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Chapter 5

PRACTICAL APPLICATIONS

5.1 Filter

Definition 5.1 A filter is an LTI system which passes only selective portions of fre-
quency components in the input signal.

Figure 5.1: A filter as an LTI system.

where the input and output spectra can be put into polar forms as:

X(ω) = |X(ω)|ejΦX(ω)

H(ω) = |H(ω)|ejΦH(ω)

Then, the output spectrum becomes:

Y (ω) = H(ω)X(ω) = |H(ω)|ejΦH(ω) · |X(ω)|ejΦX(ω)

= |H(ω)| · |X(ω)|ej(ΦH(ω)+ΦX(ω))

= |Y (ω)|ejΦY (ω)

Therefore,

|Y (ω)| = |H(ω)| · |X(ω)| (magnitude spectrum: multiplicative)

ΦY (ω) = ΦH(ω) + ΦX(ω) (phase spectrum: additive)
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Example 5.1

The transfer function of a filter is given by: 1

H(ω) =
1

a + jω
where a > 0

Then,

H(ω) =
1

a + jω

=
1

a2 + ω2
(a− jω)

and

|H(ω)| =
1√

a2 + ω2
(magnitude )

ΦH(ω) = arctan
(−ω

a

)
(phase)

Figure 5.2: The vector representation of H(ω).

Figure 5.3: The magnitude and phase of H(ω).

note:

1. Only low frequency components of x(t) are passed : LPF

2. The phase of output y(t) is behind that of input x(t): Lag(or Delay) Filter

1We already have discussed this type of LTI system before, whose impulse response is h(t) =
e−atu(t) and it turned out to be a LPF
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Example 5.2

The transfer function of a filter is given by:

H(ω) = a + jω(·1)

Then, its impulse response becomes: 2

h(t) = aδ(t) +
d

dt
{δ(t)}

and

|H(ω)| =
√

a2 + ω2 (magnitude )

ΦH(ω) = arctan
(

ω

a

)
(phase)

Figure 5.4: The vector representation of H(ω).

Figure 5.5: The magnitude and phase of H(ω).

note:

1. Only high frequency components of x(t) are passed : HPF

2. The phase of output y(t) is ahead that of input x(t): Lead Filter

2This type of filter is physically impossible, i.e. unrealizable, since it requires infinite energy!!!
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(cf.) Cascade of filters:

Figure 5.6: Cascade of filters.

H(ω) =
N∏

n=1

Hn(ω)

and, therefore

|H(ω)| =
N∏

n=1

|Hn(ω)| (magnitude )

ΦH(ω) =
N∑

n=1

ΦHn(ω) (phase)

proof: assignment
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5.1.1 Ideal Low Pass Filter

The charactersitics of an ideal LPF are given as follows:

(i) magnitude:

Figure 5.7: The magnitude spectrum of an ideal LPF.

(ii) phase: zero phase

Figure 5.8: The phase spectrum of an ideal LPF.

meaning: No amplification or attenuation within passband, and no delay in the
output signal!!!

Therefore,

H(ω) = |H(ω)|ejΦH(ω)

= |H(ω)|
= rect

(
ω

2π

)
= rect(f)

and the impulse response h(t) of an ideal LPF is a sinc function, i.e.

h(t) = F−1 [rect(f)] = sinc(t)

Figure 5.9: Impulse response of an ideal LPF.
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NOTE: Notice that h(t) is NOT a causal system (i.e., h(t) 6= 0 for t < 0), and
to make it a causal( or physically realizable: real time) system, we shift h(t) for a
sufficient amount of time t0(i.e. hc(t) = h(t− t0).)

Figure 5.10: Impulse response of the causal LPF.

where hc(t) ' 0 for t < 0.

Therefore,

Hc(ω) = F [h(t− t0)]

= H(ω)e−jωt0

= rect
(

ω

2π

)
e−jωt0

∆
= |Hc(ω)|ejΦHc (ω)

and

|Hc(ω)| = rect
(

ω

2π

)
(magnitude )

ΦHc(ω) = −ωt0 (phase)

Figure 5.11: The magnitude spectrum of causal LPF.

Figure 5.12: The phase spectrum of causal ideal LPF.: LINEAR PHASE!!!
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NOTE:
If a filter has a linear phase characteristics, there ∃ a delay, but NO distortion
at the output signal!!!

(e.g.)

Suppose the input to a filter is as follows:

x(t) =
N∑

i=1

cos(ωit + θ)

where frequencies {ωi}N
i=1 are within the passband of the filter.

Then, since the magnitude is multiplicative and the phase is additive, the output
signal will be:

y(t) =
N∑

i=1

cos (ωit + θ + ΦHc(ω))

Therefore, depending on the phase characteristics ΦHc(ω) of the filter, we have:

(i) Linear phase:

y(t) =
N∑

i=1

cos (ωit + θ − ωit0) =
N∑

i=1

cos (ωi(t− t0) + θ)

(ii) Non-linear phase:

y(t) =
N∑

i=1

cos (ωit + θ + f(ωi)) :distortion due to f(ωi)
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5.1.2 Ideal Band Pass Filter

The charactersitics of an ideal BPF are given as follows:

(i) magnitude:

Figure 5.13: The magnitude spectrum of an ideal BPF (ω = β: center frequency).

(ii) phase: zero phase

Figure 5.14: The phase spectrum of an ideal BPF.

Therefore,

H(ω) = |H(ω)|ejΦH(ω)

= |H(ω)|
= rect

(
ω − β

2π

)
+ rect

(
ω + β

2π

)

and the impulse response h(t) of an ideal BPF becomes:

h(t) = F−1

[
rect

(
ω − β

2π

)
+ rect

(
ω + β

2π

)]

= sinc(t) · e−jβt + sinc(t) · ejβt (by frequency shift)

= sinc(t) ·
{
e−jβt + ejβt

}

= 2sinc(t) · cos(βt)
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Figure 5.15: Impulse response of an ideal BPF.

NOTE:
Notice that h(t) is again NOT a causal system (i.e., h(t) 6= 0 for t < 0), and to make
it a causal( or physically realizable: real time) system, we shift h(t) for a sufficient
amount of time t0(i.e. hc(t) = h(t− t0).)

Figure 5.16: Impulse response of the causal BPF.

where hc(t) ' 0 for t < 0.

Therefore,

Hc(ω) = F [h(t− t0)]

= H(ω)e−jωt0

=

{
rect

(
ω − β

2π

)
+ rect

(
ω + β

2π

)}
e−jωt0

∆
= |Hc(ω)|ejΦHc (ω)

and

|Hc(ω)| = rect

(
ω − β

2π

)
+ rect

(
ω + β

2π

)
(magnitude )

ΦHc(ω) = −ωt0 (phase)

Figure 5.17: Magnitude & phase spectra of causal ideal BPF: LINEAR PHASE!!!.
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5.2 Signal Moduation and Demodulation

AMSC: Amplitude Modulation with Suppressed Carrier

Let’s define the following notations:

(i) a(t): modulating signal or message, i.e. the signal that we want to send out 3

(ii) A(ω)
∆
= F [a(t)]

(iii) c(t): carrier signal

(iv) ω0: carrier frequency

(v) y(t) modulated signal

(vi) r(t): partially demodulated signal

(vii) d(t): demodulated signal

(1) Block Diagram

Figure 5.18: Block diagram of AMSC system.

3Mostly, audible signals such as voice, music etc..
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(2) Why Modulation?

1. In communication systems, most signals propagate through the atmosphere,
and

(a) Audible frequency 4 : signals are rapidly attenuated: short range

(b) Higher frequency: signals propagate over longer distance: long range

Therefore, we need a carrier with higher frequency to carry the message(audible)
signals to the destination, and this is done via modulation

2. It is well known that the antenna size( `) is proportional to the wavelength(λ)
of the signal, i.e.

` ≥ λ

10
e.g.

if the signal frequency is 1(KHz), then λ = c/f = 300(Km), and ` ≥ 30(Km)!!!

3. Interference: to avoid interference among messages, we need to assign different
frequency bands to different messages.

4The frequency range is from 10(Hz) to 20(KHz)
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(3) Analysis of Modulation/Demodulation: time/frequency domains

(3-1) Modulation

From the block diagram, the modulated signal y(t) is:

y(t) = a(t) · c(t)
= a(t) cos(ω0t) (5.1)

Take the Fourier transform of both sides, then

Y (ω) =
1

2π
{A(ω) ∗ [πδ(ω − ω0) + πδ(ω + ω0)]}

=
1

2
{A(ω − ω0) + A(ω + ω0)} (5.2)

where we used the sifting property of δ(t) 3:

δ(t− t0) ∗ x(t) =
∫ ∞

−∞
δ(τ − t0)x(t− τ)dτ

=
∫ ∞

−∞
δ(τ − t0)x(t− t0)dτ

= x(t− t0)

Figure 5.19: Sifting process by δ(t− t0).

or

we can use other property of F.T. to derive Y (ω) as:

y(t) = a(t) cos(ω0t)

=
1

2
a(t)

(
ejω0t + e−jω0t

)

Therefore, by the “frequency shift” property of F.T., we get

Y (ω) =
1

2
{A(ω − ω0) + A(ω + ω0)}
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(3-2) Demodulation

In the block diagram, the partially demodulated signal r(t) at the receiver is
expressed as:

r(t) = y(t) · c(t)
= y(t) cos(ω0t) (5.3)

Take the Fourier transform of both sides, then

R(ω) =
1

2π
{Y (ω) ∗ [πδ(ω − ω0) + πδ(ω + ω0)]}

=
1

2
{Y (ω − ω0) + Y (ω + ω0)}

=
1

2

{
1

2
[A(ω − 2ω0) + A(ω)] +

1

2
[A(ω) + A(ω + 2ω0)]

}

=
1

2
A(ω) +

1

4
{A(ω − 2ω0) + A(ω + 2ω0)} (5.4)

or

we can directly derive R(ω) as:

r(t) = y(t) cos(ω0t)

= a(t) cos2(ω0t)

=
1

2
a(t) (1 + cos(2ω0t))

=
1

2
a(t) +

1

4
a(t)

{
ej2ω0t + e−j2ω0t

}

Therefore, by the “linearity” and “frequency shift” properties of F.T., we get

R(ω) =
1

2
A(ω) +

1

4
{A(ω − 2ω0) + A(ω + 2ω0)}
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Based on the above analyses, for each step of modulation/demodulation procedure,
the signals and their spectra will change as follows:

Time domain Frequency domain

Figure 5.20: Signal propagation in AMSC system.

After we get r(t), we apply a LPF with bandwidth=W
′
> W , where W < W

′
<

ω0, and an amplifier with gain of 2, then we can recover the original message a(t)
from r(t), i.e.

Figure 5.21: Ideal LPF with gain of 2 in AMSC system.
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Remarks:

(1) AM vs. FM5

1. AM: message information is in the amplitude of the carrier

2. FM: message information is in the frequency of the carrier

e.g.

In AM, the amplitude of the carrier c(t) = cos(ω0t) varies according to the message
a(t), whereas in FM, the frequency of the carrier c(t) = cos(ω0t) varies according to
the message a(t).

Figure 5.22: AM versus FM

(2) Variations of AM 6

1. AM : y(t) = {a(t) + 1} cos(ω0t) : transmission power increase

2. DSB(double side band) modulation

3. DSBSC(DSB with suppressed carrier)

4. SSB(single side band) modulation

5. SSBSC(SSB with suppressed carrier)

5FM: Frequency Modulation
6More detailed coverage will be discussed in communication theory class.
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