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Chapter 6

CORRELATION FUNCTION
AND SPECTRAL DENSITY

6.1 Periodic Signals

6.1.1 Autocorrelation function

Definition 6.1 The autocorrelation function for a periodic signal x(t) with period
T is defined as:

Rxx(τ)
∆
=

1

T

∫ T
2

−T
2

x(t)x(t + τ)dt

= x(t)⊗ x(t)

Note:

1. Rxx(τ) provides the quantitative indication of resemblance(closeness) between
x(t) and x(t + τ) as we vary τ(amount of shift)!!!

2. Dimension of Rxx(τ) is power in watts.

3. τ = 0 gives the average power of x(t), i.e. Rxx(0) = average power

(cf.)

Rxx(τ) is also periodic with the same period T of x(t)

proof: assignment
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Example 6.1

Find the autocorrelation function of x(t) = cos(t).

Figure 6.1: cos(t).

Solution:

Figure 6.2: Rxx(τ).

note:

(a) cos(A) cos(B) = 1
2
{cos(A + B) + cos(A−B)}

(b) Rxx(τ): periodic with period T = 2π.
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Example 6.2

Find the autocorrelation function of x(t) = sin(t).

Figure 6.3: sin(t).

Solution:

Figure 6.4: Rxx(τ).

note:

(a) sin(A) sin(B) = 1
2
{cos(A−B)− cos(A + B)}

(b) Rxx(τ): periodic with period T = 2π.

(c) cos(t)⊗ cos(t) ≡ sin(t)⊗ sin(t) !!!!!
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Graphical Interpretation:

Figure 6.5: Interpretation of autocorrelation function

Note:

1. τ = π
2
: case when x(t) and x(t + τ) are far from resemblance.

2. τ = π: case when x(t) and x(t + τ) are closest in opposite sense.

3. τ = 0: case when x(t) and x(t + τ) are exactly the same.
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Example 6.3

Find the autocorrelation function of following x(t).

x(t)
∆
= ˜rect(t) =





rect(t) −1 < t ≤ 1

0 otherwise, where T = 2

Figure 6.6: x(t).

Solution:

Figure 6.7: Rxx(τ).

note: Rxx(τ): periodic with period T = 2.
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6.1.2 Cross-correlation function

Definition 6.2 The cross-correlation function of two periodic signals x(t) with pe-
riod T1 and y(t) with period T2 is defined as follows:

Rxy(τ)
∆
=

1

T

∫ T
2

−T
2

x(t)y(t + τ)dt

= x(t)⊗ y(t)

where T is the least common period(LCP) between T1 and T2, e.g. if T1 = 2π and
T2 = 3π, then T = 6π

Note: Rxy(τ) 6= Ryx(τ)!!!!!

Example 6.4

Find the cross-correlation functions Rxy(τ) and Ryx(τ) respectively for x(t) =
sin(t) and y(t) = cos(t).

Figure 6.8: x(t) and y(t).

Solution:

(i) Rxy(τ):
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Figure 6.9: Rxy(τ).

note:

(a) sin(A) cos(B) = 1
2
{sin(A + B) + sin(A−B)}

(b) Rxy(τ): periodic with period T = LCP{T1, T2} = 2π.

(ii) Ryx(τ):

Figure 6.10: Ryx(τ).

note:

(a) cos(A) sin(B) = 1
2
{sin(A + B)− sin(A−B)}

(b) Ryx(τ): periodic with period T = LCP{T1, T2} = 2π.

(c) Rxy(τ) 6= Ryx(τ)
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Harmonically related sinusoids:

Given:
x(t) = cos(at)

y(t) = cos(bt)

where a 6= b and b/a is an integer (i.e. b = ka). Then x(t) and y(t) are called
harmonically related sinusoids!!!

The cross-correlation function, then, bewteen x(t) and y(t) is:

Rxy(τ) =
1

T

∫ T
2

−T
2

x(t)y(t + τ)dt

=
1

T

∫ T
2

−T
2

cos(at) cos(bt + bτ)dt

=
1

T

∫ T
2

−T
2

1

2
{cos[(a + b)t + bτ ] + cos[(a− b)t− bτ ]} dt

=
1

T

∫ T
2

−T
2

1

2
{cos[(1 + k)at + bτ ] + cos[(1− k)at− bτ ]} dt

= 0

where T = LCP.

meaning:
We cannot match x(t) and y(t) no matter how we shift one of them!!!

e.g.

Figure 6.11: Rxy(τ) for harmonically related sinusoids.

Likewise,
cos(at)⊗ sin(bt) = 0

sin(at)⊗ sin(bt) = 0

where b/a = integer.
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Computing F.S. coefficient using Cross-Correlation

Given a periodic signal x(t) with period 2π, then the trigonometric F.S. representation
of x(t) is as follows:

x(t) =
a0

2
+

∞∑

n=1

{an cos(nt) + bn sin(nt)}

Define,

Rkx(τ)
∆
= cos(kt)⊗ x(t) where k = 0, 1, 2, . . .

Then

Rkx(τ) = cos(kt)⊗
(

a0

2
+

∞∑

n=1

{an cos(nt) + bn sin(nt)}
)

(i) k = 0

R0x(τ) = 1⊗ a0

2
=

1

2π

∫

2π

a0

2
dt =

a0

2

−→ a0 = 2R0x(τ) −→ a0 = 2R0x(0)

since R0x(τ) is independent of τ , i.e. constant

(ii) k = 1

R1x(τ) = cos(t)⊗ {a1 cos(t) + b1 sin(t)} =
a1

2
cos(τ) +

b1

2
sin(τ)

−→ a1 = 2R1x(0) and b1 = 2R1x(
π

2
)

(iii) k = 2

R2x(τ) = cos(2t)⊗ {a2 cos(2t) + b2 sin(2t)} =
a2

2
cos(2τ) +

b2

2
sin(2τ)

−→ a2 = 2R2x(0) and b2 = 2R2x(
π

2 · 2)

...

Therefore, in general, the trigonometric F.S. coefficients can be calculated as:




an = 2Rnx(0) for n = 0, 1, 2, . . .

bn = 2Rnx(
π
2n

) for n = 1, 2, . . .

and corresponding complex F.S. coefficients are

Ck
∆
=

1

2
(ak − jbk) = Rkx(0)− jRkx(

π

2k
)
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6.1.3 Property of autocorrelation function

Property #1:
Rxx(0) ≥ 0

proof:

Rxx(0) =
1

T

∫ T
2

−T
2

x(t)x(t + 0)dt

=
1

T

∫ T
2

−T
2

x2(t)dt

≥ 0

Property #2:
Rxx(τ) = Rxx(−τ) (even function of τ)

proof:

RHS =
1

T

∫ T
2

−T
2

x(t)x(t− τ)dt

(Let t− τ = t
′
)

=
1

T

∫ T
2

+τ

−T
2

+τ
x(t

′
+ τ)x(t

′
)dt

′

=
1

T

∫ T
2

−T
2

x(t
′
)x(t

′
+ τ)dt

′

= Rxx(τ)

= LHS
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Property #3:
Rxx(0) ≥ Rxx(τ) (Rxx(0) is the maximum)

proof:

Define
y(t)

∆
= x(t)− x(t + τ)

Then,

Ryy(0) =
1

T

∫ T
2

−T
2

y2(t)dt

=
1

T

∫ T
2

−T
2

{x(t)− x(t + τ)}2 dt

=
1

T

{∫ T
2

−T
2

x2(t)dt +
∫ T

2

−T
2

x2(t + τ)dt− 2
∫ T

2

−T
2

x(t)x(t + τ)dt

}

= Rxx(0) + Rxx(0)− 2Rxx(τ)

≥ 0 (should be)

Therefore,
2Rxx(0)− 2Rxx(τ) ≥ 0

−→ Rxx(0) ≥ Rxx(τ) ∀τ
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6.1.4 Property of cross-correlation function

Property #1:
Rxy(τ) = Ryx(−τ)

proof:

LHS =
1

T

∫ T
2

−T
2

x(t)y(t + τ)dt

(Let t + τ = t
′
)

=
1

T

∫ T
2

−T
2

x(t
′ − τ)y(t

′
)dt

′

=
1

T

∫ T
2

−T
2

y(t
′
)x(t

′ − τ)dt
′

∆
= Ryx(−τ)

= RHS

(cf.) Recall that in previous example, for x(t) = sin(t) and y(t) = cos(t), we
found that Rxy(τ) = −1

2
sin(τ) whereas Ryx(τ) = 1

2
sin(τ) = Rxy(−τ)!!!

Property #2:
x(t + a)⊗ y(t + b) = Rxy(τ + b− a)

proof:

LHS =
1

T

∫ T
2

−T
2

x(t + a)y(t + b + τ)dt

(Let t + a = t
′
)

=
1

T

∫ T
2

−T
2

x(t
′
)y(t

′
+ τ + b− a)dt

′

∆
= Rxy(τ + b− a)

= RHS

where b− a is the difference of the arrival(or delay) time between x(t) and y(t).
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Example 6.5

Radar ranging: We want to estimate the time delay t0, i.e. t̂0.

Figure 6.12: Typical active radar system

We usually use a train of pulses, modulated with microwave signal, for x(t) in
general:

Figure 6.13: x(t).

Figure 6.14: Rxx(τ).

If we take the cross-correlation between x(t) and y(t), we get

Rxy(τ) = x(t)⊗ [αx(t− t0)] = αRxx(τ − t0)
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Figure 6.15: Rxy(τ).

NOTE:

(a) By detecting the peak location of Rxy(τ) within T , we can estimate the
time delay t̂0, i.e.

t̂0 = argmaxτ∈T Rxy(τ)

And the distance L between the radar site and the target can then be
estimated as,

L̂ =
t̂0
2
· C

where C is the velocity of the signal x(t).

(b) To avoid ambiguity, the following condition should be satisfied, i.e.

t0 ≤ T

Therefore, the maximum detection range Lmax is determined by:

Lmax =
T

2
· C ∝ T
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Property #3:

x(t)⊗ y
′
(t) =

d

dτ
{Rxy(τ)}

proof:

LHS =
1

T

∫ T
2

−T
2

x(t)y
′
(t + τ)dt

=
1

T

∫ T
2

−T
2

x(t)
d

dt
{y(t + τ)} dt

=
1

T

∫ T
2

−T
2

x(t)
d

dτ
{y(t + τ)} dt

(
since

d

dt
{y(t + τ)} =

d

dτ
{y(t + τ)}

)

=
d

dτ

{
1

T

∫ T
2

−T
2

x(t)y(t + τ)dt

}
(by Leibniz rule)

=
d

dτ
{Rxy(τ)}

= RHS

Note: This is very useful in radar ranging when the peak location of Rxy(τ) is
ambiguous:

Peak detection =⇒ Zero-crossing detection

(e.g.)

(i) Rxy(τ) with clear peak

Figure 6.16: Rxy(τ): clear peak.

(ii) Rxy(τ) with ambiguous peak

Figure 6.17: Rxy(τ): ambiguous peak.
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6.1.5 Power spectral density

Definition 6.3 The power spectral densities for periodic signals x(t) and y(t) with
period T are defined as:

(1) Auto power spectral density of x(t):

Pxx(k)
∆
= C∗

x(k) · Cx(k)

= |Cx(k)|2

where Cx(k) is the F.S. coefficient of x(t), and Pxx(k) represents the distribution of
power in x(t) with respect to k(i.e. frequency).

(2) Cross power spectral density between x(t) and y(t):

Pxy(k)
∆
= C∗

x(k) · Cy(k)

where Cx(k) and Cy(k) are the F.S. coefficients of x(t) and y(t) respectively.

Theorem 6.1 The power spectral density of periodic signals is the F.S. coefficient
of their correlation functions:

Pxy(k) = CR(k)

where CR(k) is the F.S. coefficient of the cross-correlation function Rxy(τ) between
x(t) and y(t), i.e.

Rxy(τ) =
1

T

∫

T
x(t)y(t + τ)dt

=
∞∑

k=−∞
CR(k)ej 2πkτ

T

where T=LCP of x(t) and y(t).

Proof:
We must show that

CR(k) = C∗
x(k) · Cy(k)

∆
= Pxy(k)
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LHS = CR(k)
∆
=

1

T

∫

T
Rxy(τ)e−j 2πkτ

T dτ

=
1

T

∫

T

{
1

T

∫

T
x(t)y(t + τ)dt

}
e−j 2πkτ

T dτ

=
1

T

∫

T
x(t)

{
1

T

∫

T
y(t + τ)e−j 2πkτ

T dτ
}

dt

(let t + τ = τ
′
)

=
1

T

∫

T
x(t)

{
1

T

∫

T
y(τ

′
)e−j

2πk(τ
′−t)

T dτ
′
}

dt

=
{

1

T

∫

T
x(t)ej 2πkt

T dt
}
·
{

1

T

∫

T
y(τ

′
)e−j 2πkτ

′
T dτ

′
}

(assuming x(t) is real)

=
{

1

T

∫

T
x(t)e−j 2πkt

T dt
}∗
·
{

1

T

∫

T
y(τ

′
)e−j 2πkτ

′
T dτ

′
}

∆
= C∗

x(k) · Cy(k)

= RHS

Reminder: Power spectral density is the F.S. coefficient of the correlation func-
tion for periodic signals!!!!!
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6.2 Non-periodic Signals

6.2.1 Autocorrelation function

Definition 6.4 The autocorrelation function for a non-periodic signal x(t) is defined
as:

Rxx(τ)
∆
=

∫ ∞

−∞
x(t)x(t + τ)dt

= x(t)⊗ x(t)

Note:

1. Rxx(τ) indicates the resemblance(closeness) between x(t) and x(t + τ) quanti-
tatively as we vary τ(amount of shift)!!!

2. Dimension of Rxx(τ) is energy in joules.

3. τ = 0 gives the energy of x(t), i.e. Rxx(0) = energy of x(t)

(cf.)

It is assumed that x(t) has a finite energy, i.e.,

∫ ∞

−∞
x2(t)dt < ∞

6.2.2 Cross-correlation function

Definition 6.5 Similarly, we define the cross-correlation function between two non-
periodic signals x(t) and y(t) as:

Rxy(τ)
∆
=

∫ ∞

−∞
x(t)y(t + τ)dt

= x(t)⊗ y(t)
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6.2.3 Property of autocorrelation function

Same as the properties of autocorrelation function for a periodic signal:

Property #1:
Rxx(0) ≥ 0

Property #2:
Rxx(τ) = Rxx(−τ) (even function of τ)

Property #3:
Rxx(0) ≥ Rxx(τ) (Rxx(0) is the maximum)

proof: assignment

6.2.4 Property of cross-correlation function

Same as the properties of cross-correlation function for periodic x(t) and y(t):

Property #1:
Rxy(τ) = Ryx(−τ)

Property #2:
x(t + a)⊗ y(t + b) = Rxy(τ + b− a)

Property #3:

x(t)⊗ y
′
(t) =

d

dτ
{Rxy(τ)}

proof: assignment

139



Example 6.6

Find the autocorrelation function of x(t) given below.

x(t) =





1, 0 ≤ t ≤ T

0 otherwise

Figure 6.18: x(t).

Solution:

Figure 6.19: Rxx(τ).
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Example 6.7

Find the autocorrelation function of x(t) given below.

x(t) = e−atu(t), a > 0

Figure 6.20: x(t) and x(t + τ) for τ < 0.

Solution:

Figure 6.21: Rxx(τ).
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6.2.5 Energy spectral density

Definition 6.6 The energy spectral densities for non-periodic signals x(t) and y(t)
are defined as:

(1) Auto energy spectral density of x(t):

Sxx(ω)
∆
= X∗(ω) ·X(ω)

= |X(ω)|2

where X(ω) is the F.T. of x(t), and Sxx(ω) represents the distribution of energy in
x(t) with respect to ω(i.e. frequency).

(2) Cross energy spectral density between x(t) and y(t):

Sxy(ω)
∆
= X∗(ω) · Y (ω)

where X(ω) and Y (ω) are the F.T.’s of x(t) and y(t) respectively.

Theorem 6.2 (Wiener-Khinchin Theorem:)
The correlation function and the energy spactral density is a Fourier transform pair,
i.e.:

Rxx(τ)
F←→ Sxx(ω)

Rxy(τ)
F←→ Sxy(ω)

where x(t) and y(t) are assumed to be real signals.

Proof:

F [Rxy(τ)] =
∫ ∞

−∞
Rxy(τ)e−jωτdτ

=
∫ ∞

−∞

{∫ ∞

−∞
x(t)y(t + τ)dt

}
e−jωτdτ

=
∫ ∞

−∞
x(t)

{∫ ∞

−∞
y(t + τ)e−jωτdτ

}
dt

=
∫ ∞

−∞
x(t) · Y (ω)ejωtdt

=
{∫ ∞

−∞
x(t)ejωtdt

}
· Y (ω)

(assuming x(t) is real)

=
{∫ ∞

−∞
x(t)e−jωtdt

}∗
· Y (ω)

= X∗(ω)Y (ω)
∆
= Sxy(ω)
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Example 6.8

Find the auto energy spectral density of x(t) discussed in example 6.7.

x(t) = e−atu(t), a > 0

Figure 6.22: x(t).

Solution:

Figure 6.23: Sxx(ω).
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6.2.6 Input/output relation of an LTI system(in terms of
energy)

Given an LTI system,

Figure 6.24: LTI system.

where h(t) and H(ω) are the impulse response and the transfer function of the system
respectively.

(1) Output signal:

y(t) = h(t) ∗ x(t)

Y (ω) = H(ω)X(ω)

(2) Output auto energy spectral density:

Syy(ω)
∆
= Y ∗(ω)Y (ω)

= {H(ω)X(ω)}∗ {H(ω)X(ω)}
= H∗(ω)X∗(ω)H(ω)X(ω)

= |H(ω)|2 ·X∗(ω)X(ω)

= |H(ω)|2 · Sxx(ω)

where |H(ω)|2 is called the “energy transfer function” of the system.

144



(3) Output autocorrelation function:

Using the Wiener-Khinchin theorem,

Ryy(τ) = F−1 {Syy(ω)}
= F−1

{
|H(ω)|2 · Sxx(ω)

}

= F−1
{
|H(ω)|2

}
∗ F−1 {Sxx(ω)}

= F−1
{
|H(ω)|2

}
∗Rxx(τ)

(4) Cross energy spectral density b/w input and output:

Sxy(ω)
∆
= X∗(ω)Y (ω)

= X∗(ω)H(ω)X(ω)

= H(ω) {X∗(ω)X(ω)}
= H(ω)Sxx(ω)

(5) Cross-correlation function b/w input and output:

Using the Wiener-Khinchin theorem,

Rxy(τ) = F−1 {Sxy(ω)}
= F−1 {H(ω) · Sxx(ω)}
= F−1 {H(ω)} ∗ F−1 {Sxx(ω)}
= h(τ) ∗Rxx(τ)

(6) Cross energy spectral density b/w output and input:

Syx(ω)
∆
= Y ∗(ω)X(ω)

= {H(ω)X(ω)}∗ X(ω)

= H∗(ω)X∗(ω)X(ω)

= H∗(ω)Sxx(ω)

note: Syx(ω) = Y ∗(ω)X(ω) = {X∗(ω)Y (ω)}∗ = S∗xy(ω).
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(7) Cross-correlation function b/w output and input:

Using the Wiener-Khinchin theorem,

Ryx(τ) = F−1 {Syx(ω)}
= F−1 {H∗(ω) · Sxx(ω)}
= h(−τ) ∗Rxx(τ) (assuming h(τ) is real)

= h(−τ) ∗Rxx(−τ) (since Rxx(τ) is symmetric)

= Rxy(−τ)

Note:

(i)
Ryx(τ) = Rxy(−τ)

(ii)

F−1 [H∗(ω)] =
1

2π

∫ ∞

−∞
H∗(ω)ejωτdω

=
(

1

2π

∫ ∞

−∞
H(ω)e−jωτdω

)∗

=
(

1

2π

∫ ∞

−∞
H(ω)ejω(−τ)dω

)∗

= h∗(−τ)

= h(−τ) (assuming h(τ) is real)
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6.3 Parseval’s Theorem

Theorem 6.3 The energy in time domain must be equal to the energy in frequency
domain, so the energy of a non-periodic signal x(t) can be computed as the integration
of Sxx(ω) scaled by 1

2π
, i.e.

E =
∫ ∞

−∞
x2(t)dt =

1

2π

∫ ∞

−∞
Sxx(ω)dω = Rxx(0)

Proof:

From the Wiener-Khinchin theorem, we have,

Rxx(τ)
∆
=

∫ ∞

−∞
x(t)x(t + τ)dt ≡ F−1 [Sxx(ω)] =

1

2π

∫ ∞

−∞
Sxx(ω)ejωτdω

Let τ = 0 at each term of both sides, then

Rxx(0) =
∫ ∞

−∞
x2(t)dt =

1

2π

∫ ∞

−∞
Sxx(ω)dω

Q.E.D.
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Simailary, for the periodic signals, we have the following Parseval’s theorem:

Theorem 6.4 The power in time domain must be equal to the power in frequency
domain, so the average power of a periodic signal x(t) can be computed as the sum
of Pxx(k) , i.e.

P =
1

T

∫

T
|x(t)|2dt =

∞∑

k=−∞
Pxx(k) = Rxx(0)

Proof:

LHS =
1

T

∫

T
|x(t)|2dt

=
1

T

∫

T
x∗(t)x(t)dt

=
1

T

∫

T




∞∑

k=−∞
C∗

x(k)e−j 2πkt
T


 x(t)dt

=
∞∑

k=−∞
C∗

x(k) · 1

T

∫

T
x(t)e−j 2πkt

T dt

=
∞∑

k=−∞
C∗

x(k) · Cx(k) =
∞∑

k=−∞
|Cx(k)|2 =

∞∑

k=−∞
Pxx(k) = RHS

Q.E.D.

note:
If x(t) is a real signal, it is simpler to prove the theorem:

proof:

LHS =
1

T

∫

T
x2(t)dt

=
1

T

∫

T




∞∑

k=−∞
Cx(k)ej 2πkt

T


 x(t)dt

=
∞∑

k=−∞
Cx(k) · 1

T

∫

T
x(t)ej 2πkt

T dt

=
∞∑

k=−∞
Cx(k) · C∗

x(k) =
∞∑

k=−∞
|Cx(k)|2 =

∞∑

k=−∞
Pxx(k) = RHS

q.e.d.
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Example 6.9

Find the energy of x(t) discussed in example 6.7.

x(t) = e−atu(t), a > 0

Figure 6.25: x(t) .

Solution:
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Example 6.10

Find the average power of the input x(t) and the output y(t) for the following
LTI system, where the impulse response and the input signal are given respec-
tively as:

h(t) = e−atu(t), a > 0

x(t) = cos(t)

Figure 6.26: LTI system with h(t) and x(t).

Solution:

(a) Input power PI :

We try to compute the average power in three different ways:
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Figure 6.27: Power spectral density of the input: Pxx(k).

(b) Output power PO:

In order to compute the output power, we use the power spectral density
of the output Pyy(k) 1, and first we discuss the relationship between the
input and the output in terms of power:

1In this way, we do need to compute the output signal y(t) specifically, which simplifies much of
the work required!!!
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Relationship of input/output power spactral density

We have, for periodic signals x(t) and y(t) where ω0 = 2π
T0

(rad/sec):

|Y (ω)|2 = |H(ω)|2 · |X(ω)|2
=⇒ |Y (kω0)|2 = |H(kω0)|2 · |X(kω0)|2
=⇒ |2πCy(k)|2 = |H(kω0)|2 · |2πCx(k)|2
=⇒ |Cy(k)|2 = |H(kω0)|2 · |Cx(k)|2
=⇒ Pyy(k) = |H(kω0)|2 · Pxx(k)

e.g.: If T0 = 2π(sec), then ω0 = 2π
T0

= 1(rad/sec), and

Pyy(k) = |H(k)|2 · Pxx(k)

Note: From the figure of Pyy(k), we can easily get the autocorrelation
function of the output signal as:

Ryy(τ) =
1

2(1 + a2)
cos(τ)
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Figure 6.28: Power spectral density of the output, Pyy(k), with Pxx(k) and |H(k)|2.
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