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Chapter 8
DISCRETE FOURIER SERIES

8.1 Concept of Discrete Fourier Series(DFS)

Basic Idea

Suppose we are given a periodic, discrete signal x[n] with period of N, which is a
uniformly sampled version of continuoius periodic signal z(t), >:

z[n| = xz[n +m - N] where m:integer

where N is called the fundamental period of x[n], and it must be an integer.

e.g.:

Figure 8.1: Typical discrete periodic signal z[n] w/ period N (samples).
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Based upon the same reasoning behind the continuous Fourier series, we can express
x[n] as a linear combination of harmonically related discrete complex exponentials,
where the fundamental frequency is now: !

2
wo = WW (rad)
le.
Nl 2k
z[n] = > D,(k)e’’ ™ : Discrete F.S.
k=0

NOTE: The discrete Fourier series is a finite series, whereas the continuous
Fourier series is an infinite series 2 !l

'For continuous periodic signal z(t) = z(t + T), the fundamental frequency is wo = 2% (rad/sec).
2Recall that continuous F.S.: z(t) = 35> C,(k)ed 1
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8.2 Comparison between DFS and CFS

o0

()= > Cx(k’)ej%t : CFS (infinite series)
k=—oc0
Nl ok
z[n] = > D,(k)e’’ " : DFS (finite series)
k=0

Let " "
‘2m 2kt 2kt
do(k) 2 eIt = cos < 7; ) +jsin< 7; )
then, all of ¢.(k) are distinct for k = —oo to k = oo, i.e. they never repeats!!!

Example 8.1

It is easy to notice that for ¢.(k), which is:

- 2 2
do(k) £ 7T = cos (7;]%) + Jsin <7;kt>

the real and imaginary parts, {cos (2’%“)}:;700 and {sin (ZWTM)}:OZ,OO respec-

tively, are all distinct for different value of k, for instance, let T' = 27 (sec), then
the real and imaginary parts of ¢.(k) :

(i) Real part:
cos(t),cos(2t),...,cos(kt),......

(ii) Imaginary part:
sin(t),sin(2¢), ..., sin(kt),......

are all different to each other.

NOTE:

This is why the CFS requires a infinite number of harmonic frequency components to

completely represent a continuous periodic signal, and thus the CFS is in a infinite
series form!!!
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(2) Discrete Fourier Series(DF'S):

2m 2rk 2rk
da(k) 2 eIF T = cos (T) + jsin < 7;\[”>

then, ¢4(k) is periodic in k with period of N, i.e.:

Let

¢a(k) = ¢pa(k +rN) where r: integer

proof:

RHS = ¢a(k +7N)

_ e.27r(k;]rrN>n
_ IR TR
= T

— Gulk) = LHS

Example 8.2

Let the period N = 4, then:

-27 2 k 2 k
da(k) £ IF = cos( 7;\[”) —l—jsin( 7;\7”)

The real and imaginary parts of ¢4(k), {COS (%) };O__ and {sin (%) }ZO__OO
respectively, repeat themselves in k& with the period of N = 4 as follows:
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(i) Real part:
T 371'
oS (2n> ,cos (mn) , cos (2n> ,cos (2mn), k=1,2,3,4
5 7
cos (;n> ,cos (3mn) , cos (;n> ,cos (4mn), k=5,6,7,8

™

(E cos <2n) ,cos (mn) , cos (?n) , COS (27m))

(ii) Imaginary part:
(T : (3T .
sin <2n) ,sin (7n) , sin <2n) ,sin (27m), k=1,2,3,4

sin <527Tn> ,sin (37n) , sin (Zrn) ,sin (4mn), k=5,6,7,8

<E sin (gn) ,8in (7n) , sin (327Tn) ,sin (27rn))

NOTE:

This is why the DFS requires only a finite number(/N) of harmonic frequency com-
ponents, from d.c. to M]\,_D(rad), to completely represent a discrete periodic signal,
and thus the DFS is in a finite series form!!!
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8.3 Representation of Complex DFS

Let z[n| be a periodic, discrete signal with period of NV i.e.
z[n] = xz[n +m - N| where m:integer

where N is called the fundamental period of x[n|, and it must be an integer.

Then, based upon the same reasoning behind the continuous Fourier series, we can
express z[n| as a linear combination of harmonically related discrete complex expo-
nentials,

N-1 27k,
zln] = Y D,(k)e''~
k=0

where the fundamental frequency is wy = 37 (rad).

The corresponding DFS coefficients ® {D,(k)},—__. are given:

i NZ: oI
N n=0

Note:

1. In general, D,(k)’s are complex numbers, i.e.:

D.(k) = Re[D,(k)] + jIm[D,(k)] (cartesian coordinate)

= | D,(k)|e’**™® (polar coordinate) : preferred!!!

where

k)| = VRe2[D, (k)] + Tm?[D, (k)]

_ Im[D, (k)]
®, (k) = arctan {Re[Dx(k:)]}

2. Since ¢4(k) is periodic, D, (k), naturally, would be periodic in k with period of
N: to be officially proved later.

-2kt

3Recall that for continuous F.S., the coefficient is in the form of Cy (k) = £ [, x(t)e 7T dt.
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Derivation of DFS coefficient: D, (k)

FACT:
Niej%i N, k=m-N
= 10 otherwise
proof:
(i) k #m - N:
Nl( j2]7\r]k>n B 1— ej%N
n=0 ‘ N 1-— ej%k
1— 6j27rk
=0
(i) k=m - N:
~1 - 2rmNn N-1
Z e’ = 1=N
n=0 n=0

Now, to derive the DFS coefficient D, (k), from

N—-1
21k

zln] = Y Dy(k)e!'~"

k=0

Multiply both sides with e‘j%%, where 7 is integers ranging 0 < r < N —1, and take
summation V= then

n=0 "
N—1 N—1N-1 .
> alnle = 303 Dk
n=0 n=0 k=0
N-1 N-1 27 (k—r)n
= D,(k)> &7~ (8.1)

k= n=0

[en]

In the above equation (8.1), notice from the FACT that

- 0 k_r#mNHk%T—i—mN—)k#T
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where the value of k is restrained as 0 < k < N — 1. From (8.1), we have
Nl -2Trn
Z z[nle™ N = N - D,(r)
n=0

Therefore, the discrete Fourier series coefficient D, (k) can be put into the following
formula:

]_ N1 2nrn
D,(r) = — x[nle™’"N
N n=0
or replacing r with k, we get:
D(k) = & 3 alple "
(k)= — x[nle
N n=0

In summary, we have the following DFS pair relationship for periodic discrete-time
signals z[n];

x[n] = Z D,(k)e ~"
k=0
D) = L3 e
(k) = — x[nle
N n=0

Note: D, (k) is periodic in k with period of N.

proof:

i

—j 27r(k41\»]m1\1) n

D,(k+mN) = z[nle

2= 2= 2]
=3 =3
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