Contents

8 DISCRETE FOURIER SERIES 160
8.1 Concept of Discrete Fourier Series(DFS) 160
8.2 Comparison between DFS and CFS 162
8.3 Representation of Complex DFS 165

Chapter 8

DISCRETE FOURIER SERIES

8.1 Concept of Discrete Fourier Series(DFS)

Basic Idea

Suppose we are given a periodic, discrete signal $x[n]$ with period of N, which is a uniformly sampled version of continuoius periodic signal $x(t), \ni$:

$$
x[n]=x[n+m \cdot N] \text { where } m \text { :integer }
$$

where N is called the fundamental period of $x[n]$, and it must be an integer.
e.g.:

Figure 8.1: Typical discrete periodic signal $x[n]$ w/ period N (samples).

Based upon the same reasoning behind the continuous Fourier series, we can express $x[n]$ as a linear combination of harmonically related discrete complex exponentials, where the fundamental frequency is now: ${ }^{1}$

$$
\omega_{0}=\frac{2 \pi}{N}(\mathrm{rad})
$$

i.e.:

$$
x[n]=\sum_{k=0}^{N-1} D_{x}(k) e^{j \frac{2 \pi k}{N} n} \quad: \text { Discrete F.S. }
$$

NOTE: The discrete Fourier series is a finite series, whereas the continuous Fourier series is an infinite series ${ }^{2}$!!!

[^0]
8.2 Comparison between DFS and CFS

$$
\begin{aligned}
x(t)=\sum_{k=-\infty}^{\infty} C_{x}(k) e^{j \frac{2 \pi k}{T} t} & : \text { CFS (infinite series) } \\
x[n]=\sum_{k=0}^{N-1} D_{x}(k) e^{j \frac{2 \pi k}{N} n} & : \text { DFS (finite series) }
\end{aligned}
$$

(1) Continuous Fourier Series(CFS):

Let

$$
\phi_{c}(k) \triangleq e^{j \frac{2 \pi k}{T} t}=\cos \left(\frac{2 \pi k t}{T}\right)+j \sin \left(\frac{2 \pi k t}{T}\right)
$$

then, all of $\phi_{c}(k)$ are distinct for $k=-\infty$ to $k=\infty$, i.e. they never repeats!!!

Example 8.1

It is easy to notice that for $\phi_{c}(k)$, which is:

$$
\phi_{c}(k) \triangleq e^{j \frac{2 \pi k}{T} t}=\cos \left(\frac{2 \pi k t}{T}\right)+j \sin \left(\frac{2 \pi k t}{T}\right)
$$

the real and imaginary parts, $\left\{\cos \left(\frac{2 \pi k t}{T}\right)\right\}_{k=-\infty}^{\infty}$ and $\left\{\sin \left(\frac{2 \pi k t}{T}\right)\right\}_{k=-\infty}^{\infty}$ respectively, are all distinct for different value of k, for instance, let $T=2 \pi(\mathrm{sec})$, then the real and imaginary parts of $\phi_{c}(k)$:
(i) Real part:

$$
\cos (t), \cos (2 t), \ldots, \cos (k t), \ldots \ldots
$$

(ii) Imaginary part:

$$
\sin (t), \sin (2 t), \ldots, \sin (k t), \ldots \ldots
$$

are all different to each other.

NOTE:

This is why the CFS requires a infinite number of harmonic frequency components to completely represent a continuous periodic signal, and thus the CFS is in a infinite series form!!!
(2) Discrete Fourier Series(DFS):

Let

$$
\phi_{d}(k) \triangleq e^{j \frac{2 \pi k}{N} n}=\cos \left(\frac{2 \pi k n}{N}\right)+j \sin \left(\frac{2 \pi k n}{N}\right)
$$

then, $\phi_{d}(k)$ is periodic in k with period of N, i.e.:

$$
\phi_{d}(k)=\phi_{d}(k+r N) \quad \text { where } r: \text { integer }
$$

proof:

$$
\begin{aligned}
\mathrm{RHS} & =\phi_{d}(k+r N) \\
& =e^{j \frac{2 \pi(k+r N)}{N} n} \\
& =e^{j \frac{2 \pi k}{N} n} \cdot e^{j \frac{2 \pi r N}{N} n} \\
& =e^{j \frac{2 \pi k}{N} n} \\
& =\phi_{d}(k)=\text { LHS }
\end{aligned}
$$

Example 8.2

Let the period $N=4$, then:

$$
\begin{aligned}
\phi_{d}(k) \triangleq e^{j \frac{2 \pi k}{N} n} & =\cos \left(\frac{2 \pi k n}{N}\right)+j \sin \left(\frac{2 \pi k n}{N}\right) \\
& =\cos \left(\frac{2 \pi k n}{4}\right)+j \sin \left(\frac{2 \pi k n}{4}\right) \\
& =\cos \left(\frac{\pi k n}{2}\right)+j \sin \left(\frac{\pi k n}{2}\right)
\end{aligned}
$$

The real and imaginary parts of $\phi_{d}(k),\left\{\cos \left(\frac{\pi k n}{2}\right)\right\}_{k=-\infty}^{\infty}$ and $\left\{\sin \left(\frac{\pi k n}{2}\right)\right\}_{k=-\infty}^{\infty}$ respectively, repeat themselves in k with the period of $N=4$ as follows:
(i) Real part:

$$
\begin{aligned}
& \cos \left(\frac{\pi}{2} n\right), \cos (\pi n), \cos \left(\frac{3 \pi}{2} n\right), \cos (2 \pi n), \quad k=1,2,3,4 \\
& \cos \left(\frac{5 \pi}{2} n\right), \cos (3 \pi n), \cos \left(\frac{7 \pi}{2} n\right), \cos (4 \pi n), \quad k=5,6,7,8 \\
& \left(\equiv \cos \left(\frac{\pi}{2} n\right), \cos (\pi n), \cos \left(\frac{3 \pi}{2} n\right), \cos (2 \pi n)\right)
\end{aligned}
$$

(ii) Imaginary part:

$$
\begin{aligned}
& \sin \left(\frac{\pi}{2} n\right), \sin (\pi n), \sin \left(\frac{3 \pi}{2} n\right), \sin (2 \pi n), \quad k=1,2,3,4 \\
& \sin \left(\frac{5 \pi}{2} n\right), \sin (3 \pi n), \sin \left(\frac{7 \pi}{2} n\right), \sin (4 \pi n), \quad k=5,6,7,8 \\
& \left(\equiv \sin \left(\frac{\pi}{2} n\right), \sin (\pi n), \sin \left(\frac{3 \pi}{2} n\right), \sin (2 \pi n)\right)
\end{aligned}
$$

NOTE:

This is why the DFS requires only a finite number (N) of harmonic frequency components, from d.c. to $\frac{2 \pi(N-1)}{N}(\mathrm{rad})$, to completely represent a discrete periodic signal, and thus the DFS is in a finite series form!!!

8.3 Representation of Complex DFS

Let $x[n]$ be a periodic, discrete signal with period of N, i.e.

$$
x[n]=x[n+m \cdot N] \text { where } m: \text { integer }
$$

where N is called the fundamental period of $x[n]$, and it must be an integer.

Then, based upon the same reasoning behind the continuous Fourier series, we can express $x[n]$ as a linear combination of harmonically related discrete complex exponentials,

$$
x[n]=\sum_{k=0}^{N-1} D_{x}(k) e^{j \frac{2 \pi k}{N} n}
$$

where the fundamental frequency is $\omega_{0}=\frac{2 \pi}{N}(\mathrm{rad})$.

The corresponding DFS coefficients ${ }^{3}\left\{D_{x}(k)\right\}_{k=-\infty}^{\infty}$ are given:

$$
D_{x}(k)=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n}
$$

Note:

1. In general, $D_{x}(k)$'s are complex numbers, i.e.:

$$
\begin{aligned}
D_{x}(k) & =\operatorname{Re}\left[D_{x}(k)\right]+j \operatorname{Im}\left[D_{x}(k)\right] \quad \text { (cartesian coordinate) } \\
& =\left|D_{x}(k)\right| e^{j \Phi_{x}(k)} \text { (polar coordinate) : preferred!!! }
\end{aligned}
$$

where

$$
\begin{gathered}
\left|D_{x}(k)\right|=\sqrt{\operatorname{Re}^{2}\left[D_{x}(k)\right]+\operatorname{Im}^{2}\left[D_{x}(k)\right]} \\
\Phi_{x}(k)=\arctan \left\{\frac{\operatorname{Im}\left[D_{x}(k)\right]}{\operatorname{Re}\left[D_{x}(k)\right]}\right\}
\end{gathered}
$$

2. Since $\phi_{d}(k)$ is periodic, $D_{x}(k)$, naturally, would be periodic in k with period of N : to be officially proved later.
[^1]
FACT:

$$
\sum_{n=0}^{N-1} e^{j \frac{2 \pi k n}{N}}= \begin{cases}N, & k=m \cdot N \\ 0 & \text { otherwise }\end{cases}
$$

proof:

(i) $k \neq m \cdot N$:

$$
\begin{aligned}
\sum_{n=0}^{N-1}\left(e^{j \frac{2 \pi k}{N}}\right)^{n} & =\frac{1-e^{j \frac{2 \pi k}{N} N}}{1-e^{j \frac{2 \pi k}{N}}} \\
& =\frac{1-e^{j 2 \pi k}}{1-e^{j \frac{2 \pi k}{N}}} \\
& =0
\end{aligned}
$$

(ii) $k=m \cdot N$:

$$
\sum_{n=0}^{N-1} e^{j \frac{2 \pi m N n}{N}}=\sum_{n=0}^{N-1} 1=N
$$

q.e.d.

Now, to derive the DFS coefficient $D_{x}(k)$, from

$$
x[n]=\sum_{k=0}^{N-1} D_{x}(k) e^{j \frac{2 \pi k}{N} n}
$$

Multiply both sides with $e^{-j \frac{2 \pi r n}{N}}$, where r is integers ranging $0 \leq r \leq N-1$, and take summation $\sum_{n=0}^{N-1}$, then

$$
\begin{align*}
\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi r n}{N}} & =\sum_{n=0}^{N-1} \sum_{k=0}^{N-1} D_{x}(k) e^{\frac{2 \pi(k-r) n}{N}} \\
& =\sum_{k=0}^{N-1} D_{x}(k) \sum_{n=0}^{N-1} e^{j \frac{2 \pi(k-r) n}{N}} \tag{8.1}
\end{align*}
$$

In the above equation (8.1), notice from the FACT that

$$
\sum_{n=0}^{N-1} e^{j \frac{2 \pi(k-r) n}{N}}= \begin{cases}N, & k-r=m \cdot N \rightarrow k=r+m N \rightarrow k=r \\ 0 & k-r \neq m \cdot N \rightarrow k \neq r+m N \rightarrow k \neq r\end{cases}
$$

where the value of k is restrained as $0 \leq k \leq N-1$. From (8.1), we have

$$
\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi r n}{N}}=N \cdot D_{x}(r)
$$

Therefore, the discrete Fourier series coefficient $D_{x}(k)$ can be put into the following formula:

$$
D_{x}(r)=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi r n}{N}}
$$

or replacing r with k, we get:

$$
D_{x}(k)=\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k n}{N}}
$$

In summary, we have the following DFS pair relationship for periodic discrete-time signals $x[n]$;

$$
\begin{aligned}
x[n] & =\sum_{k=0}^{N-1} D_{x}(k) e^{j \frac{2 \pi k}{N} n} \\
D_{x}(k) & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n}
\end{aligned}
$$

Note: $D_{x}(k)$ is periodic in k with period of N.

proof:

$$
\begin{aligned}
D_{x}(k+m N) & =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi(k+m N)}{N} n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n} \cdot e^{-j \frac{2 \pi m N}{N} n} \\
& =\frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi k}{N} n} \\
& \triangleq D_{x}(k)
\end{aligned}
$$

[^0]: ${ }^{1}$ For continuous periodic signal $x(t)=x(t+T)$, the fundamental frequency is $\omega_{0}=\frac{2 \pi}{T}(\mathrm{rad} / \mathrm{sec})$.
 ${ }^{2}$ Recall that continuous F.S.: $x(t)=\sum_{k=-\infty}^{\infty} C_{x}(k) e^{j \frac{2 \pi k}{T} t}$

[^1]: ${ }^{3}$ Recall that for continuous F.S., the coefficient is in the form of $C_{x}(k)=\frac{1}{T} \int_{T} x(t) e^{-j \frac{2 \pi k t}{T}} d t$.

