:

C−k =
1

2
(a−k − jb−k)

=
1

2
(ak + jbk) (ak is even, and bk is odd w.r.t. k)

=
{

1

2
(ak − jbk)

}∗

= C∗
k

2. If x(t) is a symmetric signal of t (i.e. x(t) = x(−t)), then Ck is pure real, i.e.
Ck = Re[Ck], since bk’s are all zero for even function of t.

3. If x(t) is an asymmetric signal of t (i.e. x(t) = −x(−t)), then Ck is pure
imaginary, i.e. Ck = jIm[Ck], since ak’s are all zero for odd function of t.

4. Let’s define the general expression for the complex exponentials as:

φk(t)
∆
=

1√
2π

ejkt

Then, if we define the inner product between φn(t) and φm(t) as:

< φn(t), φm(t) >
∆
=

∫ 2π

0
φn(t)φ∗m(t)dt

We can check {φk(t)}∞k=−∞ form an orthonormal basis for a signal space F1,
which is composed of periodic signals represented by complex F.S.:

F1 =



x(t)|x(t) =

∞∑

k=−∞
Ck · ejkt





Assignment:

(a) Show that {φk(t)}∞k=−∞ form a basis for F1.

(b) Prove the orthonormality between φn(t) and φm(t) .

(c) Derive Ck using projection onto each basis signal(i.e. taking inner product
between x(t) and each {φk(t)}∞k=−∞
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derivation of Ck:
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Example 3.7

Determine whether the signal x(t) given below can be expressed in a Fourier
series, and if it does have its own F.S., find the complex Fourier series coefficient
Ck of it.

x(t) =





1, −1 ≤ t < 1

0, 1 ≤ t < 3 and T = 4 (sec)

Figure 3.7: A train of pulses x(t)

Remarks: Notice that x(t) is an even function of t, and thus

(i) bk = 0, i.e. Ck must be pure real!

(ii) d.c. component of x(t) is obviously 1
2

= C0 from above!

Solution:
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discussion:

(a) Notice that Ck indeed is pure real, and C0 = 1
2
. [(i), and (ii)]

(b) Check that C−k = C∗
k = Ck, i.e.

C−k =
1

2
sinc(

−k

2
) =

1

2
sinc(

k

2
) = Ck = C∗

k

Figure 3.8: Complex F.S. coefficient Ck of cosine square wave x(t)

Example 3.8

Repeat the above example for the following x(t).

x(t) =





1, 0 ≤ t < π

−1, −π ≤ t < 0 and T = 2π (sec)

Figure 3.9: A sine square wave x(t)

Remarks: Notice that x(t) is now an odd function of t, and thus

(i) ak = 0, i.e. Ck must be pure imaginary!

(ii) d.c. component of x(t) is obviously C0 = 0 from above!
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Solution:

discussion:

(a) Notice that Ck indeed is pure imaginary, and C0 = 0 [(i), and (ii)], i.e.:

C0 = lim
k→0

1− cos(πk)

jπk
= lim

k→0

π sin(πk)

jπ
= 0 (by L’Hospital’s law)

(b) Check that C−k = C∗
k , i.e.

C−k = j · cos(−πk)− 1

−πk
= −j · cos(πk)− 1

πk
= C∗

k

Figure 3.10: Complex F.S. coefficient Ck of sine square wave x(t)
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