Contents

5	PR	ACTICAL APPLICATIONS	106
	5.1	Filter	106
		5.1.1 Ideal Low Pass Filter	110
		5.1.2 Ideal Band Pass Filter	113
	5.2	Signal Moduation and Demodulation	115

Chapter 5

PRACTICAL APPLICATIONS

5.1 Filter

Definition 5.1 A *filter* is an LTI system which passes only *selective portions* of frequency components in the input signal.

Figure 5.1: A filter as an LTI system.

where the input and output spectra can be put into polar forms as:

$$X(\omega) = |X(\omega)|e^{j\Phi_X(\omega)}$$
$$H(\omega) = |H(\omega)|e^{j\Phi_H(\omega)}$$

Then, the output spectrum becomes:

$$\begin{split} Y(\omega) &= H(\omega)X(\omega) &= |H(\omega)|e^{j\Phi_H(\omega)} \cdot |X(\omega)|e^{j\Phi_X(\omega)} \\ &= |H(\omega)| \cdot |X(\omega)|e^{j(\Phi_H(\omega) + \Phi_X(\omega))} \\ &= |Y(\omega)|e^{j\Phi_Y(\omega)} \end{split}$$

Therefore,

$$|Y(\omega)| = |H(\omega)| \cdot |X(\omega)|$$
 (magnitude spectrum: multiplicative)
 $\Phi_Y(\omega) = \Phi_H(\omega) + \Phi_X(\omega)$ (phase spectrum: additive)

Example 5.1

The transfer function of a filter is given by: ¹

$$H(\omega) = \frac{1}{a + j\omega}$$
 where $a > 0$

Then,

$$H(\omega) = \frac{1}{a+j\omega}$$
$$= \frac{1}{a^2 + \omega^2}(a-j\omega)$$

and

$$|H(\omega)| = \frac{1}{\sqrt{a^2 + \omega^2}}$$
 (magnitude)
 $\Phi_H(\omega) = \arctan\left(\frac{-\omega}{a}\right)$ (phase)

Figure 5.2: The vector representation of $H(\omega)$.

Figure 5.3: The magnitude and phase of $H(\omega)$.

note:

- 1. Only low frequency components of x(t) are passed: LPF
- 2. The phase of output y(t) is behind that of input x(t): Lag(or Delay) Filter

¹We already have discussed this type of LTI system before, whose impulse response is $h(t) = e^{-at}u(t)$ and it turned out to be a LPF

Example 5.2

The transfer function of a filter is given by:

$$H(\omega) = a + j\omega(\cdot 1)$$

Then, its impulse response becomes: ²

$$h(t) = a\delta(t) + \frac{d}{dt} \left\{ \delta(t) \right\}$$

and

$$|H(\omega)| = \sqrt{a^2 + \omega^2}$$
 (magnitude)
 $\Phi_H(\omega) = \arctan\left(\frac{\omega}{a}\right)$ (phase)

Figure 5.4: The vector representation of $H(\omega)$.

Figure 5.5: The magnitude and phase of $H(\omega)$.

note:

- 1. Only high frequency components of x(t) are passed: **HPF**
- 2. The phase of output y(t) is ahead that of input x(t): Lead Filter

²This type of filter is physically impossible, i.e. unrealizable, since it requires infinite energy!!!

(cf.) Cascade of filters:

Figure 5.6: Cascade of filters.

$$H(\omega) = \prod_{n=1}^{N} H_n(\omega)$$

and, therefore

$$|H(\omega)| = \prod_{n=1}^{N} |H_n(\omega)|$$
 (magnitude)
 $\Phi_H(\omega) = \sum_{n=1}^{N} \Phi_{H_n}(\omega)$ (phase)

proof: assignment

5.1.1 Ideal Low Pass Filter

The charactersitics of an ideal LPF are given as follows:

(i) magnitude:

Figure 5.7: The magnitude spectrum of an ideal LPF.

(ii) phase: zero phase

Figure 5.8: The phase spectrum of an ideal LPF.

meaning: No amplification or attenuation within passband, and no delay in the output signal!!!

Therefore,

$$H(\omega) = |H(\omega)|e^{j\Phi_H(\omega)}$$
$$= |H(\omega)|$$
$$= \operatorname{rect}\left(\frac{\omega}{2\pi}\right) = \operatorname{rect}(f)$$

and the impulse response h(t) of an ideal LPF is a sinc function, i.e.

$$h(t) = \mathcal{F}^{-1}[\operatorname{rect}(f)] = \operatorname{sinc}(t)$$

Figure 5.9: Impulse response of an ideal LPF.

NOTE: Notice that h(t) is NOT a causal system (i.e., $h(t) \neq 0$ for t < 0), and to make it a causal or physically realizable: real time) system, we shift h(t) for a sufficient amount of time t_0 (i.e. $h_c(t) = h(t - t_0)$.)

Figure 5.10: Impulse response of the causal LPF.

where $h_c(t) \simeq 0$ for t < 0.

Therefore,

$$H_{c}(\omega) = \mathcal{F}[h(t-t_{0})]$$

$$= H(\omega)e^{-j\omega t_{0}}$$

$$= \operatorname{rect}\left(\frac{\omega}{2\pi}\right)e^{-j\omega t_{0}}$$

$$\stackrel{\Delta}{=} |H_{c}(\omega)|e^{j\Phi_{Hc}(\omega)}$$

and

$$|H_c(\omega)| = \operatorname{rect}\left(\frac{\omega}{2\pi}\right)$$
 (magnitude)
 $\Phi_{H_c}(\omega) = -\omega t_0$ (phase)

Figure 5.11: The magnitude spectrum of causal LPF.

Figure 5.12: The phase spectrum of causal ideal LPF.: LINEAR PHASE!!!

NOTE:

If a filter has a linear phase characteristics, there \exists a delay, but NO distortion at the output signal!!!

(e.g.)

Suppose the input to a filter is as follows:

$$x(t) = \sum_{i=1}^{N} \cos(\omega_i t + \theta)$$

where frequencies $\{\omega_i\}_{i=1}^N$ are within the passband of the filter.

Then, since the magnitude is *multiplicative* and the phase is *additive*, the output signal will be:

$$y(t) = \sum_{i=1}^{N} \cos(\omega_i t + \theta + \Phi_{H_c}(\omega))$$

Therefore, depending on the phase characteristics $\Phi_{H_c}(\omega)$ of the filter, we have:

(i) Linear phase:

$$y(t) = \sum_{i=1}^{N} \cos(\omega_i t + \theta - \omega_i t_0) = \sum_{i=1}^{N} \cos(\omega_i (t - t_0) + \theta)$$

(ii) Non-linear phase:

$$y(t) = \sum_{i=1}^{N} \cos(\omega_i t + \theta + f(\omega_i))$$
 :distortion due to $f(\omega_i)$

5.1.2 Ideal Band Pass Filter

The charactersitics of an ideal BPF are given as follows:

(i) magnitude:

Figure 5.13: The magnitude spectrum of an ideal BPF ($\omega = \beta$: center frequency).

(ii) phase: zero phase

Figure 5.14: The phase spectrum of an ideal BPF.

Therefore,

$$H(\omega) = |H(\omega)|e^{j\Phi_H(\omega)}$$

$$= |H(\omega)|$$

$$= \operatorname{rect}\left(\frac{\omega - \beta}{2\pi}\right) + \operatorname{rect}\left(\frac{\omega + \beta}{2\pi}\right)$$

and the impulse response h(t) of an ideal BPF becomes:

$$h(t) = \mathcal{F}^{-1} \left[\operatorname{rect} \left(\frac{\omega - \beta}{2\pi} \right) + \operatorname{rect} \left(\frac{\omega + \beta}{2\pi} \right) \right]$$

$$= \operatorname{sinc}(t) \cdot e^{-j\beta t} + \operatorname{sinc}(t) \cdot e^{j\beta t} \quad \text{(by frequency shift)}$$

$$= \operatorname{sinc}(t) \cdot \left\{ e^{-j\beta t} + e^{j\beta t} \right\}$$

$$= 2\operatorname{sinc}(t) \cdot \cos(\beta t)$$

Figure 5.15: Impulse response of an ideal BPF.

NOTE:

Notice that h(t) is again NOT a *causal* system (i.e., $h(t) \neq 0$ for t < 0), and to make it a causal or physically realizable: real time) system, we shift h(t) for a sufficient amount of time t_0 (i.e. $h_c(t) = h(t - t_0)$.)

Figure 5.16: Impulse response of the causal BPF.

where $h_c(t) \simeq 0$ for t < 0.

Therefore,

$$H_{c}(\omega) = \mathcal{F}[h(t - t_{0})]$$

$$= H(\omega)e^{-j\omega t_{0}}$$

$$= \left\{ \operatorname{rect}\left(\frac{\omega - \beta}{2\pi}\right) + \operatorname{rect}\left(\frac{\omega + \beta}{2\pi}\right) \right\} e^{-j\omega t_{0}}$$

$$\stackrel{\triangle}{=} |H_{c}(\omega)|e^{j\Phi_{Hc}(\omega)}$$

and

$$|H_c(\omega)| = \operatorname{rect}\left(\frac{\omega - \beta}{2\pi}\right) + \operatorname{rect}\left(\frac{\omega + \beta}{2\pi}\right)$$
 (magnitude)
 $\Phi_{H_c}(\omega) = -\omega t_0$ (phase)

Figure 5.17: Magnitude & phase spectra of causal ideal BPF: LINEAR PHASE!!!.

5.2 Signal Moduation and Demodulation

AMSC: Amplitude Modulation with Suppressed Carrier

Let's define the following notations:

- (i) a(t): modulating signal or message, i.e. the signal that we want to send out ³
- (ii) $A(\omega) \stackrel{\Delta}{=} \mathcal{F}[a(t)]$
- (iii) c(t): carrier signal
- (iv) ω_0 : carrier frequency
- (v) y(t) modulated signal
- (vi) r(t): partially demodulated signal
- (vii) d(t): demodulated signal

(1) Block Diagram

Figure 5.18: Block diagram of AMSC system.

³Mostly, audible signals such as voice, music etc..

(2) Why Modulation?

- 1. In communication systems, most signals propagate through the atmosphere, and
 - (a) Audible frequency ⁴: signals are rapidly attenuated: *short range*
 - (b) Higher frequency: signals propagate over longer distance: long range

Therefore, we need a carrier with higher frequency to carry the message (audible) signals to the destination, and this is done via modulation

2. It is well known that the antenna size (ℓ) is proportional to the wavelength (λ) of the signal, i.e.

$$\ell \ge \frac{\lambda}{10}$$

e.g.

if the signal frequency is 1(KHz), then $\lambda = c/f = 300(\text{Km})$, and $\ell \geq 30(\text{Km})!!!$

3. Interference: to avoid interference among messages, we need to assign different frequency bands to different messages.

⁴The frequency range is from 10(Hz) to 20(KHz)

(3) Analysis of Modulation/Demodulation: time/frequency domains

(3-1) Modulation

From the block diagram, the modulated signal y(t) is:

$$y(t) = a(t) \cdot c(t)$$

= $a(t) \cos(\omega_0 t)$ (5.1)

Take the Fourier transform of both sides, then

$$Y(\omega) = \frac{1}{2\pi} \left\{ A(\omega) * \left[\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0) \right] \right\}$$
$$= \frac{1}{2} \left\{ A(\omega - \omega_0) + A(\omega + \omega_0) \right\}$$
(5.2)

where we used the sifting property of $\delta(t) \ni$:

$$\delta(t - t_0) * x(t) = \int_{-\infty}^{\infty} \delta(\tau - t_0) x(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} \delta(\tau - t_0) x(t - t_0) d\tau$$
$$= x(t - t_0)$$

Figure 5.19: Sifting process by $\delta(t-t_0)$.

or

we can use other property of F.T. to derive $Y(\omega)$ as:

$$y(t) = a(t)\cos(\omega_0 t)$$
$$= \frac{1}{2}a(t)\left(e^{j\omega_0 t} + e^{-j\omega_0 t}\right)$$

Therefore, by the "frequency shift" property of F.T., we get

$$Y(\omega) = \frac{1}{2} \left\{ A(\omega - \omega_0) + A(\omega + \omega_0) \right\}$$

(3-2) Demodulation

In the block diagram, the partially demodulated signal r(t) at the receiver is expressed as:

$$r(t) = y(t) \cdot c(t)$$

= $y(t) \cos(\omega_0 t)$ (5.3)

Take the Fourier transform of both sides, then

$$R(\omega) = \frac{1}{2\pi} \left\{ Y(\omega) * \left[\pi \delta(\omega - \omega_0) + \pi \delta(\omega + \omega_0) \right] \right\}$$

$$= \frac{1}{2} \left\{ Y(\omega - \omega_0) + Y(\omega + \omega_0) \right\}$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \left[A(\omega - 2\omega_0) + A(\omega) \right] + \frac{1}{2} \left[A(\omega) + A(\omega + 2\omega_0) \right] \right\}$$

$$= \frac{1}{2} A(\omega) + \frac{1}{4} \left\{ A(\omega - 2\omega_0) + A(\omega + 2\omega_0) \right\}$$
(5.4)

or

we can directly derive $R(\omega)$ as:

$$r(t) = y(t)\cos(\omega_0 t)$$

$$= a(t)\cos^2(\omega_0 t)$$

$$= \frac{1}{2}a(t)(1+\cos(2\omega_0 t))$$

$$= \frac{1}{2}a(t) + \frac{1}{4}a(t)\left\{e^{j2\omega_0 t} + e^{-j2\omega_0 t}\right\}$$

Therefore, by the "linearity" and "frequency shift" properties of F.T., we get

$$R(\omega) = \frac{1}{2}A(\omega) + \frac{1}{4}\left\{A(\omega - 2\omega_0) + A(\omega + 2\omega_0)\right\}$$

Based on the above analyses, for each step of modulation/demodulation procedure, the signals and their spectra will change as follows:

Time domain

Frequency domain

Figure 5.20: Signal propagation in AMSC system.

After we get r(t), we apply a LPF with bandwidth=W' > W, where $W < W' < \omega_0$, and an amplifier with gain of 2, then we can recover the original message a(t) from r(t), i.e.

Figure 5.21: Ideal LPF with gain of 2 in AMSC system.

Remarks:

- (1) AM vs. FM^5
- 1. AM: message information is in the amplitude of the carrier
- 2. FM: message information is in the frequency of the carrier

e.g.

In AM, the amplitude of the carrier $c(t) = \cos(\omega_0 t)$ varies according to the message a(t), whereas in FM, the frequency of the carrier $c(t) = \cos(\omega_0 t)$ varies according to the message a(t).

Figure 5.22: AM versus FM

- (2) Variations of AM ⁶
- 1. AM : $y(t) = \{a(t) + 1\} \cos(\omega_0 t)$: transmission power increase
- 2. DSB(double side band) modulation
- 3. DSBSC(DSB with suppressed carrier)
- 4. SSB(single side band) modulation
- 5. SSBSC(SSB with suppressed carrier)

⁵FM: Frequency Modulation

⁶More detailed coverage will be discussed in communication theory class.