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Chapter 8

DISCRETE FOURIER SERIES

8.1 Concept of Discrete Fourier Series(DFS)

Basic Idea

Suppose we are given a periodic, discrete signal x[n] with period of N , which is a
uniformly sampled version of continuoius periodic signal x(t), 3:

x[n] = x[n + m ·N ] where m:integer

where N is called the fundamental period of x[n], and it must be an integer.

e.g.:

Figure 8.1: Typical discrete periodic signal x[n] w/ period N(samples).
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Based upon the same reasoning behind the continuous Fourier series, we can express
x[n] as a linear combination of harmonically related discrete complex exponentials,
where the fundamental frequency is now: 1

ω0 =
2π

N
(rad)

i.e.:

x[n] =
N−1∑

k=0

Dx(k)ej 2πk
N

n : Discrete F.S.

NOTE: The discrete Fourier series is a finite series, whereas the continuous
Fourier series is an infinite series 2 !!!

1For continuous periodic signal x(t) = x(t + T ), the fundamental frequency is ω0 = 2π
T (rad/sec).

2Recall that continuous F.S.: x(t) =
∑∞

k=−∞ Cx(k)ej 2πk
T t
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8.2 Comparison between DFS and CFS

x(t) =
∞∑

k=−∞
Cx(k)ej 2πk

T
t : CFS (infinite series)

x[n] =
N−1∑

k=0

Dx(k)ej 2πk
N

n : DFS (finite series)

(1) Continuous Fourier Series(CFS):

Let

φc(k)
∆
= ej 2πk

T
t = cos

(
2πkt

T

)
+ j sin

(
2πkt

T

)

then, all of φc(k) are distinct for k = −∞ to k = ∞, i.e. they never repeats!!!

Example 8.1

It is easy to notice that for φc(k), which is:

φc(k)
∆
= ej 2πk

T
t = cos

(
2πkt

T

)
+ j sin

(
2πkt

T

)

the real and imaginary parts,
{
cos

(
2πkt

T

)}∞
k=−∞ and

{
sin

(
2πkt

T

)}∞
k=−∞ respec-

tively, are all distinct for different value of k, for instance, let T = 2π(sec), then
the real and imaginary parts of φc(k) :

(i) Real part:
cos(t), cos(2t), . . . , cos(kt), . . . . . .

(ii) Imaginary part:

sin(t), sin(2t), . . . , sin(kt), . . . . . .

are all different to each other.

NOTE:
This is why the CFS requires a infinite number of harmonic frequency components to
completely represent a continuous periodic signal, and thus the CFS is in a infinite
series form!!!
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(2) Discrete Fourier Series(DFS):

Let

φd(k)
∆
= ej 2πk

N
n = cos

(
2πkn

N

)
+ j sin

(
2πkn

N

)

then, φd(k) is periodic in k with period of N , i.e.:

φd(k) = φd(k + rN) where r: integer

proof:

RHS = φd(k + rN)

= ej
2π(k+rN)

N
n

= ej 2πk
N

n · ej 2πrN
N

n

= ej 2πk
N

n

= φd(k) = LHS

Example 8.2

Let the period N = 4, then:

φd(k)
∆
= ej 2πk

N
n = cos

(
2πkn

N

)
+ j sin

(
2πkn

N

)

= cos

(
2πkn

4

)
+ j sin

(
2πkn

4

)

= cos

(
πkn

2

)
+ j sin

(
πkn

2

)

The real and imaginary parts of φd(k),
{
cos

(
πkn
2

)}∞
k=−∞ and

{
sin

(
πkn
2

)}∞
k=−∞

respectively, repeat themselves in k with the period of N = 4 as follows:
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(i) Real part:

cos
(

π

2
n

)
, cos (πn) , cos

(
3π

2
n

)
, cos (2πn) , k = 1, 2, 3, 4

cos
(

5π

2
n

)
, cos (3πn) , cos

(
7π

2
n

)
, cos (4πn) , k = 5, 6, 7, 8

(
≡ cos

(
π

2
n

)
, cos (πn) , cos

(
3π

2
n

)
, cos (2πn)

)

...

...

(ii) Imaginary part:

sin
(

π

2
n

)
, sin (πn) , sin

(
3π

2
n

)
, sin (2πn) , k = 1, 2, 3, 4

sin
(

5π

2
n

)
, sin (3πn) , sin

(
7π

2
n

)
, sin (4πn) , k = 5, 6, 7, 8

(
≡ sin

(
π

2
n

)
, sin (πn) , sin

(
3π

2
n

)
, sin (2πn)

)

...

...

NOTE:
This is why the DFS requires only a finite number(N) of harmonic frequency com-

ponents, from d.c. to 2π(N−1)
N

(rad), to completely represent a discrete periodic signal,
and thus the DFS is in a finite series form!!!
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8.3 Representation of Complex DFS

Let x[n] be a periodic, discrete signal with period of N , i.e.

x[n] = x[n + m ·N ] where m:integer

where N is called the fundamental period of x[n], and it must be an integer.

Then, based upon the same reasoning behind the continuous Fourier series, we can
express x[n] as a linear combination of harmonically related discrete complex expo-
nentials,

x[n] =
N−1∑

k=0

Dx(k)ej 2πk
N

n

where the fundamental frequency is ω0 = 2π
N

(rad).

The corresponding DFS coefficients 3 {Dx(k)}∞k=−∞ are given:

Dx(k) =
1

N

N−1∑

n=0

x[n]e−j 2πk
N

n

Note:

1. In general, Dx(k)’s are complex numbers, i.e.:

Dx(k) = Re[Dx(k)] + jIm[Dx(k)] (cartesian coordinate)

= |Dx(k)|ejΦx(k) (polar coordinate) : preferred !!!

where
|Dx(k)| =

√
Re2[Dx(k)] + Im2[Dx(k)]

Φx(k) = arctan

{
Im[Dx(k)]

Re[Dx(k)]

}

2. Since φd(k) is periodic, Dx(k), naturally, would be periodic in k with period of
N : to be officially proved later.

3Recall that for continuous F.S., the coefficient is in the form of Cx(k) = 1
T

∫
T

x(t)e−j 2πkt
T dt.

165



Derivation of DFS coefficient: Dx(k)

FACT:
N−1∑

n=0

ej 2πkn
N =

{
N, k = m ·N
0 otherwise

proof:

(i) k 6= m ·N :

N−1∑

n=0

(
ej 2πk

N

)n
=

1− ej 2πk
N

N

1− ej 2πk
N

=
1− ej2πk

1− ej 2πk
N

= 0

(ii) k = m ·N :

N−1∑

n=0

ej 2πmNn
N =

N−1∑

n=0

1 = N

q.e.d.

Now, to derive the DFS coefficient Dx(k), from

x[n] =
N−1∑

k=0

Dx(k)ej 2πk
N

n

Multiply both sides with e−j 2πrn
N , where r is integers ranging 0 ≤ r ≤ N −1, and take

summation
∑N−1

n=0 , then

N−1∑

n=0

x[n]e−j 2πrn
N =

N−1∑

n=0

N−1∑

k=0

Dx(k)ej
2π(k−r)n

N

=
N−1∑

k=0

Dx(k)
N−1∑

n=0

ej
2π(k−r)n

N (8.1)

In the above equation (8.1), notice from the FACT that

N−1∑

n=0

ej
2π(k−r)n

N =

{
N, k − r = m ·N → k = r + mN → k = r
0 k − r 6= m ·N → k 6= r + mN → k 6= r
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where the value of k is restrained as 0 ≤ k ≤ N − 1. From (8.1), we have

N−1∑

n=0

x[n]e−j 2πrn
N = N ·Dx(r)

Therefore, the discrete Fourier series coefficient Dx(k) can be put into the following
formula:

Dx(r) =
1

N

N−1∑

n=0

x[n]e−j 2πrn
N

or replacing r with k, we get:

Dx(k) =
1

N

N−1∑

n=0

x[n]e−j 2πkn
N

In summary, we have the following DFS pair relationship for periodic discrete-time
signals x[n];

x[n] =
N−1∑

k=0

Dx(k)ej 2πk
N

n

Dx(k) =
1

N

N−1∑

n=0

x[n]e−j 2πk
N

n

Note: Dx(k) is periodic in k with period of N .

proof:

Dx(k + mN) =
1

N

N−1∑

n=0

x[n]e−j
2π(k+mN)

N
n

=
1

N

N−1∑

n=0

x[n]e−j 2πk
N

n · e−j 2πmN
N

n

=
1

N

N−1∑

n=0

x[n]e−j 2πk
N

n

∆
= Dx(k)
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