Contents

6 CORRELATION FUNCTION AND SPECTRAL DENSITY 121
6.1 Periodic Signals 121
6.1.1 Autocorrelation function 121
6.1.2 Cross-correlation function 126
6.1.3 Property of autocorrelation function 130
6.1.4 Property of cross-correlation function 132
6.1.5 Power spectral density 136
6.2 Non-periodic Signals 138
6.2.1 Autocorrelation function 138
6.2.2 Cross-correlation function 138
6.2.3 Property of autocorrelation function 139
6.2.4 Property of cross-correlation function 139
6.2.5 Energy spectral density 142
6.2.6 Input/output relation of an LTI system(in terms of energy) 144
6.3 Parseval's Theorem 147

Chapter 6

CORRELATION FUNCTION AND SPECTRAL DENSITY

6.1 Periodic Signals

6.1.1 Autocorrelation function

Definition 6.1 The autocorrelation function for a periodic signal $x(t)$ with period T is defined as:

$$
\begin{aligned}
R_{x x}(\tau) & \triangleq \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) x(t+\tau) d t \\
& =x(t) \otimes x(t)
\end{aligned}
$$

Note:

1. $R_{x x}(\tau)$ provides the quantitative indication of resemblance(closeness) between $x(t)$ and $x(t+\tau)$ as we vary $\tau($ amount of shift)!!!
2. Dimension of $R_{x x}(\tau)$ is power in watts.
3. $\tau=0$ gives the average power of $x(t)$, i.e. $R_{x x}(0)=$ average power
(cf.)
$R_{x x}(\tau)$ is also periodic with the same period T of $x(t)$
proof: assignment

Example 6.1

Find the autocorrelation function of $x(t)=\cos (t)$.

Figure 6.1: $\cos (t)$.

Solution:

Figure 6.2: $R_{x x}(\tau)$.
note:
(a) $\cos (A) \cos (B)=\frac{1}{2}\{\cos (A+B)+\cos (A-B)\}$
(b) $R_{x x}(\tau)$: periodic with period $T=2 \pi$.

Example 6.2

Find the autocorrelation function of $x(t)=\sin (t)$.

Figure 6.3: $\sin (t)$.

Solution:

Figure 6.4: $R_{x x}(\tau)$.
note:
(a) $\sin (A) \sin (B)=\frac{1}{2}\{\cos (A-B)-\cos (A+B)\}$
(b) $R_{x x}(\tau)$: periodic with period $T=2 \pi$.
(c) $\cos (t) \otimes \cos (t) \equiv \sin (t) \otimes \sin (t)!!!!!$

Graphical Interpretation:

Figure 6.5: Interpretation of autocorrelation function

Note:

1. $\tau=\frac{\pi}{2}$: case when $x(t)$ and $x(t+\tau)$ are far from resemblance.
2. $\tau=\pi$: case when $x(t)$ and $x(t+\tau)$ are closest in opposite sense.
3. $\tau=0$: case when $x(t)$ and $x(t+\tau)$ are exactly the same.

Example 6.3

Find the autocorrelation function of following $x(t)$.

$$
x(t) \triangleq \tilde{\operatorname{rect}}(t)=\left\{\begin{array}{ll}
\operatorname{rect}(t) & -1<t \leq 1 \\
0 & \text { otherwise, }
\end{array} \quad \text { where } T=2\right.
$$

Figure 6.6: $x(t)$.

Solution:

Figure 6.7: $R_{x x}(\tau)$.
note: $R_{x x}(\tau)$: periodic with period $T=2$.

6.1.2 Cross-correlation function

Definition 6.2 The cross-correlation function of two periodic signals $x(t)$ with period T_{1} and $y(t)$ with period T_{2} is defined as follows:

$$
\begin{aligned}
R_{x y}(\tau) & \triangleq \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y(t+\tau) d t \\
& =x(t) \otimes y(t)
\end{aligned}
$$

where T is the least common period(LCP) between T_{1} and T_{2}, e.g. if $T_{1}=2 \pi$ and $T_{2}=3 \pi$, then $T=6 \pi$

Note: $R_{x y}(\tau) \neq R_{y x}(\tau)!!!!!$

Example 6.4

Find the cross-correlation functions $R_{x y}(\tau)$ and $R_{y x}(\tau)$ respectively for $x(t)=$ $\sin (t)$ and $y(t)=\cos (t)$.

Figure 6.8: $x(t)$ and $y(t)$.

Solution:

(i) $R_{x y}(\tau)$:

Figure 6.9: $R_{x y}(\tau)$.
note:
(a) $\sin (A) \cos (B)=\frac{1}{2}\{\sin (A+B)+\sin (A-B)\}$
(b) $R_{x y}(\tau)$: periodic with period $T=\operatorname{LCP}\left\{T_{1}, T_{2}\right\}=2 \pi$.
(ii) $R_{y x}(\tau)$:

Figure 6.10: $R_{y x}(\tau)$.
note:
(a) $\cos (A) \sin (B)=\frac{1}{2}\{\sin (A+B)-\sin (A-B)\}$
(b) $R_{y x}(\tau)$: periodic with period $T=\operatorname{LCP}\left\{T_{1}, T_{2}\right\}=2 \pi$.
(c) $R_{x y}(\tau) \neq R_{y x}(\tau)$

Harmonically related sinusoids:

Given:

$$
\begin{aligned}
x(t) & =\cos (a t) \\
y(t) & =\cos (b t)
\end{aligned}
$$

where $a \neq b$ and b / a is an integer (i.e. $b=k a$). Then $x(t)$ and $y(t)$ are called harmonically related sinusoids!!!

The cross-correlation function, then, bewteen $x(t)$ and $y(t)$ is:

$$
\begin{aligned}
R_{x y}(\tau) & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y(t+\tau) d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \cos (a t) \cos (b t+b \tau) d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{1}{2}\{\cos [(a+b) t+b \tau]+\cos [(a-b) t-b \tau]\} d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \frac{1}{2}\{\cos [(1+k) a t+b \tau]+\cos [(1-k) a t-b \tau]\} d t \\
& =0
\end{aligned}
$$

where $T=\mathrm{LCP}$.

meaning:

We cannot match $x(t)$ and $y(t)$ no matter how we shift one of them!!!
e.g.

Figure 6.11: $R_{x y}(\tau)$ for harmonically related sinusoids.

Likewise,

$$
\begin{aligned}
& \cos (a t) \otimes \sin (b t)=0 \\
& \sin (a t) \otimes \sin (b t)=0
\end{aligned}
$$

where $b / a=$ integer.

Computing F.S. coefficient using Cross-Correlation

Given a periodic signal $x(t)$ with period 2π, then the trigonometric F.S. representation of $x(t)$ is as follows:

$$
x(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n t)+b_{n} \sin (n t)\right\}
$$

Define,

$$
R_{k x}(\tau) \triangleq \cos (k t) \otimes x(t) \quad \text { where } k=0,1,2, \ldots
$$

Then

$$
R_{k x}(\tau)=\cos (k t) \otimes\left(\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos (n t)+b_{n} \sin (n t)\right\}\right)
$$

(i) $k=0$

$$
\begin{aligned}
R_{0 x}(\tau) & =1 \otimes \frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{2 \pi} \frac{a_{0}}{2} d t=\frac{a_{0}}{2} \\
\longrightarrow a_{0} & =2 R_{0 x}(\tau) \longrightarrow a_{0}=2 R_{0 x}(0)
\end{aligned}
$$

since $R_{0 x}(\tau)$ is independent of τ, i.e. constant
(ii) $k=1$

$$
\begin{gathered}
R_{1 x}(\tau)=\cos (t) \otimes\left\{a_{1} \cos (t)+b_{1} \sin (t)\right\}=\frac{a_{1}}{2} \cos (\tau)+\frac{b_{1}}{2} \sin (\tau) \\
\longrightarrow a_{1}=2 R_{1 x}(0) \text { and } b_{1}=2 R_{1 x}\left(\frac{\pi}{2}\right)
\end{gathered}
$$

(iii) $k=2$

$$
\begin{gathered}
R_{2 x}(\tau)=\cos (2 t) \otimes\left\{a_{2} \cos (2 t)+b_{2} \sin (2 t)\right\}=\frac{a_{2}}{2} \cos (2 \tau)+\frac{b_{2}}{2} \sin (2 \tau) \\
\longrightarrow a_{2}=2 R_{2 x}(0) \text { and } \quad b_{2}=2 R_{2 x}\left(\frac{\pi}{2 \cdot 2}\right)
\end{gathered}
$$

Therefore, in general, the trigonometric F.S. coefficients can be calculated as:

$$
\begin{cases}a_{n}=2 R_{n x}(0) & \text { for } n=0,1,2, \ldots \\ b_{n}=2 R_{n x}\left(\frac{\pi}{2 n}\right) & \text { for } n=1,2, \ldots\end{cases}
$$

and corresponding complex F.S. coefficients are

$$
C_{k} \triangleq \frac{1}{2}\left(a_{k}-j b_{k}\right)=R_{k x}(0)-j R_{k x}\left(\frac{\pi}{2 k}\right)
$$

6.1.3 Property of autocorrelation function

Property \#1:

$$
R_{x x}(0) \geq 0
$$

proof:

$$
\begin{aligned}
R_{x x}(0) & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) x(t+0) d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x^{2}(t) d t \\
& \geq 0
\end{aligned}
$$

Property \#2:

$$
\left.R_{x x}(\tau)=R_{x x}(-\tau) \quad \text { (even function of } \tau\right)
$$

proof:

$$
\begin{aligned}
\mathrm{RHS}= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) x(t-\tau) d t \\
& \left(\text { Let } t-\tau=t^{\prime}\right) \\
= & \frac{1}{T} \int_{-\frac{T}{2}+\tau}^{\frac{T}{2}+\tau} x\left(t^{\prime}+\tau\right) x\left(t^{\prime}\right) d t^{\prime} \\
= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x\left(t^{\prime}\right) x\left(t^{\prime}+\tau\right) d t^{\prime} \\
= & R_{x x}(\tau) \\
= & \text { LHS }
\end{aligned}
$$

Property \#3:

$$
R_{x x}(0) \geq R_{x x}(\tau) \quad\left(R_{x x}(0) \text { is the maximum }\right)
$$

proof:

Define

$$
y(t) \triangleq x(t)-x(t+\tau)
$$

Then,

$$
\begin{aligned}
R_{y y}(0) & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} y^{2}(t) d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}}\{x(t)-x(t+\tau)\}^{2} d t \\
& =\frac{1}{T}\left\{\int_{-\frac{T}{2}}^{\frac{T}{2}} x^{2}(t) d t+\int_{-\frac{T}{2}}^{\frac{T}{2}} x^{2}(t+\tau) d t-2 \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) x(t+\tau) d t\right\} \\
& =R_{x x}(0)+R_{x x}(0)-2 R_{x x}(\tau) \\
& \geq 0 \text { (should be) }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 2 R_{x x}(0)-2 R_{x x}(\tau) \geq 0 \\
& \longrightarrow R_{x x}(0) \geq R_{x x}(\tau) \forall \tau
\end{aligned}
$$

6.1.4 Property of cross-correlation function

Property \#1:

$$
R_{x y}(\tau)=R_{y x}(-\tau)
$$

proof:

$$
\begin{aligned}
\mathrm{LHS}= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y(t+\tau) d t \\
& \left(\text { Let } t+\tau=t^{\prime}\right) \\
= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x\left(t^{\prime}-\tau\right) y\left(t^{\prime}\right) d t^{\prime} \\
= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} y\left(t^{\prime}\right) x\left(t^{\prime}-\tau\right) d t^{\prime} \\
\triangleq & R_{y x}(-\tau) \\
= & \text { RHS }
\end{aligned}
$$

(cf.) Recall that in previous example, for $x(t)=\sin (t)$ and $y(t)=\cos (t)$, we found that $R_{x y}(\tau)=-\frac{1}{2} \sin (\tau)$ whereas $R_{y x}(\tau)=\frac{1}{2} \sin (\tau)=R_{x y}(-\tau)!!!$

Property \#2:

$$
x(t+a) \otimes y(t+b)=R_{x y}(\tau+b-a)
$$

proof:

$$
\begin{aligned}
\mathrm{LHS}= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t+a) y(t+b+\tau) d t \\
& \left(\text { Let } t+a=t^{\prime}\right) \\
= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x\left(t^{\prime}\right) y\left(t^{\prime}+\tau+b-a\right) d t^{\prime} \\
\triangleq & R_{x y}(\tau+b-a) \\
= & \operatorname{RHS}
\end{aligned}
$$

where $b-a$ is the difference of the arrival(or delay) time between $x(t)$ and $y(t)$.

Example 6.5

Radar ranging: We want to estimate the time delay t_{0}, i.e. \hat{t}_{0}.

Figure 6.12: Typical active radar system

We usually use a train of pulses, modulated with microwave signal, for $x(t)$ in general:

Figure 6.13: $x(t)$.

Figure 6.14: $R_{x x}(\tau)$.

If we take the cross-correlation between $x(t)$ and $y(t)$, we get

$$
R_{x y}(\tau)=x(t) \otimes\left[\alpha x\left(t-t_{0}\right)\right]=\alpha R_{x x}\left(\tau-t_{0}\right)
$$

Figure 6.15: $R_{x y}(\tau)$.

NOTE:

(a) By detecting the peak location of $R_{x y}(\tau)$ within T, we can estimate the time delay \hat{t}_{0}, i.e.

$$
\hat{t}_{0}=\operatorname{argmax}_{\tau \in T} R_{x y}(\tau)
$$

And the distance L between the radar site and the target can then be estimated as,

$$
\hat{L}=\frac{\hat{t}_{0}}{2} \cdot C
$$

where C is the velocity of the signal $x(t)$.
(b) To avoid ambiguity, the following condition should be satisfied, i.e.

$$
t_{0} \leq T
$$

Therefore, the maximum detection range $L_{\text {max }}$ is determined by:

$$
L_{\max }=\frac{T}{2} \cdot C \propto T
$$

Property \#3:

$$
x(t) \otimes y^{\prime}(t)=\frac{d}{d \tau}\left\{R_{x y}(\tau)\right\}
$$

proof:

$$
\begin{aligned}
\text { LHS } & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y^{\prime}(t+\tau) d t \\
& =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \frac{d}{d t}\{y(t+\tau)\} d t \\
= & \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \frac{d}{d \tau}\{y(t+\tau)\} d t \\
& \left(\text { since } \frac{d}{d t}\{y(t+\tau)\}=\frac{d}{d \tau}\{y(t+\tau)\}\right) \\
= & \frac{d}{d \tau}\left\{\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) y(t+\tau) d t\right\} \quad \text { (by Leibniz rule) } \\
= & \frac{d}{d \tau}\left\{R_{x y}(\tau)\right\} \\
= & \operatorname{RHS}
\end{aligned}
$$

Note: This is very useful in radar ranging when the peak location of $R_{x y}(\tau)$ is ambiguous:

Peak detection \Longrightarrow Zero-crossing detection

(e.g.)
(i) $R_{x y}(\tau)$ with clear peak

Figure 6.16: $R_{x y}(\tau)$: clear peak.
(ii) $R_{x y}(\tau)$ with ambiguous peak

Figure 6.17: $R_{x y}(\tau)$: ambiguous peak.

6.1.5 Power spectral density

Definition 6.3 The power spectral densities for periodic signals $x(t)$ and $y(t)$ with period T are defined as:
(1) Auto power spectral density of $x(t)$:

$$
\begin{aligned}
P_{x x}(k) & \triangleq C_{x}^{*}(k) \cdot C_{x}(k) \\
& =\left|C_{x}(k)\right|^{2}
\end{aligned}
$$

where $C_{x}(k)$ is the F.S. coefficient of $x(t)$, and $P_{x x}(k)$ represents the distribution of power in $x(t)$ with respect to k (i.e. frequency).
(2) Cross power spectral density between $x(t)$ and $y(t)$:

$$
P_{x y}(k) \triangleq C_{x}^{*}(k) \cdot C_{y}(k)
$$

where $C_{x}(k)$ and $C_{y}(k)$ are the F.S. coefficients of $x(t)$ and $y(t)$ respectively.

Theorem 6.1 The power spectral density of periodic signals is the F.S. coefficient of their correlation functions:

$$
P_{x y}(k)=C_{R}(k)
$$

where $C_{R}(k)$ is the F.S. coefficient of the cross-correlation function $R_{x y}(\tau)$ between $x(t)$ and $y(t)$, i.e.

$$
\begin{aligned}
R_{x y}(\tau) & =\frac{1}{T} \int_{T} x(t) y(t+\tau) d t \\
& =\sum_{k=-\infty}^{\infty} C_{R}(k) e^{j \frac{2 \pi k \tau}{T}}
\end{aligned}
$$

where $T=\mathrm{LCP}$ of $x(t)$ and $y(t)$.

Proof:

We must show that

$$
C_{R}(k)=C_{x}^{*}(k) \cdot C_{y}(k) \triangleq P_{x y}(k)
$$

$$
\begin{aligned}
\text { LHS }=C_{R}(k) \triangleq & \frac{1}{T} \int_{T} R_{x y}(\tau) e^{-j \frac{2 \pi k \tau}{T}} d \tau \\
= & \frac{1}{T} \int_{T}\left\{\frac{1}{T} \int_{T} x(t) y(t+\tau) d t\right\} e^{-j \frac{2 \pi k \tau}{T}} d \tau \\
= & \frac{1}{T} \int_{T} x(t)\left\{\frac{1}{T} \int_{T} y(t+\tau) e^{-j \frac{2 \pi k \tau}{T}} d \tau\right\} d t \\
& \left(\text { let } t+\tau=\tau^{\prime}\right) \\
= & \frac{1}{T} \int_{T} x(t)\left\{\frac{1}{T} \int_{T} y\left(\tau^{\prime}\right) e^{-j \frac{2 \pi k\left(\tau^{\prime}-t\right)}{T}} d \tau^{\prime}\right\} d t \\
= & \left\{\frac{1}{T} \int_{T} x(t) e^{j \frac{2 \pi k t}{T}} d t\right\} \cdot\left\{\frac{1}{T} \int_{T} y\left(\tau^{\prime}\right) e^{-j \frac{2 k k \tau^{\prime}}{T}} d \tau^{\prime}\right\} \\
& (\operatorname{assuming} x(t) \text { is real }) \\
= & \left\{\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi k t}{T}} d t\right\}^{*} \cdot\left\{\frac{1}{T} \int_{T} y\left(\tau^{\prime}\right) e^{-j \frac{2 \pi k \tau^{\prime}}{T}} d \tau^{\prime}\right\} \\
\triangleq & C_{x}^{*}(k) \cdot C_{y}(k) \\
= & \operatorname{RHS}
\end{aligned}
$$

Reminder: Power spectral density is the F.S. coefficient of the correlation function for periodic signals!!!!!

6.2 Non-periodic Signals

6.2.1 Autocorrelation function

Definition 6.4 The autocorrelation function for a non-periodic signal $x(t)$ is defined as:

$$
\begin{aligned}
R_{x x}(\tau) & \triangleq \int_{-\infty}^{\infty} x(t) x(t+\tau) d t \\
& =x(t) \otimes x(t)
\end{aligned}
$$

Note:

1. $R_{x x}(\tau)$ indicates the resemblance(closeness) between $x(t)$ and $x(t+\tau)$ quantitatively as we vary τ (amount of shift)!!!
2. Dimension of $R_{x x}(\tau)$ is energy in joules.
3. $\tau=0$ gives the energy of $x(t)$, i.e. $R_{x x}(0)=$ energy of $x(t)$
(cf.)
It is assumed that $x(t)$ has a finite energy, i.e.,

$$
\int_{-\infty}^{\infty} x^{2}(t) d t<\infty
$$

6.2.2 Cross-correlation function

Definition 6.5 Similarly, we define the cross-correlation function between two nonperiodic signals $x(t)$ and $y(t)$ as:

$$
\begin{aligned}
R_{x y}(\tau) & \triangleq \int_{-\infty}^{\infty} x(t) y(t+\tau) d t \\
& =x(t) \otimes y(t)
\end{aligned}
$$

6.2.3 Property of autocorrelation function

Same as the properties of autocorrelation function for a periodic signal:

Property \#1:

$$
R_{x x}(0) \geq 0
$$

Property \#2:

$$
R_{x x}(\tau)=R_{x x}(-\tau) \quad(\text { even function of } \tau)
$$

Property \#3:

$$
R_{x x}(0) \geq R_{x x}(\tau) \quad\left(R_{x x}(0) \text { is the maximum }\right)
$$

proof: assignment

6.2.4 Property of cross-correlation function

Same as the properties of cross-correlation function for periodic $x(t)$ and $y(t)$:

Property \#1:

$$
R_{x y}(\tau)=R_{y x}(-\tau)
$$

Property \#2:

$$
x(t+a) \otimes y(t+b)=R_{x y}(\tau+b-a)
$$

Property \#3:

$$
x(t) \otimes y^{\prime}(t)=\frac{d}{d \tau}\left\{R_{x y}(\tau)\right\}
$$

proof: assignment

Example 6.6

Find the autocorrelation function of $x(t)$ given below.

$$
x(t)=\left\{\begin{array}{lc}
1, & 0 \leq t \leq T \\
0 & \text { otherwise }
\end{array}\right.
$$

Figure 6.18: $x(t)$.

Solution:

Figure 6.19: $R_{x x}(\tau)$.

Example 6.7

Find the autocorrelation function of $x(t)$ given below.

$$
x(t)=e^{-a t} u(t), \quad a>0
$$

Figure 6.20: $x(t)$ and $x(t+\tau)$ for $\tau<0$.

Solution:

Figure 6.21: $R_{x x}(\tau)$.

6.2.5 Energy spectral density

Definition 6.6 The energy spectral densities for non-periodic signals $x(t)$ and $y(t)$ are defined as:
(1) Auto energy spectral density of $x(t)$:

$$
\begin{aligned}
S_{x x}(\omega) & \triangleq X^{*}(\omega) \cdot X(\omega) \\
& =|X(\omega)|^{2}
\end{aligned}
$$

where $X(\omega)$ is the F.T. of $x(t)$, and $S_{x x}(\omega)$ represents the distribution of energy in $x(t)$ with respect to ω (i.e. frequency).
(2) Cross energy spectral density between $x(t)$ and $y(t)$:

$$
S_{x y}(\omega) \triangleq X^{*}(\omega) \cdot Y(\omega)
$$

where $X(\omega)$ and $Y(\omega)$ are the F.T.'s of $x(t)$ and $y(t)$ respectively.

Theorem 6.2 (Wiener-Khinchin Theorem:)

The correlation function and the energy spactral density is a Fourier transform pair, i.e.:

$$
\begin{array}{lll}
R_{x x}(\tau) & \stackrel{\mathcal{F}}{\longleftrightarrow} & S_{x x}(\omega) \\
R_{x y}(\tau) & \stackrel{\mathcal{F}}{\longleftrightarrow} & S_{x y}(\omega)
\end{array}
$$

where $x(t)$ and $y(t)$ are assumed to be real signals.

Proof:

$$
\begin{aligned}
\mathcal{F}\left[R_{x y}(\tau)\right]= & \int_{-\infty}^{\infty} R_{x y}(\tau) e^{-j \omega \tau} d \tau \\
= & \int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} x(t) y(t+\tau) d t\right\} e^{-j \omega \tau} d \tau \\
= & \int_{-\infty}^{\infty} x(t)\left\{\int_{-\infty}^{\infty} y(t+\tau) e^{-j \omega \tau} d \tau\right\} d t \\
= & \int_{-\infty}^{\infty} x(t) \cdot Y(\omega) e^{j \omega t} d t \\
= & \left\{\int_{-\infty}^{\infty} x(t) e^{j \omega t} d t\right\} \cdot Y(\omega) \\
& (\operatorname{assuming} x(t) \text { is real }) \\
= & \left\{\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right\}^{*} \cdot Y(\omega) \\
= & X^{*}(\omega) Y(\omega) \\
\triangleq & S_{x y}(\omega)
\end{aligned}
$$

Example 6.8

Find the auto energy spectral density of $x(t)$ discussed in example 6.7.

$$
x(t)=e^{-a t} u(t), \quad a>0
$$

Figure 6.22: $x(t)$.

Solution:

Figure 6.23: $S_{x x}(\omega)$.

6.2.6 Input/output relation of an LTI system(in terms of energy)

Given an LTI system,

Figure 6.24: LTI system.
where $h(t)$ and $H(\omega)$ are the impulse response and the transfer function of the system respectively.
(1) Output signal:

$$
\begin{aligned}
y(t) & =h(t) * x(t) \\
Y(\omega) & =H(\omega) X(\omega)
\end{aligned}
$$

(2) Output auto energy spectral density:

$$
\begin{aligned}
S_{y y}(\omega) & \triangleq Y^{*}(\omega) Y(\omega) \\
& =\{H(\omega) X(\omega)\}^{*}\{H(\omega) X(\omega)\} \\
& =H^{*}(\omega) X^{*}(\omega) H(\omega) X(\omega) \\
& =|H(\omega)|^{2} \cdot X^{*}(\omega) X(\omega) \\
& =|H(\omega)|^{2} \cdot S_{x x}(\omega)
\end{aligned}
$$

where $|H(\omega)|^{2}$ is called the "energy transfer function" of the system.
(3) Output autocorrelation function:

Using the Wiener-Khinchin theorem,

$$
\begin{aligned}
R_{y y}(\tau) & =\mathcal{F}^{-1}\left\{S_{y y}(\omega)\right\} \\
& =\mathcal{F}^{-1}\left\{|H(\omega)|^{2} \cdot S_{x x}(\omega)\right\} \\
& =\mathcal{F}^{-1}\left\{|H(\omega)|^{2}\right\} * \mathcal{F}^{-1}\left\{S_{x x}(\omega)\right\} \\
& =\mathcal{F}^{-1}\left\{|H(\omega)|^{2}\right\} * R_{x x}(\tau)
\end{aligned}
$$

(4) Cross energy spectral density b/w input and output:

$$
\begin{aligned}
S_{x y}(\omega) & \triangleq X^{*}(\omega) Y(\omega) \\
& =X^{*}(\omega) H(\omega) X(\omega) \\
& =H(\omega)\left\{X^{*}(\omega) X(\omega)\right\} \\
& =H(\omega) S_{x x}(\omega)
\end{aligned}
$$

(5) Cross-correlation function b / w input and output:

Using the Wiener-Khinchin theorem,

$$
\begin{aligned}
R_{x y}(\tau) & =\mathcal{F}^{-1}\left\{S_{x y}(\omega)\right\} \\
& =\mathcal{F}^{-1}\left\{H(\omega) \cdot S_{x x}(\omega)\right\} \\
& =\mathcal{F}^{-1}\{H(\omega)\} * \mathcal{F}^{-1}\left\{S_{x x}(\omega)\right\} \\
& =h(\tau) * R_{x x}(\tau)
\end{aligned}
$$

(6) Cross energy spectral density b/w output and input:

$$
\begin{aligned}
S_{y x}(\omega) & \triangleq Y^{*}(\omega) X(\omega) \\
& =\{H(\omega) X(\omega)\}^{*} X(\omega) \\
& =H^{*}(\omega) X^{*}(\omega) X(\omega) \\
& =H^{*}(\omega) S_{x x}(\omega)
\end{aligned}
$$

note: $S_{y x}(\omega)=Y^{*}(\omega) X(\omega)=\left\{X^{*}(\omega) Y(\omega)\right\}^{*}=S_{x y}^{*}(\omega)$.
(7) Cross-correlation function b / w output and input:

Using the Wiener-Khinchin theorem,

$$
\begin{aligned}
R_{y x}(\tau) & =\mathcal{F}^{-1}\left\{S_{y x}(\omega)\right\} \\
& =\mathcal{F}^{-1}\left\{H^{*}(\omega) \cdot S_{x x}(\omega)\right\} \\
& =h(-\tau) * R_{x x}(\tau) \quad \text { (assuming } h(\tau) \text { is real) } \\
& =h(-\tau) * R_{x x}(-\tau) \quad \text { (since } R_{x x}(\tau) \text { is symmetric) } \\
& =R_{x y}(-\tau)
\end{aligned}
$$

Note:

(i)

$$
R_{y x}(\tau)=R_{x y}(-\tau)
$$

(ii)

$$
\begin{aligned}
\mathcal{F}^{-1}\left[H^{*}(\omega)\right] & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} H^{*}(\omega) e^{j \omega \tau} d \omega \\
& =\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) e^{-j \omega \tau} d \omega\right)^{*} \\
& =\left(\frac{1}{2 \pi} \int_{-\infty}^{\infty} H(\omega) e^{j \omega(-\tau)} d \omega\right)^{*} \\
& =h^{*}(-\tau) \\
& =h(-\tau) \quad(\text { assuming } h(\tau) \text { is real })
\end{aligned}
$$

6.3 Parseval's Theorem

Theorem 6.3 The energy in time domain must be equal to the energy in frequency domain, so the energy of a non-periodic signal $x(t)$ can be computed as the integration of $S_{x x}(\omega)$ scaled by $\frac{1}{2 \pi}$, i.e.

$$
E=\int_{-\infty}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) d \omega=R_{x x}(0)
$$

Proof:

From the Wiener-Khinchin theorem, we have,

$$
R_{x x}(\tau) \triangleq \int_{-\infty}^{\infty} x(t) x(t+\tau) d t \equiv \mathcal{F}^{-1}\left[S_{x x}(\omega)\right]=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) e^{j \omega \tau} d \omega
$$

Let $\tau=0$ at each term of both sides, then

$$
R_{x x}(0)=\int_{-\infty}^{\infty} x^{2}(t) d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} S_{x x}(\omega) d \omega
$$

Q.E.D.

Simailary, for the periodic signals, we have the following Parseval's theorem:

Theorem 6.4 The power in time domain must be equal to the power in frequency domain, so the average power of a periodic signal $x(t)$ can be computed as the sum of $P_{x x}(k)$, i.e.

$$
P=\frac{1}{T} \int_{T}|x(t)|^{2} d t=\sum_{k=-\infty}^{\infty} P_{x x}(k)=R_{x x}(0)
$$

Proof:

$$
\begin{aligned}
\text { LHS } & =\frac{1}{T} \int_{T}|x(t)|^{2} d t \\
& =\frac{1}{T} \int_{T} x^{*}(t) x(t) d t \\
& =\frac{1}{T} \int_{T}\left(\sum_{k=-\infty}^{\infty} C_{x}^{*}(k) e^{-j \frac{2 \pi k t}{T}}\right) x(t) d t \\
& =\sum_{k=-\infty}^{\infty} C_{x}^{*}(k) \cdot \frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi k t}{T}} d t \\
& =\sum_{k=-\infty}^{\infty} C_{x}^{*}(k) \cdot C_{x}(k)=\sum_{k=-\infty}^{\infty}\left|C_{x}(k)\right|^{2}=\sum_{k=-\infty}^{\infty} P_{x x}(k)=\mathrm{RHS}
\end{aligned}
$$

Q.E.D.

note:

If $x(t)$ is a real signal, it is simpler to prove the theorem:

proof:

$$
\begin{aligned}
\text { LHS } & =\frac{1}{T} \int_{T} x^{2}(t) d t \\
& =\frac{1}{T} \int_{T}\left(\sum_{k=-\infty}^{\infty} C_{x}(k) e^{j \frac{2 \pi k t}{T}}\right) x(t) d t \\
& =\sum_{k=-\infty}^{\infty} C_{x}(k) \cdot \frac{1}{T} \int_{T} x(t) e^{j \frac{2 \pi k t}{T}} d t \\
& =\sum_{k=-\infty}^{\infty} C_{x}(k) \cdot C_{x}^{*}(k)=\sum_{k=-\infty}^{\infty}\left|C_{x}(k)\right|^{2}=\sum_{k=-\infty}^{\infty} P_{x x}(k)=\mathrm{RHS}
\end{aligned}
$$

q.e.d.

Example 6.9

Find the energy of $x(t)$ discussed in example 6.7.

$$
x(t)=e^{-a t} u(t), \quad a>0
$$

Figure 6.25: $x(t)$.

Solution:

Example 6.10

Find the average power of the input $x(t)$ and the output $y(t)$ for the following LTI system, where the impulse response and the input signal are given respectively as:

$$
\begin{gathered}
h(t)=e^{-a t} u(t), \quad a>0 \\
x(t)=\cos (t)
\end{gathered}
$$

Figure 6.26: LTI system with $h(t)$ and $x(t)$.

Solution:

(a) Input power P_{I} :

We try to compute the average power in three different ways:

Figure 6.27: Power spectral density of the input: $P_{x x}(k)$.
(b) Output power P_{O} :

In order to compute the output power, we use the power spectral density of the output $P_{y y}(k)^{1}$, and first we discuss the relationship between the input and the output in terms of power:

[^0]
Relationship of input/output power spactral density

We have, for periodic signals $x(t)$ and $y(t)$ where $\omega_{0}=\frac{2 \pi}{T_{0}}(\mathrm{rad} / \mathrm{sec})$:

$$
\begin{aligned}
& |Y(\omega)|^{2}=|H(\omega)|^{2} \cdot|X(\omega)|^{2} \\
\Longrightarrow & \left|Y\left(k \omega_{0}\right)\right|^{2}=\left|H\left(k \omega_{0}\right)\right|^{2} \cdot\left|X\left(k \omega_{0}\right)\right|^{2} \\
\Longrightarrow & \left|2 \pi C_{y}(k)\right|^{2}=\left|H\left(k \omega_{0}\right)\right|^{2} \cdot\left|2 \pi C_{x}(k)\right|^{2} \\
\Longrightarrow & \left|C_{y}(k)\right|^{2}=\left|H\left(k \omega_{0}\right)\right|^{2} \cdot\left|C_{x}(k)\right|^{2} \\
\Longrightarrow & P_{y y}(k)=\left|H\left(k \omega_{0}\right)\right|^{2} \cdot P_{x x}(k)
\end{aligned}
$$

e.g.: If $T_{0}=2 \pi(\mathrm{sec})$, then $\omega_{0}=\frac{2 \pi}{T_{0}}=1(\mathrm{rad} / \mathrm{sec})$, and

$$
P_{y y}(k)=|H(k)|^{2} \cdot P_{x x}(k)
$$

Note: From the figure of $P_{y y}(k)$, we can easily get the autocorrelation function of the output signal as:

$$
R_{y y}(\tau)=\frac{1}{2\left(1+a^{2}\right)} \cos (\tau)
$$

Figure 6.28: Power spectral density of the output, $P_{y y}(k)$, with $P_{x x}(k)$ and $|H(k)|^{2}$.

[^0]: ${ }^{1}$ In this way, we do need to compute the output signal $y(t)$ specifically, which simplifies much of the work required!!!

