Contents

9	DIS	SCRETE TIME FOURIER TRANSFORM	168
	9.1	Concept of Discrete Time Fourier Transform (DTFT)	168
	9.2	Representation of DTFT	170
	9.3	Properties of DTFT	175

Chapter 9

DISCRETE TIME FOURIER TRANSFORM

9.1 Concept of Discrete Time Fourier Transform (DTFT)

Basic Idea

We are given a non-periodic discrete-time signal x[n] defined for all $-\infty < n < \infty$, where n is *integer*:

e.g.:

Figure 9.1: Typical non-periodic discrete signal x[n].

Note: Notice that x[n] samples are almost zero, for outside of $0 \le n \le N-1$, i.e.

$$x[n] \approx 0$$
, for $n \ge N$ and $n < 0$

Similarly to the procedure to derive F.T. from F.S. for non-periodic continuous signal, we defined a discrete periodic signal $\tilde{x}[n]$ from x[n] as follows:

$$\tilde{x}[n] = x[n], \quad 0 \le n < N$$
 :truncation

and

$$\tilde{x}[n] = \tilde{x}[n + m \cdot N]$$

where m is an integer.

Figure 9.2: Periodic discrete signal $\tilde{x}[n]$ constructed from non-peridic x[n].

Then, we can express $\tilde{x}[n]$ as a discrete Fourier series(DFS), and by letting $N \to \infty$, we get the analysis tool (DTFT) of x[n] in the frequency domain, since,

$$\lim_{N \to \infty} \tilde{x}[n] = x[n]$$

9.2 Representation of DTFT

Let x[n] be a non-periodic discrete-time signal of which sample values are almost zero for outside of $0 \le n \le N-1$, and construct a discrete periodic signal $\tilde{x}[n]$ from x[n] as discussed in the previous section, i.e.:

$$\tilde{x}[n] = x[n], \quad 0 \le n < N$$

and

$$\tilde{x}[n] = \tilde{x}[n + m \cdot N]$$

Then, the discrete Fourier series (DFS) pair of $\tilde{x}[n]$ is as follows:

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{D}_x(k) e^{j\frac{2\pi kn}{N}}$$

$$\tilde{D}_x(k) = \frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\frac{2\pi kn}{N}}$$

Notice that

$$\tilde{D}_{x}(k) = \frac{1}{N} \sum_{n=0}^{N-1} \tilde{x}[n] e^{-j\frac{2\pi kn}{N}}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi kn}{N}}$$
(since $\tilde{x}[n] = x[n], \quad 0 \le n \le N-1$)
$$= \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-j\frac{2\pi kn}{N}}$$
(since $x[n] \approx 0$, for $n < 0, n \ge N$)

Note:

In this form itself, $\tilde{D}_x(k) \to 0$ as $N \to \infty$, and thus meaningless!!! i.e.

$$\lim_{N \to \infty} \tilde{D}_x(k) = 0$$

So, we define the following function in order to represent the frequency distribution of a non-periodic discrete signal x[n], which is:

$$X\left(e^{j\omega}\right) \stackrel{\Delta}{=} \lim_{N \to \infty} N \cdot \tilde{D}_x(k) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 : DTFT of $x[n]$ (9.1)

where ω is a *continuous* variable which comes from the asymptotic equation below:

$$\lim_{N \to \infty} \frac{2\pi k}{N} \longrightarrow \omega$$

Remark: The discrete harmonic frequencies $\left\{\frac{2\pi k}{N}\right\}_{k=0}^{N-1}$ become *continuous*!!!

Then, the DFS coefficient $\tilde{D}_x(k)$ can be expressed as:

$$\tilde{D}_{x}(k) = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-j\frac{2\pi kn}{N}}$$

$$= \frac{1}{N} X\left(e^{j\omega}\right)\Big|_{\omega = \frac{2\pi k}{N} \stackrel{\Delta}{=} k\omega_{0}}$$

$$= \frac{1}{N} X\left(e^{jk\omega_{0}}\right)$$
(where $\omega_{0} \stackrel{\Delta}{=} \frac{2\pi}{N}$, and thus $N = \frac{2\pi}{\omega_{0}}$)
$$= \frac{\omega_{0}}{2\pi} X\left(e^{jk\omega_{0}}\right)$$

which is the uniformly sampled version of $\frac{1}{N}X\left(e^{j\omega}\right)$ with spacing of ω_{0} .

Relation between $X(e^{j\omega})$ and $\tilde{D}_x(k)$:

Note that $X\left(e^{j\omega}\right)$ is the *envelope* of $N\cdot \tilde{D}_x(k)$, where discrete harmonic frequencies $\left\{\frac{2\pi k}{N}=k\omega_0\right\}_{k=0}^{N-1}$ become continuous ω !!!, i.e.

Figure 9.3: Relation between $X\left(e^{j\omega}\right)$ and $\tilde{D}_{x}(k)$ for one period.

Now, from the DFS pair of $\tilde{x}[n]$, we have:

$$\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{D}_x(k) e^{j\frac{2\pi kn}{N}}$$

$$= \sum_{k=0}^{N-1} \frac{1}{N} X\left(e^{jk\omega_0}\right) \cdot e^{jk\omega_0 n}$$

$$= \frac{1}{2\pi} \sum_{k=0}^{N-1} X\left(e^{jk\omega_0}\right) \cdot e^{jk\omega_0 n} \cdot \omega_0$$
(9.2)

As $N \to \infty$, we have the following facts:

$$(i) \quad \tilde{x}[n] \longrightarrow x[n]$$

$$(ii) \quad \omega_0 = \frac{2\pi}{N} \longrightarrow d\omega$$

$$(iii) \quad k\omega_0 = \frac{2\pi k}{N} \longrightarrow \omega$$

$$(iv) \quad \sum_{k=0}^{N-1} \longrightarrow \int_0^{2\pi}$$

$$(\text{since } \frac{(N-1)2\pi}{N} \longrightarrow 2\pi \text{ as } N \to \infty)$$

Applying (i) to (iv) into (9.2), we have:

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} X\left(e^{j\omega}\right) \cdot e^{j\omega n} d\omega \tag{9.3}$$

From (9.1) and (9.3), we have the following DTFT pair for non-periodic discrete signal x[n]:

$$X\left(e^{j\omega}\right) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
 : DTFT

$$x[n] = \frac{1}{2\pi} \int_0^{2\pi} X\left(e^{j\omega}\right) \cdot e^{j\omega n} d\omega \quad : \text{IDTFT}$$

Remarks:

- 1. $X(e^{j\omega})$ is a continuous function of ω even though x[n] is a discrete signal! ¹
- 2. $X(e^{j\omega})$ is periodic in ω with period of $2\pi(\mathrm{rad})$, i.e.

$$X\left(e^{j\omega}\right) = X\left(e^{j(\omega + 2\pi m)}\right)$$

proof:

RHS =
$$\sum_{n=-\infty}^{\infty} x[n] \cdot e^{-j(\omega + 2\pi m)n}$$
=
$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \cdot e^{-j2\pi mn}$$
=
$$\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$\triangleq X(e^{j\omega}) = LHS$$

(cf) We can deduce this fact that: since $X(e^{j\omega})$ is the envelope of $N \cdot \tilde{D}_x(k)$, and $N \cdot \tilde{D}_x(k)$ is periodic in k with period of N, $X(e^{j\omega})$ must also be periodic!

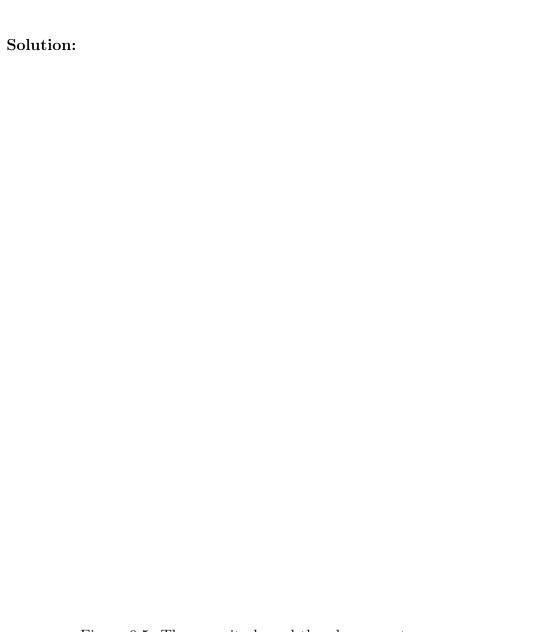
Example 9.1

Determine the frequency distribution of a non-periodic signal x[n] given below \ni :

$$x[n] = a^n u[n], \quad |a| < 1 \text{ and } a > 0$$

Figure 9.4: A non-periodic x[n].

¹This is due to the "non-periodicity" of x[n], and will be discussed near the end of the semester.



Note: Check out the fact that $X(e^{j\omega})$ is periodic in ω with period of 2π (radian).

9.3 Properties of DTFT

The properties of DTFT are similar to the properties of F.T. for continuous non-periodic signals x(t) discussed in chapter 4, except for few cases:

Let

$$x[n] \stackrel{\mathsf{F}}{\longleftrightarrow} X\left(e^{j\omega}\right)$$

then, some typical properties of the DTFT are as follows:

(1) Linearity

$$F\left[\sum_{i=1}^{N} a_i x_i[n]\right] = \sum_{i=1}^{N} a_i F\left[x_i[n]\right]$$
$$= \sum_{i=1}^{N} a_i X_i\left(e^{j\omega}\right)$$

(2) Time shift

$$F[x[n-n_0]] = e^{-j\omega n_0} \cdot X(e^{j\omega})$$

(3) Frequency shift

$$F\left[e^{j\omega_0 n} \cdot x[n]\right] = X\left(e^{j(\omega - \omega_0)}\right)$$

(4) Time scaling

Define a time scaled discrete signal $x_k[n]$ as:

$$x_k[n] \stackrel{\triangle}{=} \left\{ egin{array}{ll} x[rac{n}{k}] & & \mbox{if } n = m \cdot k \\ 0 & & \mbox{if } n
eq m \cdot k \end{array} \right.$$

Then,

$$F\left[x_k[n]\right] = X\left(e^{jk\omega}\right)$$

Note: Comparison with the continuous F.T.:

$$\mathcal{F}[x(at)] = \frac{1}{a} X\left(\frac{\omega}{a}\right)$$

- 1. x[an], where a is real, is NOT proper in this case, since an cannot be an integer!
- 2. x[kn], where k is an integer, is merely a resampling of x[n], e.g.

(NOT either compression or stretching) (Stretched version of x[n])

Figure 9.6: Resampled x[2n] and twice stretched $x[\frac{n}{2}]$ from x[n].

(5) Differentiation in frequency

$$\mathrm{F}\left[nx[n]\right] = j\frac{dX\left(e^{j\omega}\right)}{d\omega}$$

Note: We cannot consider the differentiation and/or the integration of x[n] since it is a discrete signal. Instead, we should consider the difference and summation: refer the Table 5.1 of the main reference book.

(6) Convolution

$$F[x[n]*h[n]] = X(e^{j\omega}) \cdot H(e^{j\omega})$$

Note: Input/output relationship of a DLTI system.

(7) Modulation

$$\mathrm{F}\left[x[n]\cdot y[n]\right] \ = \ \frac{1}{2\pi}\int_{2\pi}X\left(e^{j\Omega}\right)Y\left(e^{j(\omega-\Omega)}\right)d\Omega$$

: Periodic Convolution

Reminder: $X(e^{j\omega})$ is periodic with period $2\pi(\text{rad})$.

PROOF of (1) \sim (7): Assignment